1
|
Chiorescu RM, Lazar RD, Ruda A, Buda AP, Chiorescu S, Mocan M, Blendea D. Current Insights and Future Directions in the Treatment of Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2023; 25:440. [PMID: 38203612 PMCID: PMC10778923 DOI: 10.3390/ijms25010440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
Heart failure is a clinical syndrome associated with poor quality of life, substantial healthcare resource utilization, and premature mortality, in large part related to high rates of hospitalizations. The clinical manifestations of heart failure are similar regardless of the ejection fraction. Unlike heart failure with reduced ejection fraction, there are few therapeutic options for treating heart failure with preserved ejection fraction. Molecular therapies that have shown reduced mortality and morbidity in heart failure with reduced ejection have not been proven to be effective for patients with heart failure and preserved ejection fraction. The study of pathophysiological processes involved in the production of heart failure with preserved ejection fraction is the basis for identifying new therapeutic means. In this narrative review, we intend to synthesize the existing therapeutic means, but also those under research (metabolic and microRNA therapy) for the treatment of heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Roxana-Daiana Lazar
- Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania; (A.R.); (A.P.B.); (D.B.)
| | - Alexandru Ruda
- Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania; (A.R.); (A.P.B.); (D.B.)
| | - Andreea Paula Buda
- Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania; (A.R.); (A.P.B.); (D.B.)
| | - Stefan Chiorescu
- Department of Surgery, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400139 Cluj-Napoca, Romania;
| | - Mihaela Mocan
- Department of Internal Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Dan Blendea
- Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania; (A.R.); (A.P.B.); (D.B.)
- Department of Cardiology, “Iuliu Hațieganu” University of Medicine and Pharmacy, 400437 Cluj-Napoca, Romania
| |
Collapse
|
2
|
Demir M, Altinoz E, Koca O, Elbe H, Onal MO, Bicer Y, Karayakali M. Antioxidant and anti-inflammatory potential of crocin on the doxorubicin mediated hepatotoxicity in Wistar rats. Tissue Cell 2023; 84:102182. [PMID: 37523948 DOI: 10.1016/j.tice.2023.102182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/18/2023] [Accepted: 07/25/2023] [Indexed: 08/02/2023]
Abstract
Doxorubicin (DXR) is widely used in cancer treatment. However, it has not yet been possible to prevent the side effects of DXR. The aim of this study was to investigate the hepatoprotective effect of crocin against DXR used in cancer treatment. For this reason; forty Wistar rats (male-250-300 g) were allocated into four groups (n = 10/group): Control, Crocin, DXR and DXR+Crocin. Control and Crocin groups were administered saline and crocin (40 mg/kg, i.p) for 15 days, respectively. DXR group, cumulative dose 12 mg/kg DXR, was administered for 12 days via 48 h intervals in six injections (2 mg/kg each, i.p). DXR+Crocin group, crocin (40 mg/kg-i.p) was administered for 15 days, and DXR was given as in the DXR group. The results revealed that serum liver markers (alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) increased significantly after DXR administration but recovered after crocin therapy. In addition, lipid peroxidation (MDA), and inflammatory cytokine (TNF-α) increased after DXR application and the antioxidative defense system (GSH, SOD, CAT) significantly decreased and re-achieved by crocin treatment. Our results conclude that crocin treatment was related to ameliorated hepatocellular architecture and reduced hepatic oxidative stress and inflammation in rats with DXR-induced hepatotoxicity.
Collapse
Affiliation(s)
- M Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - E Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - O Koca
- Department of Biochemistry, Karabuk University Education and Research Hospital, Karabuk, Turkey
| | - H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - M O Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Y Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - M Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| |
Collapse
|
3
|
Liu H, Cheng H, Wang H, Wang Q, Yuan J. Crocin improves the renal autophagy in rat experimental membranous nephropathy via regulating the SIRT1/Nrf2/HO-1 signaling pathway. Ren Fail 2023; 45:2253924. [PMID: 37724538 PMCID: PMC10512763 DOI: 10.1080/0886022x.2023.2253924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/25/2023] [Indexed: 09/21/2023] Open
Abstract
Membranous nephropathy (MN) is a glomerular disease. Crocin is isolated from saffron and gardenia. Its antioxidant, anti-inflammatory, anti-hyperlipidemic, anti-atherosclerotic, anti-tumor, free-radical scavenging and neuroprotective activities have been well established. We investigated the biological functions of crocin and its related mechanisms in MN. We established an experimental passive Heymann nephritis (PHN) rat model induced by anti-Fx1A antiserum. The rats were divided into sham, sham + crocin, PHN, PHN + crocin, and PHN + enalapril groups. Blood samples and kidneys of rats were collected for estimation of biochemical parameters in serum and oxidative stress indicators in kidney tissues. Histopathological changes of renal tissues were evaluated by hematoxylin and eosin, periodic acid-Schiff (PAS) and Masson staining. The podocyte number was estimated by immunohistochemistry staining of Wilms tumor type 1 (WT1). The deposition of rat anti-rabbit IgG antibodies, complement C3 and C5b-9 was detected by immunofluorescence staining. Western blotting was performed to measure the levels of Sirtuin 1 (Sirt1), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and apoptosis-related proteins. The total cholesterol, triglycerides, creatinine, blood urea nitrogen, urine volume and urine albumin of PMN rats were significantly reduced by crocin. Additionally, crocin attenuated the renal histopathological changes. Moreover, the oxidative stress damage and podocyte loss and immune injury were relieved by crocin in PHN rats. Mechanistically, crocin administration activated the Sirt1/Nrf2/HO-1 pathways. The results provide a scientific basis that crocin could alleviate MN by inhibiting immune injury and podocyte damage through activating the Sirt1/Nrf2/HO-1 pathways.
Collapse
Affiliation(s)
- Hongyan Liu
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Cheng
- Renal Division, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Wuhan, China
| | - Hongyun Wang
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Qiong Wang
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, China
| | - Jun Yuan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Sharifiaghdam Z, Amini SM, Dalouchi F, Behrooz AB, Azizi Y. Apigenin-coated gold nanoparticles as a cardioprotective strategy against doxorubicin-induced cardiotoxicity in male rats via reducing apoptosis. Heliyon 2023; 9:e14024. [PMID: 36915508 PMCID: PMC10006676 DOI: 10.1016/j.heliyon.2023.e14024] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Aims Cardiotoxicity is associated with doxorubicin (DOX), an effective anticancer drug. Apigenin has cardioprotective properties; it may be employed as a capping and reducing agent in synthesizing gold nanoparticles (AuNPs). This study examined the cardioprotective impact of AuNPs synthesized with apigenin (Api) in DOX-induced cardiotoxicity (DIC). Main methods Api-AuNPs were synthesized in a single pot without needing additional reagents for reducing gold ions or stabilizing the NPs. The cytotoxicity of Api-AuNPs on H9c2 heart cells was subsequently determined using the MTT assay. In the animal investigation, 40 male rats were randomly assigned to one of four groups: control, cardiotoxicity (DOX), DOX treated with apigenin (DOX + Api), or DOX treated with Api-AuNPs (DOX + Api-AuNPs). To examine heart function, echocardiography was conducted. Blood samples were obtained to evaluate injury indicators (Lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), Cardiac Troponin I (cTn-I), Alanine transaminase (ALT), and Aspartate transaminase (AST)). The heart was removed under general anesthetic, weighed, and preserved in formalin solution. Six micrometer-thick cardiac tissue sections were stained with hematoxylin, eosin (H&E), and immunohistochemistry to identify cardiomyocyte apoptotic markers (Bax, Bcl-2, and caspase3). Key findings Api-AuNPs have an average size of 21.4 ± 11.6 nm and are stable in physiological environments. Api-AuNPs therapy substantially reduced body and heart weight loss compared to the DOX group. Injury indicators were reduced dramatically by Api-AuNPs treatment. Api-AuNPs inhibited myocardial apoptosis via modulating Bax, caspase3, and Bcl-2 and ameliorating tissue damage caused by DOX. Significance Api-AuNPs' anti-apoptotic activities provide cardioprotection against DIC. It has the potential to reduce cardiotoxicity and boost myocardial performance.
Collapse
Affiliation(s)
- Zeynab Sharifiaghdam
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Fereshteh Dalouchi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Barzegar Behrooz
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Malaysia.,Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Azizi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Elfadadny A, Ragab RF, Hamada R, Al Jaouni SK, Fu J, Mousa SA, El-Far AH. Natural bioactive compounds-doxorubicin combinations targeting topoisomerase II-alpha: Anticancer efficacy and safety. Toxicol Appl Pharmacol 2023; 461:116405. [PMID: 36716865 DOI: 10.1016/j.taap.2023.116405] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 01/07/2023] [Accepted: 01/22/2023] [Indexed: 01/29/2023]
Abstract
Cancer is one of the leading causes of death worldwide, so pursuing effective and safe therapeutics for cancer is a key research objective nowadays. Doxorubicin (DOX) is one of the commonly prescribed chemotherapeutic agents that has been used to treat cancer with its antimitotic properties via inhibition of topoisomerase II (TOP2) activity. However, many problems hinder the broad use of DOX in clinical practice, including cardiotoxicity and drug resistance. Research in drug discovery has confirmed that natural bioactive compounds (NBACs) display a wide range of biological activities correlating to anticancer outcomes. The combination of NBACs has been seen to be an ideal candidate that might increase the effectiveness of DOX therapy and decreases its unfavorable adverse consequences. The current review discusses the chemo-modulatory mechanism and the protective effects of combined DOX with NBACs with a binding affinity (pKi) toward TOP2A more than pKi of DOX. This review will also discuss and emphasize the molecular mechanisms to provide a pathway for further studies to reveal other signaling pathways. Taken together, understanding the fundamental mechanisms and implications of combined therapy may provide a practical approach to battling cancer diseases.
Collapse
Affiliation(s)
- Ahmed Elfadadny
- Department of Animal Internal Medicine, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Rokaia F Ragab
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan; Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Rania Hamada
- Department of Pathology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Soad K Al Jaouni
- Department of Hematology/Pediatric Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China.
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| |
Collapse
|
6
|
Gao J, Zhao F, Yi S, Li S, Zhu A, Tang Y, Li A. Protective role of crocin against sepsis-induced injury in the liver, kidney and lungs via inhibition of p38 MAPK/NF-κB and Bax/Bcl-2 signalling pathways. PHARMACEUTICAL BIOLOGY 2022; 60:543-552. [PMID: 35225146 PMCID: PMC8890572 DOI: 10.1080/13880209.2022.2042328] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 02/09/2022] [Indexed: 06/01/2023]
Abstract
CONTEXT Crocin has been reported to have multiple bioactivities. However, the effect of crocin administration on caecal ligation and puncture (CLP)-induced sepsis remains unknown. OBJECTIVE We investigated the effects of crocin on CLP-induced sepsis in mice and the underlying mechanism of action. MATERIALS AND METHODS Five experimental groups (n = 10) of BALB/c mice were used: control, CLP (normal saline) and CLP + crocin (50, 100 and 250 mg/kg, 30 min prior to CLP). Mice were sacrificed 24 h after CLP. Liver, kidney and lung histopathology, indicator levels, apoptotic status, pro-inflammatory cytokines and relative protein levels were evaluated. RESULTS Compared to the CLP group, crocin treatment significantly increased the survival rate (70%, 80%, 90% vs. 30%). Crocin groups exhibited protection against liver, kidney and lung damage with mild-to-moderate morphological changes and lower indicator levels: liver (2.80 ± 0.45, 2.60 ± 0.55, 1.60 ± 0.55 vs. 5.60 ± 0.55), kidney (3.00 ± 0.71, 2.60 ± 0.55, 1.40 ± 0.55 vs. 6.20 ± 0.84) and lungs (8.00 ± 1.59, 6.80 ± 1.64, 2.80 ± 0.84 vs. 14.80 ± 1.79). The proinflammatory cytokines (IL-1β, TNF-α, IL-6 and IL-10 levels in the crocin groups) were distinctly lower and the apoptotic index showed a significant decrease. Crocin administration significantly suppressed p38 MAPK phosphorylation and inhibited NF-κB/IκBα and Bcl-2/Bax activation. DISCUSSION AND CONCLUSIONS Pre-treatment with crocin confers protective effects against CLP-induced liver, kidney and lung injury, implying it to be a potential therapeutic agent.
Collapse
Affiliation(s)
- Jun Gao
- Department of Laboratory Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Feng Zhao
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shaona Yi
- Department of Nephrology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Shuhang Li
- Department of Urology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Aiqing Zhu
- Department of Dermatology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Yingxiu Tang
- Department of Laboratory Medicine, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Aiqun Li
- Department of Emergency, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
7
|
Si W, Xiong L, Zhou H, Wu H, Liu Z, Liu G, Liu Y, Shen A, Liang X. Comprehensive characterization of ingredients in Crocus sativus L. from different origins based on the combination of targeted and nontargeted strategies. Food Chem 2022; 397:133777. [PMID: 35914457 DOI: 10.1016/j.foodchem.2022.133777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 06/25/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
As a valuable medicinal and edible plant, Crocus sativus L. has had wide applications since ancient times. Herein, a comprehensive approach for characterization of constituents in saffron was established based on the combination of targeted and non-targeted strategies. A targeted UPLC-ESI/MSn strategy was applied for in-depth identification of crocins, and a non-targeted UPLC-ESI/MS2 approach characterized other components. This integration strategy was used to analyze ingredients in 21 batches of saffrons from 6 origins. Forty-seven crocins belonging to 8 types were identified including 32 new crocins. Among them, 6 new compounds with specific structures were reported for the first time, i.e. trans-6(G, 2G), trans-4(GT, g), trans-3(GT), cis-3(GT), methyl ester-trans-2(G) and methyl ester-cis-2(G). Besides, 91 non-crocin components were identified including 43 new compounds. Based on systematic investigation of crocins and non-crocins, we found that crocins were the critical components to distinguish saffrons from different origins, especially between domestic and foreign samples.
Collapse
Affiliation(s)
- Wei Si
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lele Xiong
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Han Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Huimin Wu
- Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Zhe Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoqiang Liu
- Thermofisher Scientific Corporation, Shanghai 201206, China
| | - Yanfang Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China
| | - Aijin Shen
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| | - Xinmiao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; Jiangxi Provincial Key Laboratory for Pharmacodynamic Material Basis of Traditional Chinese Medicine, Ganjiang Chinese Medicine Innovation Center, Nanchang 330000, China.
| |
Collapse
|
8
|
Liu J, Zhang Q, Tao T, Wang LY, Sun JY, Wu CJ, Zou WJ. Health benefits of spices in individuals with chemotherapeutic drug-induced cardiotoxicity. Curr Opin Pharmacol 2022; 63:102187. [PMID: 35245798 DOI: 10.1016/j.coph.2022.102187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 01/25/2023]
Abstract
Cardio-oncology is an emerging field that mainly focuses on a series of cardiovascular diseases caused by chemotherapy and radiotherapy. In the history and culture of human nutrition, spices have been emphasized for their wide range of economic and medical applications in addition to being used as a food-flavoring agent and food preservative. Currently, an increasing number of studies have focused on the health benefits of spices in preventing cardiovascular diseases, particularly their antioxidant effects against cardiovascular damage. This review summarizes the cardioprotective effects of black pepper, cardamom, clove, garlic, ginger, onion, and other spices against chemotherapeutic drug-induced cardiotoxicity and the potential mechanisms. Here, we recommend dietary adjustments with spices for patients with cancer to prevent or mitigate the cardiotoxicity induced by chemotherapeutic agents.
Collapse
Affiliation(s)
- Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China
| | - Qing Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China
| | - Ting Tao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China
| | - Ling-Yu Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China
| | - Jia-Yi Sun
- Innovation Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China.
| | - Chun-Jie Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China.
| | - Wen-Jun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130, PR China.
| |
Collapse
|
9
|
Qi JY, Yang YK, Jiang C, Zhao Y, Wu YC, Han X, Jing X, Wu ZL, Chu L. Exploring the Mechanism of Danshensu in the Treatment of Doxorubicin-Induced Cardiotoxicity Based on Network Pharmacology and Experimental Evaluation. Front Cardiovasc Med 2022; 9:827975. [PMID: 35295262 PMCID: PMC8918531 DOI: 10.3389/fcvm.2022.827975] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/27/2022] [Indexed: 12/30/2022] Open
Abstract
Background Doxorubicin (DOX) is one of the most effective chemotherapeutic agents available; however, its use is limited by the risk of serious cardiotoxicity. Danshensu (DSS), an active ingredient in Salvia miltiorrhiza, has multiple cardioprotective effects, but the effect of DSS on DOX-induced cardiotoxicity has not been reported. Objectives Predicting the targets of DOX-induced cardiotoxicity and validating the protective effects and mechanisms of DSS. Methods (1) Using methods based on network pharmacology, DOX-induced cardiotoxicity was analyzed by data analysis, target prediction, PPI network construction and GO analysis. (2) The cardiotoxicity model was established by continuous intraperitoneal injection of 15 mg/kg of DOX into mice for 4 days and the protective effects and mechanism were evaluated by treatment with DSS. Results The network pharmacology results indicate that CAT, SOD, GPX1, IL-6, TNF, BAX, BCL-2, and CASP3 play an important role in this process, and Keap1 is the main target of DOX-induced cardiac oxidative stress. Then, based on the relationship between Keap1 and Nrf2, the Keap1-Nrf2/NQO1 pathway was confirmed by animal experiments. In the animal experiments, by testing the above indicators, we found that DSS effectively reduced oxidative stress, inflammation, and apoptosis in the damaged heart, and significantly alleviated the prolonged QTc interval caused by DOX. Moreover, compared with the DOX group, DSS elevated Keap1 content and inhibited Nrf2, HO-1, and NQO1. Conclusion The results of network pharmacology studies indicated that Keap1-Nrf2/NQO1 is an important pathway leading to DOX-induced cardiotoxicity, and the results of animal experiments showed that DSS could effectively exert anti-oxidative stress, anti-inflammatory and anti-apoptotic therapeutic effects on DOX-induced cardiotoxicity by regulating the expression of Keap1-Nrf2/NQO1.
Collapse
Affiliation(s)
- Jia-ying Qi
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Ya-kun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chuan Jiang
- School of Preventive Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Yang Zhao
- Department of Radiology and Interventional Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong-chao Wu
- Department of Radiology and Interventional Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xuan Jing
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- *Correspondence: Xuan Jing
| | - Zhong-lin Wu
- Department of Radiology and Interventional Medicine, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Zhong-lin Wu
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
- Li Chu
| |
Collapse
|
10
|
Abdulkareem Aljumaily SA, Demir M, Elbe H, Yigitturk G, Bicer Y, Altinoz E. Antioxidant, anti-inflammatory, and anti-apoptotic effects of crocin against doxorubicin-induced myocardial toxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65802-65813. [PMID: 34322808 DOI: 10.1007/s11356-021-15409-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Doxorubicin (DOX) is a well-known chemotherapeutic drug for most malignancies including breast cancer and leukemia whilst the usage of DOX is limited owing to its cardiotoxicity. In the present study, we aimed to investigate the effects of crocin on doxorubicin-induced cardiotoxicity in rats. Forty rats were randomly divided into four groups: (a) control [received normal saline as a dose of 1 ml/kg by intraperitoneal injection (ip) for 15 days], (b) crocin (received crocin as a dose of 40 mg/kg/24h by ip for 15 days), (c) DOX (received DOX as a dose of 2 mg/kg/48h by ip in six injection, cumulative dose 12 mg/kg), and (d) DOX+crocin (received DOX as a dose of 2 mg/kg/48h by ip in six injection, and crocin as a dose of 40 mg/kg/24h i.p for 15 days). As compared to the controls, the results showed that DOX administration caused significant increases in lipid indices [triglyseride (TG), low-dencity lipoproteins (LDL) (p<0.001), and very low-dencity lipoproteins (VLDL) (p<0.005)], oxidative stress parameters [malondialdehyde (MDA) and total oxidant status (TOS) (p<0.001)] and cardiac markers [creatine kinase-muscle/brain (CK-MB) and cardiac troponin I (cTnI) (p<0.001)]. Besides, significant decreases in antioxidant defense systems [glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and total antioxidant status (TAS) (p<0.001)] were observed. The present study also demonstrated that co-administration of crocin with DOX significantly ameliorated the lipid profile (p<0.005), cardiac markers (p<0.005), and oxidative stress indices (p<0.001) as compared to DOX group. Histopathologically, significant increase in the mean histopathological damage score (MHDS) was found in the DOX group as compared to the controls (p<0.001). In contrast, the administration of crocin with DOX alleviated MHDS in myocardium (p<0.001). Taken together, our results reveal that crocin might be a cardioprotective agent in DOX-treated patients for cancer.
Collapse
Affiliation(s)
| | - Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Gurkan Yigitturk
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
11
|
Yang Y, Wei S, Zhang B, Li W. Recent Progress in Environmental Toxins-Induced Cardiotoxicity and Protective Potential of Natural Products. Front Pharmacol 2021; 12:699193. [PMID: 34305607 PMCID: PMC8296636 DOI: 10.3389/fphar.2021.699193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 01/08/2023] Open
Abstract
Humans are unconsciously exposed to environmental toxins including heavy metals as well as various pesticides, which have deleterious effects on human health. Accumulating studies pointed out that exposure to environmental toxins was associated with various cardiopathologic effects. This review summarizes the main mechanisms of cardiotoxicity induced by environmental toxins (cadmium, arsenic and pesticides) and discusses the potential preventive effects of natural products. These findings will provide a theoretical basis and novel agents for the prevention and treatment of environmental toxins-induced cardiotoxicity. Furthermore, the limitations of current studies, future needs and priorities are discussed.
Collapse
Affiliation(s)
- Yuanying Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Clinical Pharmacy, Central South University, Changsha, China
| |
Collapse
|
12
|
Zhang Y, Ni L, Lin B, Hu L, Lin Z, Yang J, Wang J, Ma H, Liu Y, Yang J, Lin J, Xu L, Wu L, Shi D. SNX17 protects the heart from doxorubicin-induced cardiotoxicity by modulating LMOD2 degradation. Pharmacol Res 2021; 169:105642. [PMID: 33933636 DOI: 10.1016/j.phrs.2021.105642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022]
Abstract
Anthracyclines including doxorubicin (DOX) are still the most widely used and efficacious antitumor drugs, although their cardiotoxicity is a significant cause of heart failure. Despite considerable efforts being made to minimize anthracycline-induced cardiac adverse effects, little progress has been achieved. In this study, we aimed to explore the role and underlying mechanism of SNX17 in DOX-induced cardiotoxicity. We found that SNX17 was downregulated in cardiomyocytes treated with DOX both in vitro and in vivo. DOX treatment combined with SNX17 interference worsened the damage to neonatal rat ventricular myocytes (NRVMs). Furthermore, the rats with SNX17 deficiency manifested increased susceptibility to DOX-induced cardiotoxicity (myocardial damage and fibrosis, impaired contractility and cardiac death). Mechanistic investigation revealed that SNX17 interacted with leiomodin-2 (LMOD2), a key regulator of the thin filament length in muscles, via its C-TERM domain and SNX17 deficiency exacerbated DOX-induced cardiac systolic dysfunction by promoting aberrant LMOD2 degradation through lysosomal pathway. In conclusion, these findings highlight that SNX17 plays a protective role in DOX-induced cardiotoxicity, which provides an attractive target for the prevention and treatment of anthracycline induced cardiotoxicity.
Collapse
Affiliation(s)
- Yanping Zhang
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Le Ni
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bowen Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Lingjie Hu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zheyi Lin
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Yang
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jinyu Wang
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Honghui Ma
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Yi Liu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Jian Yang
- Jinzhou Medical University, Liaoning 121000, China
| | - Jianghua Lin
- Jinzhou Medical University, Liaoning 121000, China
| | - Liang Xu
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Liqun Wu
- Department of Vascular and Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Dan Shi
- Department of Cardiology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Key Laboratory of Arrhythmias of the Ministry of Education of China, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China.
| |
Collapse
|
13
|
Su X, Yuan C, Wang L, Chen R, Li X, Zhang Y, Liu C, Liu X, Liang W, Xing Y. The Beneficial Effects of Saffron Extract on Potential Oxidative Stress in Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6699821. [PMID: 33542784 PMCID: PMC7840270 DOI: 10.1155/2021/6699821] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Saffron is commonly used in traditional medicines and precious perfumes. It contains pharmacologically active compounds with notably potent antioxidant activity. Saffron has a variety of active components, including crocin, crocetin, and safranal. Oxidative stress plays an important role in many cardiovascular diseases, and its uncontrolled chain reaction is related to myocardial injury. Numerous studies have confirmed that saffron exact exhibits protective effects on the myocardium and might be beneficial in the treatment of cardiovascular disease. In view of the role of oxidative stress in cardiovascular disease, people have shown considerable interest in the potential role of saffron extract as a treatment for a range of cardiovascular diseases. This review analyzed the use of saffron in the treatment of cardiovascular diseases through antioxidant stress from four aspects: antiatherosclerosis, antimyocardial ischemia, anti-ischemia reperfusion injury, and improvement in drug-induced cardiotoxicity, particularly anthracycline-induced. Although data is limited in humans with only two clinically relevant studies, the results of preclinical studies regarding the antioxidant stress effects of saffron are promising and warrant further research in clinical trials. This review summarized the protective effect of saffron in cardiovascular diseases and drug-induced cardiotoxicity. It will facilitate pharmacological research and development and promote utilization of saffron.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Chao Yuan
- Dezhou Second People's Hospital, Dezhou 253000, China
| | - Li Wang
- Xingtai People's Hospital, Xingtai 054001, China
| | - Runqi Chen
- Shanxi Province Cancer Hospital, Shanxi Medical University, Taiyuan 030000, China
| | - Xiangying Li
- Xingtai People's Hospital, Xingtai 054001, China
| | - Yijun Zhang
- The First Affiliated Hospital, Hebei North University, Zhangjiakou 075000, China
| | - Can Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Xu Liu
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wanping Liang
- The First Affiliated Hospital, Hebei North University, Zhangjiakou 075000, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| |
Collapse
|
14
|
Bahramsoltani R, Rahimi R. An Evaluation of Traditional Persian Medicine for the Management of SARS-CoV-2. Front Pharmacol 2020; 11:571434. [PMID: 33324206 PMCID: PMC7724033 DOI: 10.3389/fphar.2020.571434] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/21/2020] [Indexed: 01/12/2023] Open
Abstract
A new coronavirus causing severe acute respiratory syndrome (SARS-CoV-2) has emerged and with it, a global investigation of new antiviral treatments and supportive care for organ failure due to this life-threatening viral infection. Traditional Persian Medicine (TPM) is one of the most ancient medical doctrines mostly known with the manuscripts of Avicenna and Rhazes. In this paper, we first introduce a series of medicinal plants that would potentially be beneficial in treating SARS-CoV-2 infection according to TPM textbooks. Then, we review medicinal plants based on the pharmacological studies obtained from electronic databases and discuss their mechanism of action in SARS-CoV-2 infection. There are several medicinal plants in TPM with cardiotonic, kidney tonic, and pulmonary tonic activities, protecting the lung, heart, and kidney, the three main vulnerable organs in SARS-CoV-2 infection. Some medicinal plants can prevent "humor infection", a situation described in TPM which has similar features to SARS-CoV-2 infection. Pharmacological evaluations are in line with the therapeutic activities of several plants mentioned in TPM, mostly through antiviral, cytoprotective, anti-inflammatory, antioxidant, and anti-apoptotic mechanisms. Amongst the primarily-introduced medicinal plants from TPM, rhubarb, licorice, garlic, saffron, galangal, and clove are the most studied plants and represent candidates for clinical studies. The antiviral compounds isolated from these plants provide novel molecular structures to design new semisynthetic antiviral agents. Future clinical studies in healthy volunteers as well as patients suffering from pulmonary infections are necessary to confirm the safety and efficacy of these plants as complementary and integrative interventions in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Roodabeh Bahramsoltani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Roja Rahimi
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
- PhytoPharmacology Interest Group (PPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
15
|
Crocin ameliorates arsenic trioxide‑induced cardiotoxicity via Keap1-Nrf2/HO-1 pathway: Reducing oxidative stress, inflammation, and apoptosis. Biomed Pharmacother 2020; 131:110713. [PMID: 32920515 DOI: 10.1016/j.biopha.2020.110713] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/16/2020] [Accepted: 08/29/2020] [Indexed: 12/27/2022] Open
Abstract
Arsenic trioxide (ATO) is an excellent therapy for acute promyelocytic leukemia; however, its use is limited due to its cardiotoxicity. Crocin (CRO) possesses abundant pharmacological and biological properties, including antioxidant, anti-inflammatory, and anti-apoptotic. This study examined the cardioprotective effects of crocin and explored their mechanistic involvement in ATO-induced cardiotoxicity. Forty-eight male rats were treated with ATO to induce cardiotoxicity. In combination with ATO, CRO were given to evaluate its cardioprotection. The results demonstrated that CRO administration not only diminished QTc prolongation, myocardial enzymes and Troponin T levels but also improved histopathological results. CRO administration reduced reactive oxygen species generation. However, the CRO administration caused an increase in glutathione, superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase and total sulphydryl levels and a decrease in malondialdehyde content, gamma glutamyl transferase and lipid hydroperoxides levels and proinflammatory cytokines. Importantly, immunohistochemical analysis, real time PCR and western blotting showed a reduction in Caspase-3 and Bcl-2-associated X protein expressions and enhancement of B cell lymphoma-2 expression. Real time PCR and western blotting showed a reduction in proinflammatory cytokines. Moreover, CRO caused an activation in nuclear factor erythroid-2 related factor 2, leading to enhanced Kelch-like ECH-associated protein 1, heme oxygenase-1 and nicotinamide adenine dinucleotide quinone dehydrogenase 1 expressions involved in Nrf2 signaling during ATO-induced cardiotoxicity. CRO was shown to ameliorate ATO-induced cardiotoxicity. The mechanisms for CRO amelioration of cardiotoxicity due to inflammation, oxidative damage, and apoptosis may occur via an up-regulated Keap1-Nrf2/HO-1 signaling pathway.
Collapse
|
16
|
Maneikyte J, Bausys A, Leber B, Feldbacher N, Hoefler G, Kolb-Lenz D, Strupas K, Stiegler P, Schemmer P. Dietary Glycine Prevents FOLFOX Chemotherapy-Induced Heart Injury: A Colorectal Cancer Liver Metastasis Treatment Model in Rats. Nutrients 2020; 12:2634. [PMID: 32872376 PMCID: PMC7551625 DOI: 10.3390/nu12092634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/23/2020] [Accepted: 08/26/2020] [Indexed: 01/18/2023] Open
Abstract
INTRODUCTION FOLFOX chemotherapy (CTx) is used for the treatment of colorectal liver metastasis (CRLM). Side effects include rare cardiotoxicity, which may limit the application of FOLFOX. Currently, there is no effective strategy to prevent FOLFOX-induced cardiotoxicity. Glycine has been shown to protect livers from CTx-induced injury and oxidative stress, and it reduces platelet aggregation and improves microperfusion. This study tested the hypothesis of glycine being cardioprotective in a rat model of FOLFOX in combination with CRLM. MATERIALS AND METHODS The effect of glycine was tested in vitro on human cardiac myocytes (HCMs). To test glycine in vivo Wag/Rij rats with induced CRLM were treated with FOLFOX ±5% dietary glycine. Left ventricle ejection fraction (LVEF), myocardial fibrosis, and apoptosis, also heart fatty acid binding protein (h-FABP) and brain natriuretic peptide levels were monitored. PCR analysis for Collagen type I, II, and brain natriuretic peptide (BNP) in the heart muscle was performed. RESULTS In vitro glycine had no effect on HCM cell viability. Treatment with FOLFOX resulted in a significant increase of h-FABP levels, increased myocardial fibrosis, and apoptosis as well as increased expression of type I Collagen. Furthermore, FOLFOX caused a decrease of LVEF by 10% (p = 0.028). Dietary glycine prevented FOLFOX-induced myocardial injury by preserving the LVEF and reducing the levels of fibrosis (p = 0.012) and apoptosis (p = 0.015) in vivo. CONCLUSIONS Data presented here demonstrate for the first time that dietary glycine protects the heart against FOLFOX-induced injury during treatment for CRLM.
Collapse
Affiliation(s)
- Juste Maneikyte
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Augustinas Bausys
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
- National Cancer Institute, 08406 Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
| | - Nicole Feldbacher
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
| | - Gerald Hoefler
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria;
| | - Dagmar Kolb-Lenz
- Institute of Cell Biology, Histology and Embryology, Medical University Graz, 8010 Graz, Austria;
- Center for Medical Research, Core Facility Ultrastructure Analysis, Medical University Graz, 8010 Graz, Austria
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria; (J.M.); (A.B.); (B.L.); (N.F.); (P.S.)
| |
Collapse
|
17
|
Georgiadis N, Tsarouhas K, Rezaee R, Nepka H, Kass GEN, Dorne JLCM, Stagkos D, Toutouzas K, Spandidos DA, Kouretas D, Tsitsimpikou C. What is considered cardiotoxicity of anthracyclines in animal studies. Oncol Rep 2020; 44:798-818. [PMID: 32705236 PMCID: PMC7388356 DOI: 10.3892/or.2020.7688] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022] Open
Abstract
Anthracyclines are commonly used anticancer drugs with well-known and extensively studied cardiotoxic effects in humans. In the clinical setting guidelines for assessing cardiotoxicity are well-established with important therapeutic implications. Cardiotoxicity in terms of impairment of cardiac function is largely diagnosed by echocardiography and based on objective metrics of cardiac function. Until this day, cardiotoxicity is not an endpoint in the current general toxicology and safety pharmacology preclinical studies, although other classes of drugs apart from anthracyclines, along with everyday chemicals have been shown to manifest cardiotoxic properties. Also, in the relevant literature there are not well-established objective criteria or reference values in order to uniformly characterize cardiotoxic adverse effects in animal models. This in depth review focuses on the evaluation of two important echocardiographic indices, namely ejection fraction and fractional shortening, in the literature concerning anthracycline administration to rats as the reference laboratory animal model. The analysis of the gathered data gives promising results and solid prospects for both, defining anthracycline cardiotoxicity objective values and delineating the guidelines for assessing cardiotoxicity as a separate hazard class in animal preclinical studies for regulatory purposes.
Collapse
Affiliation(s)
| | | | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, 9177948564 Mashhad, Iran
| | - Haritini Nepka
- Department of Pathology, University Hospital of Larissa, 41334 Larissa, Greece
| | | | | | - Dimitrios Stagkos
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Konstantinos Toutouzas
- First Department of Cardiology, Hippokration Hospital, Medical School, University of Athens, 11527 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| | - Christina Tsitsimpikou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41500 Larissa, Greece
| |
Collapse
|
18
|
Chu X, Zhang Y, Xue Y, Li Z, Shi J, Wang H, Chu L. Crocin protects against cardiotoxicity induced by doxorubicin through TLR-2/NF-κB signal pathway in vivo and vitro. Int Immunopharmacol 2020; 84:106548. [PMID: 32388215 DOI: 10.1016/j.intimp.2020.106548] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/31/2022]
Abstract
Doxorubicin (DOX) is widely used to treat multiple of tumors, but its clinical trials are allied with some serious adverse events mainly cardiac functional abnormalities. So the objective of our investigation is to identify the cardioprotective action of crocin (CRO), a natural compound derived from saffron, against DOX-induced cardiotoxicity. CRO was injected intraperitoneally (i.p.) to rats for sixconsecutive days and DOX (i.p.) was administered on the fourth day. H9c2 cells were treated with DOX for 24 h after being pre-treated by CRO for 2 h. CROreduced tachycardiaand J-point elevation,decreased the levelsof serum creatine kinase, lactate dehydrogenase,glutamic-oxalacetic transaminase and glutamic-pyruvic transaminase.CRO exerted positive effect on DOX-induced ROS productionand changes of oxidative stress biomarkers. CRO significantlydecreased intracellular Ca2+ concentration andincreased mitochondria membrane potentialin H9c2 cells. CRO also resisted the DOX-induced high expressionof tumor necrosis factor-αand interleukin-6, inhibitedapoptosisand improved the abnormal expression levels of Bcl-2, Bax and Caspase-3 proteins.CRO obviously restrained DOX-mediatedhigh expression of toll-like receptor-2 (TLR-2) and nuclear factor kappa-B (NF-κB) in ventricular tissue. Inbrief,CRO distinctly restrained DOX-mediated cardiotoxicity by inhibiting oxidative stress, inflammation, apoptoticandredressingcardiomyocyte calcium dyshomeostasis and mitochondria damage.These cardioprotective effects may berelated closely with the TLR2/NF-κB pathway.
Collapse
Affiliation(s)
- Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China
| | - Yuanyuan Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Yucong Xue
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Ziliang Li
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China
| | - Jing Shi
- The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei, China.
| | - Hongfang Wang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| | - Li Chu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, Hebei, China.
| |
Collapse
|
19
|
Arzi L, Hoshyar R, Jafarzadeh N, Riazi G, Sadeghizadeh M. Anti-metastatic properties of a potent herbal combination in cell and mice models of triple negative breast cancer. Life Sci 2020; 243:117245. [PMID: 31926253 DOI: 10.1016/j.lfs.2019.117245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/23/2019] [Accepted: 12/28/2019] [Indexed: 01/05/2023]
Abstract
AIM To determine the anti-metastatic potential of combinations of two bioactive carotenoids of saffron, crocin and crocetin, on 4T1 breast cancer and on a mice model of TNBC, and assess the effect of the most potent combination on the Wnt/β-catenin pathway. MAIN METHODS The effects of the carotenoid combinations on the viability of 4T1 cells were determined by MTT assay. The effects of the nontoxic doses on migration, mobility, invasion and adhesion to ECM were examined by scratch assay, Transwell/Matrigel-coated Transwell chamber and adhesion assay respectively. Tumors were inoculated by injecting mice with 4T1 cells. The weights and survival rates of the mice and tumor sizes were monitored. Histological analysis of the tissues was conducted. The expression levels of Wnt/β-catenin pathway genes were measured by Real-time PCR and western blotting. KEY FINDINGS Treatment of 4T1 cells with combination doses inhibited viability in a dose-dependent manner. The nontoxic combinations significantly inhibited migration, cell mobility and invasion, also attenuating adhesion to ECM. The combination therapy mice possessed more weight, higher survival rates and smaller tumors. Histological examination detected remarkably fewer metastatic foci in their livers and lungs. It was also demonstrated that the combinations exerted anti-metastatic effects by disturbing the Wnt/β-catenin target genes in the liver and tumors. SIGNIFICANCE Our findings propose a carotenoid combination as an alternative potent herbal treatment for TNBC, which lacks the adverse effects associated with either chemotherapeutic agents or herb-chemotherapeutic drugs.
Collapse
Affiliation(s)
- Laleh Arzi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Reyhane Hoshyar
- Microbiology and Molecular Genetics Department, Michigan State University, East Lansing, MI 48824, USA; Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Nazli Jafarzadeh
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| | - Majid Sadeghizadeh
- Department of Genetics, School of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
20
|
Qi W, Boliang W, Xiaoxi T, Guoqiang F, Jianbo X, Gang W. Cardamonin protects against doxorubicin-induced cardiotoxicity in mice by restraining oxidative stress and inflammation associated with Nrf2 signaling. Biomed Pharmacother 2019; 122:109547. [PMID: 31918264 DOI: 10.1016/j.biopha.2019.109547] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 12/22/2022] Open
Abstract
The clinical application of doxorubicin (DOX) for cancer treatment is limited due to its cardiotoxicity. However, the basic pathophysiological molecular mechanisms underlying DOX-induced cardiomyopathy have not yet been completely clarified, and the disease-specific therapeutic strategies are lacking. The aim of the present study was to investigate the potential cardioprotective effect of cardamonin (CAR), a flavone found in Alpinia plant, on DOX-induced cardiotoxicity in a mouse model. At first, in DOX-treated mouse cardiomyocytes, CAR showed significantly cytoprotective effects through elevating nuclear factor erythroid-2 related factor 2 (Nrf2) signaling, and reducing the degradation of Nrf2. This process then improved the anti-oxidant system, as evidenced by the up-regulated expression levels of haem oxygenase-1 (HO1), NAD(P)H:quinone oxidoreductase 1 (NQO1), glutamate-cysteine ligase modifier subunit (GCLM), superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT). In contrast, DOX-induced increases in malondialdehyde (MDA) and reactive oxygen species (ROS) were highly inhibited by CAR treatments. Additionally, DOX-induced apoptosis and inflammatory response in cardiomyocytes were diminished by CAR through reducing the Caspase-3 and nuclear factor-κB (NF-κB) signaling pathways, respectively. Then, in the DOX-induced animal model with cardiotoxicity, we confirmed that through improving Nrf2 signaling, CAR markedly suppressed oxidative stress, apoptosis and inflammatory response in hearts of mice, improving cardiac function eventually. Together, our findings demonstrated that CAR activated Nrf2-related cytoprotective system, and protected the heart from oxidative damage, apoptosis and inflammatory injury, suggesting that CAR might be a potential therapeutic strategy in the prevention of DOX-associated myocardiopathy.
Collapse
Affiliation(s)
- Wang Qi
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Wang Boliang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710000, China
| | - Tian Xiaoxi
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Fu Guoqiang
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Xiao Jianbo
- Emergency Department of the Second Affiliated Hospital of Air Force Medical University, Xi'an, 710000, China
| | - Wang Gang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi 'an Jiaotong University, Xi'an, 710000, China.
| |
Collapse
|
21
|
Baradaran Rahim V, Khammar MT, Rakhshandeh H, Samzadeh-Kermani A, Hosseini A, Askari VR. Crocin protects cardiomyocytes against LPS-Induced inflammation. Pharmacol Rep 2019; 71:1228-1234. [PMID: 31670059 DOI: 10.1016/j.pharep.2019.07.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/23/2019] [Accepted: 07/19/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Sepsis causes organ dysfunctions via elevation of oxidative stress and inflammation. Lipopolysaccharide (LPS) is the major surface molecule of most gram-negative bacteria and routinely used as a sepsis model in investigation studies. Crocin is an active compound of saffron which has different pharmacological properties such as anti-oxidant and anti-inflammatory. In this research, the protective effect of crocin was evaluated against LPS-induced toxicity in the embryonic cardiomyocyte cell line (H9c2). METHODS The cells were pre-treated with different concentration of crocin (10, 20 and 40 μM) for 24 h, and then LPS was added (10 μg/ml) for another 24 h. Afterward, the percentage of cell viability and the levels of inflammatory cytokines (TNF-α, PGE2, IL-1β, and IL-6), gene expression levels (TNF-α, COX-2, IL-1β, IL-6, and iNOS), and the level of nitric oxide (NO) and thiol were measured. RESULTS Our results showed that LPS reduced cell viability, increased the levels of cytokines, gene-expression, nitric oxide, and thiol. Crocin attenuated the LPS-induced toxicity in H9c2 cells via reducing the levels of inflammatory factors (TNF-α, PGE2, IL-1β, and IL-6, p < 0.001), gene expression (TNF-α, COX-2, IL-1β, IL-6, and iNOS, p < 0.001), and NO (p < 0.001), whereas increased the level of thiol content (p < 0.001). CONCLUSION The observed results revealed that crocin has preventive effects on the LPS induced sepsis and its cardiac toxicity in-vitro model. Probably, these findings are related to anti-inflammatory and anti-oxidant properties of crocin. However, performing further animal studies are necessary to support the therapeutic effects of crocin in septic shock cardiac dysfunction.
Collapse
Affiliation(s)
- Vafa Baradaran Rahim
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Khammar
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran
| | - Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Zare MFR, Rakhshan K, Aboutaleb N, Nikbakht F, Naderi N, Bakhshesh M, Azizi Y. Apigenin attenuates doxorubicin induced cardiotoxicity via reducing oxidative stress and apoptosis in male rats. Life Sci 2019; 232:116623. [PMID: 31279781 DOI: 10.1016/j.lfs.2019.116623] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 06/13/2019] [Accepted: 06/29/2019] [Indexed: 11/15/2022]
Abstract
AIMS Doxorubicin, an antibiotic belonging to anthracycline family, has been used for treatment of malignancies. Cardiotoxicity is the main adverse effect of doxorubicin. Apigenin, as a flavonoid, has antioxidant, anti-inflammatory and anti-tumoral properties. The aim of this study was the assessment of any protective effect of apigenin on cardiotoxicity induced by doxorubicin. MAIN METHODS 40 male Wistar rats were randomly divided into 4 groups: control, cardiotoxicity (DOX), apigenin treated group (DOX + Api 25) and apigenin group (Api 25). At the end of the experiment, the markers of cardiac function (%EF, %FS, LVIDs, LVIDd), cardiac and liver injury (LDH, CK-MB, cTn-I, ALT, and AST), cardiac apoptosis (Bax, Bcl-2 and Caspase3), cardiac oxidative stress (SOD, GSH, MDA) and cardiac fibrosis were measured. KEY FINDINGS Apigenin improved cardiac functional parameters. The levels of cardiac and liver injury markers were significantly decreased in DOX + Api 25 compared to DOX. Treatment with apigenin caused significant decrease in percentage of cardiac fibrosis in comparison with DOX. Apigenin in DOX + Api 25 group led to significant decrease in apoptotic proteins (Casp3, Bax) and a significant increase in anti-apoptotic proteins (Bcl2). In apigenin treatment groups, SOD levels significantly increased while a significant decrease was observed in MDA. The amount of GSH in DOX + Api 25 had no significant change in comparison to control and Api 25 groups. SIGNIFICANCE Apigenin reduced cardiac injuries induced by DOX through anti-fibrotic, antioxidant and anti-apoptotic properties. It seems that apigenin prevents cardiac injuries and improves cardiac function.
Collapse
Affiliation(s)
| | - Kamran Rakhshan
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Nahid Aboutaleb
- Physiology Research Center and Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| | - Farnaz Nikbakht
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Naderi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Yaser Azizi
- Physiology Research Center and Department of Physiology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Khalaf HA, El-Mansy AAER. The possible alleviating effect of saffron on chlorpyrifos experimentally induced cardiotoxicity: Histological, immunohistochemical and biochemical study. Acta Histochem 2019; 121:472-483. [PMID: 30975443 DOI: 10.1016/j.acthis.2019.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/02/2019] [Accepted: 03/04/2019] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Pesticides are responsible for many occupational health hazards among farmers in developing countries. Chlorpyrifos (CPF) is one of the broad-spectrum organophosphorus (OP) insecticides used for agricultural, domestic and industrial purposes. AIM OF THE WORK The present study was designed to examine the effects of CPF on cardiac muscles and to evaluate the possible protective role of crocin using biochemical and histological methods with the intention to recognize the molecular tools of its probable cardioprotective effects. MATERIALS AND METHODS Thirty-six adult male albino rats were used in this study and were divided into 4 equal groups (9 rats each): negative control group, positive control group, CPF treated group and CPF & crocin treated group. The heart was removed for histological and immunohistochemical studies. RESULTS Stained sections of cardiac muscle fibers of group III with H&E revealed remarkable histological changes in the form of disorganization of the fibers with increase in the interstitial spaces between these fibers. Congested dilated blood capillaries could be observed with extravasation of the red blood cells leading to interstitial hemorrhage. Focal areas of mononuclear cellular infiltration could be seen in the interstitial tissue. A number of cardiac fibers achieved pale acidophilic vacuolated sarcoplasm while others achieved dark homogenous acidophilic sarcoplasm. Some nuclei were peripherally situated and pyknotic while others were centrally situated and encircled with halos. Apparently increased masses of collagen fibers among the cardiac muscle fibers and around the congested dilated blood vessels with the presence of focal parts of extensive collagen fiber deposition were noticed in Mallory-stained sections of group III. Strong positive immunoreactions in the endomysium and perimysium of the cardiac fibers, along with the walls of blood capillaries and in interstitial cells, could be detected in immunohistochemical staining sections of group III with vimentin antibody. Immunoreactivity to caspase 3 was higher in the sarcoplasm of the cardiac fibers of group III compared to that of control group. A highly significant decrease in the cardiac level of SOD and CAT; however, a highly significant increase in MDA level was noted between the control groups and CPF treated group. Additionally, there was a significant improvement of the chemical and histological representations of group IV, and these improvement pictures were toward the normal. CONCLUSION The study concludes that crocin can alleviate the toxic effect of chlorpyrifos caused by oxidative stress on cardiac muscle.
Collapse
|
24
|
Hatziagapiou K, Lambrou GI. The Protective Role of Crocus Sativus L. (Saffron) Against Ischemia- Reperfusion Injury, Hyperlipidemia and Atherosclerosis: Nature Opposing Cardiovascular Diseases. Curr Cardiol Rev 2018; 14:272-289. [PMID: 29952263 PMCID: PMC6300793 DOI: 10.2174/1573403x14666180628095918] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 06/21/2018] [Accepted: 06/21/2018] [Indexed: 02/08/2023] Open
Abstract
Background: Reactive oxygen species and reactive nitrogen species, which are collective-ly called reactive oxygen-nitrogen species, are inevitable by-products of cellular metabolic redox reac-tions, such as oxidative phosphorylation in the mitochondrial respiratory chain, phagocytosis, reac-tions of biotransformation of exogenous and endogenous substrate in endoplasmic reticulum, eico-sanoid synthesis, and redox reactions in the presence of metal with variable valence. Among medici-nal plants, there is growing interest in Crocus Sativus L. It is a perennial, stemless herb, belonging to Iridaceae family, cultivated in various countries such as Greece, Italy, Spain, Israel, Morocco, Tur-key, Iran, India, China, Egypt and Mexico. Objective: The present study aims to address the anti-toxicant role of Crocus Sativus L. in the case of cardiovascular disease and its role towards the cardioprotective role of Crocus Sativus L. Materials and Methods: An electronic literature search was conducted by the two authors from 1993 to August 2017. Original articles and systematic reviews (with or without meta-analysis), as well as case reports were selected. Titles and abstracts of papers were screened by a third reviewer to deter-mine whether they met the eligibility criteria, and full texts of the selected articles were retrieved. Results: Our review has indicated that scientific literature confirms the role of Crocus Sativus L. as a cardiovascular-protective agent. The literature review showed that Saffron is a potent cardiovascular-protective agent with a plethora of applications ranging from ischemia-reperfusion injury, diabetes and hypertension to hyperlipidemia. Conclusion: Literature findings represented in current review herald promising results for using Crocus Sativus L. and/or its active constituents as a cardiovascular-protective agent and in particular, Crocus Sativus L. manifests beneficial results against ischemia-reperfusion injury, hypertension, hy-perlipidemia and diabetes
Collapse
Affiliation(s)
- Kyriaki Hatziagapiou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/ Oncology Unit, Thivon & Levadeias, 11527, Athens, Greece
| | - George I Lambrou
- First Department of Pediatrics, National and Kapodistrian University of Athens, Choremeio Research Laboratory, Hematology/ Oncology Unit, Thivon & Levadeias, 11527, Athens, Greece
| |
Collapse
|
25
|
Rahiman N, Akaberi M, Sahebkar A, Emami SA, Tayarani-Najaran Z. Protective effects of saffron and its active components against oxidative stress and apoptosis in endothelial cells. Microvasc Res 2018. [PMID: 29524452 DOI: 10.1016/j.mvr.2018.03.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we investigated the role of mitogen-activated protein kinase (MAPK) signaling pathways in mediation of the protective effects of saffron extract, saffron essential oil, safranal and crocin on bovine aortic endothelial cells against oxidative injury. The viability of cells in response to H2O2-induced toxicity (0.4, 2 and 10 mM) was measured using resazurin assay in the presence or absence of saffron extract (2-40 μg/ml), saffron oil (2-40 μg/ml), safranal (2-40 μM) and crocin (2-40 μM). Dichlorodihydrofluorescin diacetate was used as an indicator for the amount of reactive oxygen species (ROS) in cells at the same concentrations of samples as the former test. In addition, propidium iodide staining of the fragmented DNA was performed to measure the level of apoptotic cells by the application of 2-10 μM of crocin and safranal. Finally, the proteins involved in apoptosis were detected using western blotting at the concentration of 0, 2, 10 μM for crocin and safranal. The results indicated that all tested moieties improved viability and reduced ROS production in H2O2-treated cells (p < 0.001 compared to H2O2). In addition, a significant decrease in apoptosis (3-35%) was observed in the cells that were treated with crocin and safranal. The observed protective effects of crocin and safranal were associated with the activation of SAPK/JNK and inhibition of ERK ½ that are related to MAPK pathways. The antioxidant and anti-apoptotic activities of saffron and its ingredients in endothelial cells are mediated via MAPK signaling pathways and might be of therapeutic potential for endothelial dysfunctionalities.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Akaberi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Ahmad Emami
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Tayarani-Najaran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
26
|
Hosseini A, Sahebkar A. Reversal of Doxorubicin-induced Cardiotoxicity by Using Phytotherapy: A Review. J Pharmacopuncture 2017; 20:243-256. [PMID: 30151294 PMCID: PMC6104714 DOI: 10.3831/kpi.2017.20.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Doxorubicin as a chemotherapeutic drug is widely used for the treatment of patients with cancer. However, clinical use of this drug is hampered by its cardiotoxicity, which is manifested as electrocardiographic abnormalities, arrhythmias, irreversible degenerative cardiomyopathy and congestive heart failure. The precise mechanisms underlying the cardiotoxicity of doxorubicin are not clear, but impairment of calcium homeostasis, generation of iron complexes, production of oxygen radicals, mitochondrial dysfunction and cell membrane damage have been suggested as potential etiologic factors. Compounds that can neutralize the toxic effect of doxorubicin on cardiac cells without reducing the drug's antitumor activity are needed. In recent years, numerous studies have shown that herbal medicines and bioactive phytochemicals can serve as effective add-on therapies to reduce the cardiotoxic effects of doxorubicin. This review describes different phytochemicals and herbal products that have been shown to counterbalance doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad,
Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad,
Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad,
Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad,
Iran
| |
Collapse
|
27
|
Xu F, Li X, Xiao X, Liu LF, Zhang L, Lin PP, Zhang SL, Li QS. Effects of Ganoderma lucidum polysaccharides against doxorubicin-induced cardiotoxicity. Biomed Pharmacother 2017; 95:504-512. [DOI: 10.1016/j.biopha.2017.08.118] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 08/25/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022] Open
|
28
|
Koul A, Abraham SK. Intake of saffron reduces γ-radiation-induced genotoxicity and oxidative stress in mice. Toxicol Mech Methods 2017; 27:428-434. [PMID: 28298158 DOI: 10.1080/15376516.2017.1307476] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Saffron (SAF), the dried stigmas of Crocus sativus, is commonly used for flavoring and coloring food. Studies on bioactivity of SAF have demonstrated its in vivo antioxidant activity. The aim of our study was to assess the impact of SAF intake on γ-radiation (RAD) induced (a) chromosomal damage, (b) oxidative stress in liver and brain, and (c) histopathological effects in the intestinal cells and male germ cells in mice. Freeze-dried aqueous extract of SAF was used for the experiments. Our preliminary cell-free DNA nicking assay using pBR322 DNA revealed protective effects of freeze-dried SAF extract against hydroxyl radical induced DNA damage. For the in vivo investigations, freeze-dried SAF extract in distilled water was administered by gavage (40 mg/kg b.w.) to male Swiss albino mice for six consecutive days. On the sixth day, the animals were exposed to RAD (1 or 2 Gy) and sacrificed 24 h later to collect bone marrow cells for assessing chromosomal damage by measuring micronucleated polychromatic erythrocytes (MnPCEs). Liver and brain samples from animals exposed to 2 Gy RAD were used for evaluating lipid peroxidation and activity of antioxidant enzymes. The testis and intestine were used for histopathological analysis. Our results demonstrated significant protective effects of SAF against RAD-induced genotoxic damage. SAF pretreatment reduced the level of lipid peroxidation with concomitant increase in glutathione content and activity of glutathione S-transferase, glutathione peroxidase, and catalase. The histopathological analysis showed minimal impact of SAF on RAD-induced damage in the intestinal cells and male germ cells.
Collapse
Affiliation(s)
- Apurva Koul
- a School of Life Sciences , Jawaharlal Nehru University , New Delhi , India
| | - Suresh K Abraham
- a School of Life Sciences , Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
29
|
Koul A, Abraham SK. Efficacy of crocin and safranal as protective agents against genotoxic stress induced by gamma radiation, urethane and procarbazine in mice. Hum Exp Toxicol 2017; 37:13-20. [PMID: 28111973 DOI: 10.1177/0960327116689715] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Crocin (CRO) and safranal (SAF) are bioactive constituents of saffron (dried stigma of Crocus sativus flower), an expensive spice with medicinal properties. Aqueous extract of saffron is known for its antigenotoxic effect against environmental genotoxins/carcinogens. However, there is need to identify saffron constituents responsible for this antigenotoxic effect. The aim of our investigation was to ascertain the role of CRO and SAF as inhibitors of in vivo genotoxic stress. For this purpose, Swiss albino mice were pretreated with CRO (50-mg/kg body weight (bw))/SAF (0.025- and 0.25-ml/kg bw) by gavage for 2 days. Thereafter, the pretreated mice were exposed to the genotoxic agents: (1) gamma radiation (GR; 2 Gy), (2) urethane (URE; 800 mg/kg) and (3) procarbazine (PCB; 60 mg/kg). In addition, CRO (50 mg/kg) was co-administered with the nitrosation reaction mixture of methylurea (MU; 300-mg/kg bw) + sodium nitrite (15 mg/kg) which can form N-nitroso-N-MU in the stomach. Genotoxic damage was measured by performing the bone marrow micronucleus test. Results obtained demonstrated significant reductions in the incidence of micronucleated polychromatic erythrocytes in the bone marrow of mice pretreated with CRO/SAF before exposure to the above DNA damaging agents, GR, URE and PCB. Co-administration of CRO with the nitrosation reaction mixture led to significant decrease in genotoxicity when compared to nitrosation reaction mixture alone. Histopathological studies revealed that these saffron constituents reduced testicular cell damage induced by the test genotoxins. The cell-free DNA-nicking assay using pBR322 DNA showed significant protective effects of CRO against hydroxyl radical-induced strand breaks.
Collapse
Affiliation(s)
- A Koul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - S K Abraham
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
30
|
Shahi T, Assadpour E, Jafari SM. Main chemical compounds and pharmacological activities of stigmas and tepals of ‘red gold’; saffron. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.10.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Razmaraii N, Babaei H, Mohajjel Nayebi A, Assadnassab G, Ashrafi Helan J, Azarmi Y. Cardioprotective Effect of Grape Seed Extract on Chronic Doxorubicin-Induced Cardiac Toxicity in Wistar Rats. Adv Pharm Bull 2016; 6:423-433. [PMID: 27766227 PMCID: PMC5071806 DOI: 10.15171/apb.2016.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 09/03/2016] [Accepted: 09/04/2016] [Indexed: 01/11/2023] Open
Abstract
Purpose: The aim of the present study was to determine the ability of grape seed extract (GSE) as a powerful antioxidant in preventing adverse effect of doxorubicin (DOX) on heart function. Methods: Male rats were divided into three groups: control, DOX (2 mg/kg/48h, for 12 days) and GSE (100 mg/kg/24h, for 16 days) plus DOX. Left ventricular (LV) function and hemodynamic parameters were assessed using echocardiography, electrocardiography and a Millar pressure catheter. Histopathological analysis and in vitro antitumor activity were also evaluated. Results: DOX induced heart damage in rats through decreasing the left ventricular systolic and diastolic pressures, rate of rise/decrease of LV pressure, ejection fraction, fractional shortening and contractility index as demonstrated by echocardiography, electrocardiography and hemodynamic parameters relative to control group. Our data demonstrated that GSE treatment markedly attenuated DOX-induced toxicity, structural changes in myocardium and improved ventricular function. Additionally, GSE did not intervene with the antitumor effect of DOX. Conclusion: Collectively, the results suggest that GSE is potentially protective against DOX-induced toxicity in rat heart and maybe increase therapeutic index of DOX in human cancer treatment.
Collapse
Affiliation(s)
- Nasser Razmaraii
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, 5166614756, Iran
| | - Hossein Babaei
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, 5165665811, Iran
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| | | | - Gholamreza Assadnassab
- Department of Clinical Sciences, Tabriz Branch, Islamic Azad University, Tabriz, 5157944533, Iran
| | - Javad Ashrafi Helan
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, 5166617564, Iran
| | - Yadollah Azarmi
- School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, 5166414766, Iran
| |
Collapse
|