1
|
Shovlin S, Young LS, Varešlija D. Hormonal and neuronal interactions shaping the brain metastatic microenvironment. Cancer Lett 2025; 624:217739. [PMID: 40288563 DOI: 10.1016/j.canlet.2025.217739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Metastatic progression drives the majority of cancer-related fatalities, and involvement of the central nervous system (CNS) poses especially formidable challenges to patients and clinicians. Brain metastases (BrM), commonly originate from lung, breast and melanoma cancers, and carry disproportionately poor outcomes. Although therapeutic advances have extended survival for many extracranial tumors, BrM incidence continues to climb-underscoring critical knowledge gaps in understanding the unique biology of tumor colonization in the CNS. While definitive evidence remains limited, a growing focus on cancer neuroscience-especially regarding hormone dependent cancer cells in the brain-has begun to reveal that factors normally regulated by sex steroids and neurosteroids may similarly influence the specialized metastatic microenvironment in the CNS. Steroid hormones can permeate the blood-brain barrier (BBB) or be synthesized de novo by astrocytes and other CNS-resident cells, potentially influencing processes such as inflammation, synaptic plasticity, and immune surveillance. However, how these hormonal pathways are co-opted by disseminated cancer cells remains unclear. Here, we review the complex hormonal landscape of the adult brain and examine how neuroendocrine-immune interactions, often regulated by sex hormones, may support metastatic growth. We discuss the interplay between systemic hormones, local steroidogenesis, and tumor adaptation to identify novel therapeutic opportunities.
Collapse
Affiliation(s)
- Stephen Shovlin
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Leonie S Young
- Department of Surgery, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland.
| | - Damir Varešlija
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Beaumont RCSI Cancer Centre, Beaumont Hospital, Dublin, Ireland.
| |
Collapse
|
2
|
Bushi A, Ma Y, Adu-Amankwaah J, Wang R, Cui F, Xiao R, Zhao J, Yuan J, Tan R. G protein-coupled estrogen receptor biased signaling in health and disease. Pharmacol Ther 2025; 269:108822. [PMID: 39978643 DOI: 10.1016/j.pharmthera.2025.108822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/03/2025] [Accepted: 02/12/2025] [Indexed: 02/22/2025]
Abstract
G protein-coupled estrogen receptor (GPER) is now recognized for its pivotal role in cellular signaling, influencing diverse physiological processes and disease states. Unlike classical estrogen receptors, GPER exhibits biased signaling, wherein ligand binding triggers selective pathways over others, significantly impacting cellular responses. This review explores the nuanced mechanisms of biased signaling mediated by GPER, underscoring its relevance in cardiovascular health, neurological function, immune modulation, and oncogenic processes. Despite its critical implications, biased signaling through GPER remains underexplored compared to traditional signaling paradigms. We explore recent progress in understanding GPER signaling specificity and its potential therapeutic implications across various diseases. Future research directions aim to uncover the molecular basis of biased signaling, develop selective ligands, and translate these insights into personalized therapeutic approaches. Exploiting the therapeutic potential of GPER biased signaling represents a promising frontier in precision medicine, offering innovative strategies to address unmet medical needs.
Collapse
Affiliation(s)
- Aisha Bushi
- School international education, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yixuan Ma
- First Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Joseph Adu-Amankwaah
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Rong Wang
- The second clinical college, China Medical University, Shenyang, Liaoning 110122, China
| | - Fen Cui
- Research Institution of Behavioral Medicine Education, Jining Medical University, Jining 272067, China
| | - Rui Xiao
- Second Clinical Medical School, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jinming Zhao
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang 110122, China; Department of Pathology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, Shandong, China.
| | - Rubin Tan
- Department of Physiology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
3
|
Turner CG, de Oliveira K, Jaffe IZ, DuPont JJ. Mineralocorticoid and estrogen receptors as sex-dependent modulators of vascular health in aging and obesity. J Pharmacol Exp Ther 2025; 392:103591. [PMID: 40382811 DOI: 10.1016/j.jpet.2025.103591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 04/18/2025] [Indexed: 05/20/2025] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in both men and women, but there are sex differences in the timing and mechanisms of disease development. Sex differences particularly influence the development of CVD in the presence of aging and obesity, 2 major risk factors of CVD. The mineralocorticoid and estrogen receptors have been identified as important regulators of vascular function in healthy and disease states. Recent evidence has highlighted interactions between these receptors in the vasculature, and innovations in global and cell-specific knockout mouse models have substantially advanced our understanding of sex-dependent roles of these receptors in vascular health and disease. This review summarizes recent advances in the sex-dependent roles of the mineralocorticoid and estrogen receptors in arterial stiffness and vasomotor dysfunction, 2 early markers of CVD development. These vascular outcomes are examined in the context of aging and obesity, 2 of the most prevalent CVD risk factors. SIGNIFICANCE STATEMENT: Cardiovascular disease (CVD) is the leading cause of death globally for women and men, but there are sex differences in the timing of CVD development across the lifespan and in mechanisms driving disease. This review summarizes sex-specific roles of mineralocorticoid and estrogen receptors in arterial stiffness and vasomotor dysfunction during aging and obesity. Understanding sex-specific mechanisms of CVD is critical to developing precision medicine strategies to prevent and treat CVD in women and men.
Collapse
Affiliation(s)
- Casey G Turner
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Karla de Oliveira
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Iris Z Jaffe
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA
| | - Jennifer J DuPont
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA.
| |
Collapse
|
4
|
Salehiyeh S, Alborzi N, Azizian H, Esmailidehaj M, Hafizi Barjin Z, Safari F. Sex-related differences in hypertrophy response and cardiac expression of G protein-coupled estrogen receptor in rats with pressure overload. Gene 2024; 928:148769. [PMID: 39025340 DOI: 10.1016/j.gene.2024.148769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/30/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
There is increasing evidence that gender impacts the onset and progression of cardiovascular pathology. However, it is vastly unclear how this variable determines the ultimate outcomes, particularly in the setting of pressure overload-induced left ventricular hypertrophy (LVH). This study was carried out to fill this gap, at least in part, by assessing myocardial expression of G protein-coupled estrogen receptor (GPER) in female and male rats afflicted with LVH. Both female and male rats underwent abdominal aorta banding to induce LVH or were kept intact as control groups. At the end of the experiment, carotid artery catheterization was performed to measure systolic (SBP) and diastolic (DBP) blood pressure. Fibrosis and cardiomyocyte cross-sectional area were assessed by conventional histological analyses. Protein and mRNA expression were evaluated by Western blot/immunofluorescence staining and real-time RT-PCR technique, respectively. In LVH groups, male rats exhibited higher SBP and DBP, heart weight to body weight ratio, and fibrosis compared with female rats. However, both sexes showed a similar increase in cardiomyocyte size after LVH induction. In female, but not in male rats, LVH instigated the GPER mRNA and protein expression in the heart. These results, confirm a significant interaction between gender and myocardial remodeling in terms of GPER expression. Thus, it can be argued that sex differences in the cardiac GPER expression may be responsible for sex differences in the pressure overload-induced LVH. In other words, the female heart seems to unleash stronger protection against pressure overload than that of males in light of a higher GPER expression.
Collapse
MESH Headings
- Animals
- Male
- Female
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/genetics
- Rats
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/pathology
- Hypertrophy, Left Ventricular/etiology
- Receptors, Estrogen/metabolism
- Receptors, Estrogen/genetics
- Blood Pressure
- Myocardium/metabolism
- Myocardium/pathology
- Sex Characteristics
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Fibrosis
- Rats, Sprague-Dawley
- Sex Factors
Collapse
Affiliation(s)
- Sajad Salehiyeh
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nasrin Alborzi
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Azizian
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mansour Esmailidehaj
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zeinab Hafizi Barjin
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Safari
- Department of Physiology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
5
|
Ahmed HA, Shaaban AA, Ibrahim TM, Makled MN. G protein-coupled estrogen receptor activation attenuates cisplatin-induced CKD in C57BL/6 mice: An insight into sex-related differences. Food Chem Toxicol 2024; 194:115079. [PMID: 39491767 DOI: 10.1016/j.fct.2024.115079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/17/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Gender contributes to differences in incidence and progression of chronic kidney disease (CKD) post-cisplatin therapy. This study aims at investigating the potential effect of G1 compound, a GPER agonist, on attenuating cisplatin-induced CKD. To induce CKD in male, intact female, and ovariectomized (OVX) mice, CKD was induced by injecting two cycles of 2.5 mg/kg cisplatin with a 16-day recovery period between cycles). G1 (50 or 100 μg/kg was administered daily for 6 weeks. Severity of renal damage was more pronounced in males than females. Interestingly, OVX resulted in renal damage that is non-significant compared to males and significantly higher than females. G1 improved renal function and blood flow as evidenced by reduction of serum creatinine and elevation of creatinine clearance, NO production, and reduction of ET1. This renoprotective effect could be attributed to its immunomodulatory effect regulated by TGF-β that shifted the balance to favor anti-inflammatory cytokine production (increased IL-10) rather than pro-inflammatory cytokines (decreased Th17 expression). Reduction of TGF-β activation also inhibited epithelial-to-mesenchymal transition that eventually ameliorated CKD development. Antioxidant potential of G1 has been demonstrated by upregulation of Nrf2 and subsequent antioxidant enzymes. These data suggest that G1 could be a promising therapeutic tool to attenuate CP-induced CKD.
Collapse
Affiliation(s)
- Hala A Ahmed
- Pharmacology and Biochemistry Department, Faculty of Pharmacy, Delta University for Science and Technology, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Ahmed A Shaaban
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Tarek M Ibrahim
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt
| | - Mirhan N Makled
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Mansoura University, Egypt.
| |
Collapse
|
6
|
Marjollet J, Buscato M, Davezac M, Vessieres E, Gosset A, Adlanmerini M, Henrion D, Lenfant F, Arnal JF, Fontaine C. [Estrogen receptors and vascular aging]. Med Sci (Paris) 2024; 40:729-736. [PMID: 39450958 DOI: 10.1051/medsci/2024115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024] Open
Abstract
After years of studying cardiovascular diseases (CVD) in men due to their higher incidence compared to women, attention is now being paid to female CVD and their pathophysiology. Even though premenopausal women have a lower incidence of CVD, this disparity progressively diminishes after menopause, highlighting the key role of sex hormones. Many preclinical and fundamental studies have demonstrated protective effects of estrogens on arterial endothelium, suggesting that hormone therapy could improve cardiovascular health in menopausal women. However, disappointing outcomes from a major clinical trial two decades ago questioned the cardiovascular protection by estrogens with age. In this review, we will summarize the main clinical and experimental studies reporting the effects of estrogens on CVD, with a focus on their impact on endothelial function. Then, we will present abnormalities in the expression and signaling of estrogen receptors (ERs) in the arteries, and the contribution of conventional estrogens to arterial protection during aging. Finally, we will examine how recent advances in the mechanisms of action of ERa could help to optimize hormone therapy for menopause.
Collapse
Affiliation(s)
- Juline Marjollet
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Mélissa Buscato
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Morgane Davezac
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Emilie Vessieres
- Université d'Angers, département MITOVASC, équipe CarMe, Inserm U1083, CNRS UMR 6015 Angers France
| | - Anna Gosset
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Marine Adlanmerini
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Daniel Henrion
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Francoise Lenfant
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Jean-François Arnal
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| | - Coralie Fontaine
- Inserm U1297, Institut des maladies métaboliques et cardiovasculaires (I2MC), Université de Toulouse 3 Toulouse France
| |
Collapse
|
7
|
Almutlaq RN, Pollock DM, Gohar EY. Endothelin receptor B is required for the blood pressure-lowering effect of G protein-coupled estrogen receptor 1 in ovariectomized rats. Am J Physiol Renal Physiol 2024; 327:F599-F609. [PMID: 39143913 PMCID: PMC11483081 DOI: 10.1152/ajprenal.00059.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/16/2024] Open
Abstract
Activation of G protein-coupled estrogen receptor 1 (GPER1) elicits antihypertensive actions in different animal models. The endothelin-1 signaling system plays a fundamental role in blood pressure regulation. Lack of functional endothelin receptor B (ETB) evokes hypertension and salt sensitivity. GPER1 and ETB interact to promote urinary sodium excretion in female rats. We hypothesized that activation of GPER1 protects against hypertension and salt sensitivity induced by ETB antagonism in female rats. Female Sprague-Dawley rats were implanted with radiotelemetry. Animals were then subjected to ovariectomy and simultaneously implanted with minipumps to deliver either the GPER1 agonist G1 or its corresponding vehicle. Two weeks post surgery, we initiated treatment of rats with the ETB antagonist A-192621. Animals were maintained on a normal-salt diet and then challenged with a high-salt diet for an additional 5 days. Assessment of mean arterial blood pressure revealed an increase in vehicle-treated, but not G1-treated, rats in response to ovariectomy. A-192621 increased blood pressure in normal-salt diet-fed vehicle- and G1-treated rats. G1 improved the circadian blood pressure rhythms that were disrupted in A-192621-treated ovariectomized rats. Thus, although systemic GPER1 activation did not protect ovariectomized rats from hypertension and salt sensitivity induced by ETB antagonism, it maintained circadian blood pressure rhythms. Functional ETB is required to elicit the antihypertensive actions of GPER1. Additional studies are needed to improve our understanding of the interaction between G protein-coupled receptors in regulating circadian blood pressure rhythm.NEW & NOTEWORTHY Systemic G protein-coupled estrogen receptor 1 (GPER1) activation in rats prevents the increase in blood pressure evoked by ovariectomy. Blockade of endothelin receptor B negates the blood pressure-lowering impact of GPER1 in ovariectomized rats. Endothelin receptor B plays an important role in mediating the blood pressure-lowering action of GPER1 activation in female rats.
Collapse
Affiliation(s)
- Rawan N Almutlaq
- Cardiorenal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - David M Pollock
- Cardiorenal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Eman Y Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| |
Collapse
|
8
|
Chen L, Xu T, Lou J, Zhang T, Wu S, Xie R, Xu J. The beneficial roles and mechanisms of estrogens in immune health and infection disease. Steroids 2024; 207:109426. [PMID: 38685461 DOI: 10.1016/j.steroids.2024.109426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/28/2024] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
Multiple epidemiologic studies have revealed that gender is considered one of the important factors in the frequency and severity of certain infectious diseases, in which estrogens may play a vital role. There is growing evidence that estrogens as female sex hormone can modulate multiple biological functions outside of the reproductive system, such as in brain and cardiovascular system. However, it is largely unknown about the roles and mechanisms of estrogens/estrogen receptors in immune health and infection disease. Thence, by reading a lot of literature, we summarized the regulatory mechanisms of estrogens/estrogen receptors in immune cells and their roles in certain infectious diseases with gender differences. Therefore, estrogens may have therapeutic potentials to prevent and treat these infectious diseases, which needs further clinical investigation.
Collapse
Affiliation(s)
- Lan Chen
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ting Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Lou
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Ting Zhang
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Sheng Wu
- Department of Gastroenterology, Liupanshui People's Hospital, Liupanshui City 553000, Guizhou Province, China
| | - Rui Xie
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Jingyu Xu
- Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| |
Collapse
|
9
|
Jouffre B, Acramel A, Jacquot Y, Daulhac L, Mallet C. GPER involvement in inflammatory pain. Steroids 2023; 200:109311. [PMID: 37734514 DOI: 10.1016/j.steroids.2023.109311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
Chronic pain is a worldwide refractory health disease that causes major financial and emotional burdens and that is devastating for individuals and society. One primary source of pain is inflammation. Current treatments for inflammatory pain are weakly effective, although they usually replace analgesics, such as opioids and non-steroidal anti-inflammatory drugs, which display serious side effects. Emerging evidence indicates that the membrane G protein-coupled estrogen receptor (GPER) may play an important role in the regulation of inflammation and pain. Herein, we focus on the consequences of pharmacological and genetic GPER modulation in different animal models of inflammatory pain. We also provide a brief overview of the putative mechanisms including the direct action of GPER on pain transmission and inflammation.
Collapse
Affiliation(s)
- Baptiste Jouffre
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France
| | - Alexandre Acramel
- CiTCoM, CNRS - UMR 8038, INSERM U1268, Faculty of Pharmacy of Paris, University Paris Cité, 75270 Paris Cedex 06, France; Department of Pharmacy, Institut Curie, 75248 Paris Cedex 06, France
| | - Yves Jacquot
- CiTCoM, CNRS - UMR 8038, INSERM U1268, Faculty of Pharmacy of Paris, University Paris Cité, 75270 Paris Cedex 06, France
| | - Laurence Daulhac
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France
| | - Christophe Mallet
- Université Clermont Auvergne, Inserm U1107 Neuro-Dol, Pharmacologie Fondamentale et Clinique de la Douleur, Clermont-Ferrand, France; ANALGESIA Institute, Faculty of Medicine, 63000 Clermont-Ferrand, France.
| |
Collapse
|
10
|
Xu F, Ma J, Wang X, Wang X, Fang W, Sun J, Li Z, Liu J. The Role of G Protein-Coupled Estrogen Receptor (GPER) in Vascular Pathology and Physiology. Biomolecules 2023; 13:1410. [PMID: 37759810 PMCID: PMC10526873 DOI: 10.3390/biom13091410] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE Estrogen is indispensable in health and disease and mainly functions through its receptors. The protection of the cardiovascular system by estrogen and its receptors has been recognized for decades. Numerous studies with a focus on estrogen and its receptor system have been conducted to elucidate the underlying mechanism. Although nuclear estrogen receptors, including estrogen receptor-α and estrogen receptor-β, have been shown to be classical receptors that mediate genomic effects, studies now show that GPER mainly mediates rapid signaling events as well as transcriptional regulation via binding to estrogen as a membrane receptor. With the discovery of selective synthetic ligands for GPER and the utilization of GPER knockout mice, significant progress has been made in understanding the function of GPER. In this review, the tissue and cellular localizations, endogenous and exogenous ligands, and signaling pathways of GPER are systematically summarized in diverse physiological and diseased conditions. This article further emphasizes the role of GPER in vascular pathology and physiology, focusing on the latest research progress and evidence of GPER as a promising therapeutic target in hypertension, pulmonary hypertension, and atherosclerosis. Thus, selective regulation of GPER by its agonists and antagonists have the potential to be used in clinical practice for treating such diseases.
Collapse
Affiliation(s)
- Fujie Xu
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jipeng Ma
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaowu Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Xiaoya Wang
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Weiyi Fang
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jingwei Sun
- Xi’an Medical University, Xi’an 710068, China; (F.X.); (W.F.); (J.S.)
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Zilin Li
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| | - Jincheng Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (J.M.); (X.W.); (X.W.)
| |
Collapse
|
11
|
Prossnitz ER, Barton M. The G protein-coupled oestrogen receptor GPER in health and disease: an update. Nat Rev Endocrinol 2023:10.1038/s41574-023-00822-7. [PMID: 37193881 DOI: 10.1038/s41574-023-00822-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/28/2023] [Indexed: 05/18/2023]
Abstract
Oestrogens and their receptors contribute broadly to physiology and diseases. In premenopausal women, endogenous oestrogens protect against cardiovascular, metabolic and neurological diseases and are involved in hormone-sensitive cancers such as breast cancer. Oestrogens and oestrogen mimetics mediate their effects via the cytosolic and nuclear receptors oestrogen receptor-α (ERα) and oestrogen receptor-β (ERβ) and membrane subpopulations as well as the 7-transmembrane G protein-coupled oestrogen receptor (GPER). GPER, which dates back more than 450 million years in evolution, mediates both rapid signalling and transcriptional regulation. Oestrogen mimetics (such as phytooestrogens and xenooestrogens including endocrine disruptors) and licensed drugs such as selective oestrogen receptor modulators (SERMs) and downregulators (SERDs) also modulate oestrogen receptor activity in both health and disease. Following up on our previous Review of 2011, we herein summarize the progress made in the field of GPER research over the past decade. We will review molecular, cellular and pharmacological aspects of GPER signalling and function, its contribution to physiology, health and disease, and the potential of GPER to serve as a therapeutic target and prognostic indicator of numerous diseases. We also discuss the first clinical trial evaluating a GPER-selective drug and the opportunity of repurposing licensed drugs for the targeting of GPER in clinical medicine.
Collapse
Affiliation(s)
- Eric R Prossnitz
- Department of Internal Medicine, Division of Molecular Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- Center of Biomedical Research Excellence in Autophagy, Inflammation and Metabolism, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
| | - Matthias Barton
- Molecular Internal Medicine, University of Zürich, Zürich, Switzerland.
- Andreas Grüntzig Foundation, Zürich, Switzerland.
| |
Collapse
|
12
|
Peixoto P, Vieira-Alves I, Couto GK, Lemos VS, Rossoni LV, Bissoli NS, Dos Santos RL. Sex differences in the participation of endothelial mediators and signaling pathways involved in the vasodilator effect of a selective GPER agonist in resistance arteries of gonadectomized Wistar rats. Life Sci 2022; 308:120917. [PMID: 36044974 DOI: 10.1016/j.lfs.2022.120917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/16/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022]
Abstract
AIM Endothelial mechanisms underlying the vascular effects of estrogen modulated by the G protein-coupled estrogen receptor (GPER) are not well understood, especially in gonadal sex hormone deprivation. Thus, we investigated vascular function and endothelial signaling pathways involved in the selective activation of GPER in resistance arteries of gonadectomized rats. METHODS Gonadectomy was performed in Wistar rats of both sexes. After 21 days, the animals were euthanized. Concentration-response curves were obtained by cumulative additions of G-1 in third-order mesenteric arteries. The vasodilatory effects of G-1 were evaluated before and after endothelium removal or incubation with pharmacological inhibitors. Tissue protein expression was measured by western blotting. Assays with 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF-FM) and 2',7' dichlorodihydrofluorescein-diacetate (DCF-DA) were performed in the arteries investigated. Immunolocalization was assessed by immunofluorescence. RESULTS G-1 induced partially endothelium-dependent relaxation in both sexes. The three isoforms of the enzyme nitric oxide synthase contributed to the production and release of nitric oxide in both gonadectomized groups, but the role of inducible nitric oxide synthase is more expressive in males. The mechanistic pathway by which endothelial nitric oxide synthase is phosphorylated appears to differ between sexes, with the rapid signaling pathway phosphatidylinositol-3-kinase/protein kinase B/endothelial nitric oxide synthase (PI3k-Akt-eNOS) being identified for males and mitogen-activated protein kinase/extracellular signal-regulated kinase/endothelial nitric oxide synthase (MEK-ERK-eNOS) for females. The contribution of hydrogen peroxide as an endothelial relaxation mediator seems to be greater in females. CONCLUSION These results provide new insights into the effects of estrogen-induced responses via GPER on vascular function in gonadal sex hormone deprivation.
Collapse
Affiliation(s)
- Pollyana Peixoto
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | - Ildernandes Vieira-Alves
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gisele Kruger Couto
- Department of Physiology and Biophysics, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology and Biophysics, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Nazaré Souza Bissoli
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil
| | - Roger Lyrio Dos Santos
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitoria, ES, Brazil.
| |
Collapse
|
13
|
Davezac M, Buscato M, Zahreddine R, Lacolley P, Henrion D, Lenfant F, Arnal JF, Fontaine C. Estrogen Receptor and Vascular Aging. FRONTIERS IN AGING 2022; 2:727380. [PMID: 35821994 PMCID: PMC9261451 DOI: 10.3389/fragi.2021.727380] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/10/2021] [Indexed: 12/13/2022]
Abstract
Cardiovascular diseases remain an age-related pathology in both men and women. These pathologies are 3-fold more frequent in men than in women before menopause, although this difference progressively decreases after menopause. The vasculoprotective role of estrogens are well established before menopause, but the consequences of their abrupt decline on the cardiovascular risk at menopause remain debated. In this review, we will attempt to summarize the main clinical and experimental studies reporting the protective effects of estrogens against cardiovascular diseases, with a particular focus on atherosclerosis, and the impact of aging and estrogen deprivation on their endothelial actions. The arterial actions of estrogens, but also part of that of androgens through their aromatization into estrogens, are mediated by the estrogen receptor (ER)α and ERβ. ERs belong to the nuclear receptor family and act by transcriptional regulation in the nucleus, but also exert non-genomic/extranuclear actions. Beside the decline of estrogens at menopause, abnormalities in the expression and/or function of ERs in the tissues, and particularly in arteries, could contribute to the failure of classic estrogens to protect arteries during aging. Finally, we will discuss how recent insights in the mechanisms of action of ERα could contribute to optimize the hormonal treatment of the menopause.
Collapse
Affiliation(s)
- Morgane Davezac
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Melissa Buscato
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Rana Zahreddine
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Patrick Lacolley
- INSERM, UMR_S 1116, DCAC Institute, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Daniel Henrion
- INSERM U1083 CNRS UMR 6015, CHU, MITOVASC Institute and CARFI Facility, Université d'Angers, Angers, France
| | - Francoise Lenfant
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Jean-Francois Arnal
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| | - Coralie Fontaine
- INSERM-UPS UMR U1297, Institut des Maladies Métaboliques et Cardiovasculaires, Université de Toulouse, Toulouse, France
| |
Collapse
|
14
|
Yu X, Nguyen P, Burns NC, Heaps CL, Stallone JN, Sohrabji F, Han G. Activation of G protein-coupled estrogen receptor fine-tunes age-related decreased vascular activities in the aortae of female and male rats. Steroids 2022; 183:108997. [PMID: 35314416 DOI: 10.1016/j.steroids.2022.108997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hormone replacement therapy was found to be effective in cardiovascular protection only in younger women, not in older women. In this study, we tested whether G protein-coupled estrogen receptor 1 (GPER) activation improves vascular activities in response to ET-1 and ACh in aging rats. METHODS Isometric tension study was applied on aortic rings isolated from young adult (5-7 months) and reproductive senescent middle-aged (10-12 months) female Sprague Dawley rats and age matched males. RESULTS The aortic contractile response to ET-1 and the relaxation response to ACh were reduced in the female middle-aged rats compared to the female young adult rats. The presence of G-1, the GPER agonist, normalized the reduced vascular activities. Cyclooxygenase inhibitor, meclofenamate, blocked the increased constriction effect of G-1, but further enhanced relaxation effect of G-1. There was no significant difference in aortic reactivity to either ET-1 or ACh between the male middle-aged and young adult rats. The contractile response to ET-1 was not different within the same age of the two sex groups, but there was a remarkable difference in relaxation response to ACh between young adult females and males with better response in females. GPER activation greatly improved the aortic relaxation of both young adult and middle-aged females, but not the males. CONCLUSIONS Endothelial dysfunction occurs earlier in males, but in females, dysfunction delays until middle age. GPER activation improves the vascular activities in females, but not males. It is promising to employ GPER as a potential drug target in cardiovascular disease in women.
Collapse
Affiliation(s)
- Xuan Yu
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - Peter Nguyen
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - Nioka C Burns
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, TX, USA
| | - Cristine L Heaps
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - John N Stallone
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, Texas A&M Health Science Center, TX, USA
| | - Guichun Han
- Women's Health Division, Michael E. DeBakey Institute, Department of Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, TX, USA; Department of Basic Sciences, Kentucky College of Osteopathic Medicine, University of Pikeville, KY, USA.
| |
Collapse
|
15
|
Moustafa NA, El-Sayed MA, Abdallah SH, Hazem NM, Aidaros MA, Abdelmoety DA. Effect of Letrozole on hippocampal Let-7 microRNAs and their correlation with working memory and phosphorylated Tau protein in an Alzheimer's disease-like rat model. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2022. [DOI: 10.1186/s41983-022-00504-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Let-7 microRNAs (miRNAs) may contribute to neurodegeneration, including Alzheimer's disease (AD), but, they were not investigated in Streptozotocin (STZ)-induced AD. Letrozole increases the expression of Let-7 in cell lines, with conflicting evidence regarding its effects on memory. This study examined Let-7 miRNAs in STZ-induced AD, their correlation with memory and hyperphosphorylated Tau (p-Tau) and the effects of Letrozole on them.
Methods
Seven groups of adult Sprague Dawley rats were used: Negative control, Letrozole, Letrozole Vehicle, STZ (with AD induced by intracerebroventricular injection of STZ in artificial cerebrospinal fluid (aCSF)), CSF Control, STZ + Letrozole (STZ-L), and CSF + Letrozole Vehicle. Alternation percentage in T-maze was used as a measure of working memory. Let-7a, b and e and p-Tau levels in the hippocampus were estimated using quantitative real-time reverse transcription–polymerase chain reaction (qRT–PCR) and enzyme-linked immunosorbent assay (ELISA), respectively.
Results
Significant decreases in alternation percentage and increase in p-Tau concentration were found in the STZ, Letrozole and STZ-L groups. Expression levels of all studied microRNAs were significantly elevated in the Letrozole and the STZ-L groups, with no difference between the two, suggesting that this elevation might be linked to Letrozole administration. Negative correlations were found between alternation percentage and the levels of all studied microRNAs, while positive ones were found between p-Tau concentration and the levels of studied microRNAs.
Conclusions
This study shows changes in the expression of Let-7a, b and e miRNAs in association with Letrozole administration, and correlations between the expression of the studied Let-7 miRNAs and both the status of working memory and the hippocampal p-Tau levels. These findings might support the theory suggesting that Letrozole aggravates pre-existing lesions. They also add to the possibility of Let-7’s neurotoxicity.
Collapse
|
16
|
G-Protein-Coupled Estrogen Receptor Expression in Rat Uterine Artery Is Increased by Pregnancy and Induces Dilation in a Ca2+ and ERK1/2 Dependent Manner. Int J Mol Sci 2022; 23:ijms23115996. [PMID: 35682675 PMCID: PMC9180712 DOI: 10.3390/ijms23115996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing levels of estrogens across gestation are partly responsible for the physiological adaptations of the maternal vasculature to pregnancy. The G protein-coupled estrogen receptor (GPER) mediates acute vasorelaxing effects in the uterine vasculature, which may contribute to the regulation of uteroplacental blood flow. The aim of this study was to investigate whether GPER expression and vasorelaxation may occur following pregnancy. Elucidation of the functional signalling involved was also investigated. Radial uterine and third-order mesenteric arteries were isolated from non-pregnant (NP) and pregnant rats (P). GPER mRNA levels were determined and—concentration–response curve to the GPER-specific agonist, G1 (10−10–10−6 M), was assessed in arteries pre-constricted with phenylephrine. In uterine arteries, GPER mRNA expression was significantly increased and vasorelaxation to G1 was significantly enhanced in P compared with NP rats. Meanwhile, in mesenteric arteries, there was a similar order of magnitude in NP and P rats. Inhibition of L-type calcium channels and extracellular signal-regulated kinases 1/2 significantly reduced vasorelaxation triggered by G1 in uterine arteries. Increased GPER expression and GPER-mediated vasorelaxation are associated with the advancement of gestation in uterine arteries. The modulation of GPER is exclusive to uterine arteries, thus suggesting a physiological contribution of GPER toward the regulation of uteroplacental blood flow during pregnancy.
Collapse
|
17
|
Singh R, Nasci VL, Guthrie G, Ertuglu LA, Butt MK, Kirabo A, Gohar EY. Emerging Roles for G Protein-Coupled Estrogen Receptor 1 in Cardio-Renal Health: Implications for Aging. Biomolecules 2022; 12:412. [PMID: 35327604 PMCID: PMC8946600 DOI: 10.3390/biom12030412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/01/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular (CV) and renal diseases are increasingly prevalent in the United States and globally. CV-related mortality is the leading cause of death in the United States, while renal-related mortality is the 8th. Despite advanced therapeutics, both diseases persist, warranting continued exploration of disease mechanisms to develop novel therapeutics and advance clinical outcomes for cardio-renal health. CV and renal diseases increase with age, and there are sex differences evident in both the prevalence and progression of CV and renal disease. These age and sex differences seen in cardio-renal health implicate sex hormones as potentially important regulators to be studied. One such regulator is G protein-coupled estrogen receptor 1 (GPER1). GPER1 has been implicated in estrogen signaling and is expressed in a variety of tissues including the heart, vasculature, and kidney. GPER1 has been shown to be protective against CV and renal diseases in different experimental animal models. GPER1 actions involve multiple signaling pathways: interaction with aldosterone and endothelin-1 signaling, stimulation of the release of nitric oxide, and reduction in oxidative stress, inflammation, and immune infiltration. This review will discuss the current literature regarding GPER1 and cardio-renal health, particularly in the context of aging. Improving our understanding of GPER1-evoked mechanisms may reveal novel therapeutics aimed at improving cardio-renal health and clinical outcomes in the elderly.
Collapse
Affiliation(s)
- Ravneet Singh
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Victoria L. Nasci
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| | - Ginger Guthrie
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Lale A. Ertuglu
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Maryam K. Butt
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (G.G.); (M.K.B.)
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; (L.A.E.); (A.K.)
| | - Eman Y. Gohar
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Medical Research Building IV, Nashville, TN 37232, USA; (R.S.); (V.L.N.)
| |
Collapse
|
18
|
Xu JF, Xia J, Wan Y, Yang Y, Wu JJ, Peng C, Ao H. Vasorelaxant Activities and its Underlying Mechanisms of Magnolia Volatile Oil on Rat Thoracic Aorta Based on Network Pharmacology. Front Pharmacol 2022; 13:812716. [PMID: 35308213 PMCID: PMC8926352 DOI: 10.3389/fphar.2022.812716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Objective: Magnolia volatile oil (MVO) is a mixture mainly containing eudesmol and its isomers. This study was to investigate the vasorelaxant effects and the underlying mechanism of MVO in rat thoracic aortas. Method: The present study combined gas chromatography–mass spectrometry (GC-MS) and network pharmacology analysis with in vitro experiments to clarify the mechanisms of MVO against vessel contraction. A compound–target network, compound–target–disease network, protein–protein interaction network, compound–target–pathway network, gene ontology, and pathway enrichment for hypertension were applied to identify the potential active compounds, drug targets, and pathways. Additionally, the thoracic aortic rings with or without endothelium were prepared to explore the underlying mechanisms. The roles of the PI3K-Akt-NO pathways, neuroreceptors, K+ channels, and Ca2+ channels on the vasorelaxant effects of MVO were evaluated through the rat thoracic aortic rings. Results: A total of 29 compounds were found in MVO, which were identified by GC-MS, of which 21 compounds with a content of more than 0.1% were selected for further analysis. The network pharmacology research predicted that beta-caryophyllene, palmitic acid, and (+)-β-selinene might act as the effective ingredients of MVO for the treatment of hypertension. Several hot targets, mainly involving TNF, CHRM1, ACE, IL10, PTGS2, REN, and F2, and pivotal pathways, such as the neuroactive ligand–receptor interaction, the calcium signaling pathway, and the PI3K-Akt signaling, were responsible for the vasorelaxant effect of MVO. As expected, MVO exerted a vasorelaxant effect on the aortic rings pre-contracted by KCl and phenylephrine in an endothelium-dependent and non-endothelium-dependent manner. Importantly, a pre-incubation with indomethacin (Indo), N-nitro-L-arginine methyl ester, methylene blue, wortmannin, and atropine sulfate as well as 4-aminopyridione diminished MVO-induced vasorelaxation, suggesting that the activation of the PI3K-Akt-NO pathway and KV channel were involved in the vasorelaxant effect of MVO, which was consistent with the results of the Kyoto Encyclopedia of Genes and the Genomes. Additionally, MVO could significantly inhibit Ca2+ influx resulting in the contraction of aortic rings, revealing that the inhibition of the calcium signaling pathway exactly participated in the vasorelaxant activity of MVO as predicted by network pharmacology. Conclusion: MVO might be a potent treatment of diseases with vascular dysfunction like hypertension. The underlying mechanisms were related to the PI3K-Akt-NO pathway, KV pathway, as well as Ca2+ channel, which were predicted by the network pharmacology and verified by the experiments in vitro. This study based on network pharmacology provided experimental support for the clinical application of MVO in the treatment of hypertension and afforded a novel research method to explore the activity and mechanism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Jin-Feng Xu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Hui Ao,
| | - Hui Ao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Cheng Peng, ; Hui Ao,
| |
Collapse
|
19
|
Favre J, Vessieres E, Guihot AL, Proux C, Grimaud L, Rivron J, Garcia MC, Réthoré L, Zahreddine R, Davezac M, Fébrissy C, Adlanmerini M, Loufrani L, Procaccio V, Foidart JM, Flouriot G, Lenfant F, Fontaine C, Arnal JF, Henrion D. Membrane estrogen receptor alpha (ERα) participates in flow-mediated dilation in a ligand-independent manner. eLife 2021; 10:68695. [PMID: 34842136 PMCID: PMC8676342 DOI: 10.7554/elife.68695] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Estrogen receptor alpha (ERα) activation by estrogens prevents atheroma through its nuclear action, whereas plasma membrane-located ERα accelerates endothelial healing. The genetic deficiency of ERα was associated with a reduction in flow-mediated dilation (FMD) in one man. Here, we evaluated ex vivo the role of ERα on FMD of resistance arteries. FMD, but not agonist (acetylcholine, insulin)-mediated dilation, was reduced in male and female mice lacking ERα (Esr1-/- mice) compared to wild-type mice and was not dependent on the presence of estrogens. In C451A-ERα mice lacking membrane ERα, not in mice lacking AF2-dependent nuclear ERα actions, FMD was reduced, and restored by antioxidant treatments. Compared to wild-type mice, isolated perfused kidneys of C451A-ERα mice revealed a decreased flow-mediated nitrate production and an increased H2O2 production. Thus, endothelial membrane ERα promotes NO bioavailability through inhibition of oxidative stress and thereby participates in FMD in a ligand-independent manner.
Collapse
Affiliation(s)
- Julie Favre
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Emilie Vessieres
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Anne-Laure Guihot
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Coralyne Proux
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Linda Grimaud
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Jordan Rivron
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Manuela Cl Garcia
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France
| | - Léa Réthoré
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France
| | - Rana Zahreddine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Morgane Davezac
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Chanaelle Fébrissy
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Marine Adlanmerini
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Laurent Loufrani
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Vincent Procaccio
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| | - Jean-Michel Foidart
- Groupe Interdisciplinaire de Génoprotéomique Appliquée, Université de Liège, Liège, Belgium
| | - Gilles Flouriot
- INSERM U1085, IRSET (Institut de Recherche en Santé, Environnement et Travail), University of Rennes, Rennes, France
| | - Françoise Lenfant
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Coralie Fontaine
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Jean-François Arnal
- INSERM U1297, Paul Sabatier University (Toulouse III) , University Hospital (UHC) of Toulouse, Toulouse, France
| | - Daniel Henrion
- Angers University, MITOVASC, CNRS UMR 6015, INSERM U1083, Angers, France.,CARFI facility, Angers University, Angers, France.,University Hospital (CHU) of Angers, Angers, France
| |
Collapse
|
20
|
Yang S, Yin Z, Zhu G. A review of the functions of G protein-coupled estrogen receptor 1 in vascular and neurological aging. Eur J Pharmacol 2021; 908:174363. [PMID: 34297966 DOI: 10.1016/j.ejphar.2021.174363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/11/2021] [Accepted: 07/19/2021] [Indexed: 02/07/2023]
Abstract
Aging-related diseases, especially vascular and neurological disorders cause huge economic burden. How to delay vascular and neurological aging is one of the insurmountable questions. G protein-coupled estrogen receptor 1 (GPER) has been extensively investigated in recent years due to its multiple biological responses. In this review, the function of GPER in aging-related diseases represented by vascular diseases, and neurological disorders were discussed. Apart from that, activation of GPER was also found to renovate the aging brain characterized by memory decline, but in a manner different from another two nuclear estrogen receptors estrogen receptor (ER)α and ERβ. This salutary effect would be better clarified from the aspects of synaptic inputs and transmission. Furthermore, we carefully described molecular mechanisms underpinning GPER-mediated effects. This review would update our understanding of GPER in the aging process. Targeting GPER may represent a promising strategy in the aging-related disorders.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Zhe Yin
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China.
| |
Collapse
|
21
|
Schereider IRG, Vassallo DV, Simões MR. Chronic mercury exposure induces oxidative stress in female rats by endothelial nitric oxide synthase uncoupling and cyclooxygenase-2 activation, without affecting oestrogen receptor function. Basic Clin Pharmacol Toxicol 2021; 129:470-485. [PMID: 34491608 DOI: 10.1111/bcpt.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/04/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022]
Abstract
Mercury has been shown to be a significant health risk factor and is positively associated with cardiovascular diseases. Evidence reveals that men are more likely to develop cardiovascular diseases than women during reproductive age. However, the effects of mercury in females remain poorly investigated, despite the finding that female hormones demonstrate a cardioprotective role. In the present study, we evaluated whether chronic mercury chloride exposure could alter blood pressure and vascular function of the female rat aorta. Ten-week-old female Wistar rats were divided into two groups: control (vehicle) and mercury treated (first dose of 4.6 μg/kg, subsequent daily doses of 0.07 μg/kg), im. Mercury treatment did not modify systolic blood pressure (SBP) but increased vascular reactivity due to the reduction of nitric oxide bioavailability associated with the increase in reactive oxygen species from endothelial nitric oxide synthase (eNOS) uncoupling. Furthermore, increased participation of the cyclooxygenase-2 pathway occurred through an imbalance in thromboxane 2 and prostacyclin 2. However, the oestrogen signalling pathway was not altered in either group. These results demonstrated that chronic exposure to mercury in females induced endothelial dysfunction and, consequently, increased aortic vascular reactivity, causing vascular damage to the female rat aorta and representing a risk of cardiovascular diseases.
Collapse
Affiliation(s)
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil.,Health Science Center of Vitória, School of Sciences of Santa Casa de Misericórdia de Vitória - EMESCAM, Vitória, Espírito Santo, Brazil
| | - Maylla Ronacher Simões
- Department of Physiological Sciences, Federal University of Espírito Santo, Vitória, Espírito Santo, Brazil
| |
Collapse
|
22
|
Tutzauer J, Gonzalez de Valdivia E, Swärd K, Alexandrakis Eilard I, Broselid S, Kahn R, Olde B, Leeb-Lundberg LMF. Ligand-Independent G Protein-Coupled Estrogen Receptor/G Protein-Coupled Receptor 30 Activity: Lack of Receptor-Dependent Effects of G-1 and 17 β-Estradiol. Mol Pharmacol 2021; 100:271-282. [PMID: 34330822 PMCID: PMC8626787 DOI: 10.1124/molpharm.121.000259] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptor 30 (GPR30) is a membrane receptor reported to bind 17β-estradiol (E2) and mediate rapid nongenomic estrogen responses, hence also named G protein-coupled estrogen receptor. G-1 is a proposed GPR30-specific agonist that has been used to implicate the receptor in several pathophysiological events. However, controversy surrounds the role of GPR30 in G-1 and E2 responses. We investigated GPR30 activity in the absence and presence of G-1 and E2 in several eukaryotic systems ex vivo and in vitro in the absence and presence of the receptor. Ex vivo activity was addressed using the caudal artery from wild-type (WT) and GPR30 knockout (KO) mice, and in vitro activity was addressed using a HeLa cell line stably expressing a synthetic multifunctional promoter (nuclear factor κB, signal transducer and activator of transcription, activator protein 1)-luciferase construct (HFF11 cells) and a human GPR30-inducible T-REx system (T-REx HFF11 cells), HFF11 and human embryonic kidney 293 cells transiently expressing WT GPR30 and GPR30 lacking the C-terminal PDZ (postsynaptic density-95/discs-large /zonula occludens-1 homology) motif SSAV, and yeast Saccharomyces cerevisiae transformed to express GPR30. WT and KO arteries exhibited similar contractile responses to 60 mM KCl and 0.3 μM cirazoline, and G-1 relaxed both arteries with the same potency and efficacy. Furthermore, expression of GPR30 did not introduce any responses to 1 μM G-1 and 0.1 μM E2 in vitro. On the other hand, receptor expression caused considerable ligand-independent activity in vitro, which was receptor PDZ motif-dependent in mammalian cells. We conclude from these results that GPR30 exhibits ligand-independent activity in vitro but no G-1- or E2-stimulated activity in any of the systems used. SIGNIFICANCE STATEMENT: Much controversy surrounds 17β-estradiol (E2) and G-1 as G protein-coupled receptor 30 (GPR30) agonists. We used several recombinant eukaryotic systems ex vivo and in vitro with and without GPR30 expression to address the role of this receptor in responses to these proposed agonists. Our results show that GPR30 exhibits considerable ligand-independent activity in vitro but no G-1- or E2-stimulated activity in any of the systems used. Thus, classifying GPR30 as an estrogen receptor and G-1 as a specific GPR30 agonist is unfounded.
Collapse
Affiliation(s)
- Julia Tutzauer
- Department of Experimental Medical Science (J.T., E.G.d.V., K.S., I.A.E., S.B., L.M.F.L.-L.) and Department of Clinical Sciences Lund, Division of Pediatrics and Wallenberg Centre of Molecular Medicine (R.K.) and Division of Cardiology (B.O.), Lund University, Lund, Sweden
| | - Ernesto Gonzalez de Valdivia
- Department of Experimental Medical Science (J.T., E.G.d.V., K.S., I.A.E., S.B., L.M.F.L.-L.) and Department of Clinical Sciences Lund, Division of Pediatrics and Wallenberg Centre of Molecular Medicine (R.K.) and Division of Cardiology (B.O.), Lund University, Lund, Sweden
| | - Karl Swärd
- Department of Experimental Medical Science (J.T., E.G.d.V., K.S., I.A.E., S.B., L.M.F.L.-L.) and Department of Clinical Sciences Lund, Division of Pediatrics and Wallenberg Centre of Molecular Medicine (R.K.) and Division of Cardiology (B.O.), Lund University, Lund, Sweden
| | - Ioannis Alexandrakis Eilard
- Department of Experimental Medical Science (J.T., E.G.d.V., K.S., I.A.E., S.B., L.M.F.L.-L.) and Department of Clinical Sciences Lund, Division of Pediatrics and Wallenberg Centre of Molecular Medicine (R.K.) and Division of Cardiology (B.O.), Lund University, Lund, Sweden
| | - Stefan Broselid
- Department of Experimental Medical Science (J.T., E.G.d.V., K.S., I.A.E., S.B., L.M.F.L.-L.) and Department of Clinical Sciences Lund, Division of Pediatrics and Wallenberg Centre of Molecular Medicine (R.K.) and Division of Cardiology (B.O.), Lund University, Lund, Sweden
| | - Robin Kahn
- Department of Experimental Medical Science (J.T., E.G.d.V., K.S., I.A.E., S.B., L.M.F.L.-L.) and Department of Clinical Sciences Lund, Division of Pediatrics and Wallenberg Centre of Molecular Medicine (R.K.) and Division of Cardiology (B.O.), Lund University, Lund, Sweden
| | - Björn Olde
- Department of Experimental Medical Science (J.T., E.G.d.V., K.S., I.A.E., S.B., L.M.F.L.-L.) and Department of Clinical Sciences Lund, Division of Pediatrics and Wallenberg Centre of Molecular Medicine (R.K.) and Division of Cardiology (B.O.), Lund University, Lund, Sweden
| | - L M Fredrik Leeb-Lundberg
- Department of Experimental Medical Science (J.T., E.G.d.V., K.S., I.A.E., S.B., L.M.F.L.-L.) and Department of Clinical Sciences Lund, Division of Pediatrics and Wallenberg Centre of Molecular Medicine (R.K.) and Division of Cardiology (B.O.), Lund University, Lund, Sweden
| |
Collapse
|
23
|
Delgado NTB, Rouver WDN, Freitas-Lima LC, Vieira-Alves I, Lemos VS, dos Santos RL. Sex Differences in the Vasodilation Mediated by G Protein-Coupled Estrogen Receptor (GPER) in Hypertensive Rats. Front Physiol 2021; 12:659291. [PMID: 34393807 PMCID: PMC8359777 DOI: 10.3389/fphys.2021.659291] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The protective effect of estrogen on the vasculature cannot be explained only by its action through the receptors ERα and ERβ. G protein-coupled estrogen receptors (GPER)-which are widely distributed throughout the cardiovascular system-may also be involved in this response. However, little is known about GPER actions in hypertension. Therefore, in this study we evaluated the vascular response mediated by GPER using a specific agonist, G-1, in spontaneously hypertensive rats (SHR). We hypothesized that G-1 would induce a relaxing response in resistance mesenteric arteries from SHR of both sexes. METHODS G-1 concentration-response curves (1 nM-10 μM) were performed in mesenteric arteries from SHR of both sexes (10-12-weeks-old, weighing 180-250 g). The effects of G-1 were evaluated before and after endothelial removal and incubation for 30 min with the inhibitors L-NAME (300 μM) and indomethacin (10 μM) alone or combined with clotrimazole (0.75 μM) or catalase (1,000 units/mL). GPER immunolocalization was also investigated, and vascular hydrogen peroxide (H2O2) and ROS were evaluated using dichlorofluorescein (DCF) and dihydroethidium (DHE) staining, respectively. RESULTS GPER activation promoted a similar relaxing response in resistance mesenteric arteries of female and male hypertensive rats, but with the participation of different endothelial mediators. Males appear to be more dependent on the NO pathway, followed by the H2O2 pathway, and females on the endothelium and H2O2 pathway. CONCLUSION These findings show that the GPER agonist G-1 can induce a relaxing response in mesenteric arteries from hypertensive rats of both sexes in a similar way, albeit with differential participation of endothelial mediators. These results contribute to the understanding of GPER activation on resistance mesenteric arteries in essential hypertension.
Collapse
Affiliation(s)
| | - Wender do Nascimento Rouver
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| | | | - Ildernandes Vieira-Alves
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Virgínia Soares Lemos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Roger Lyrio dos Santos
- Department of Physiological Sciences, Health Sciences Center, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
24
|
Dinh QN, Vinh A, Arumugam TV, Drummond GR, Sobey CG. G protein-coupled estrogen receptor 1: a novel target to treat cardiovascular disease in a sex-specific manner? Br J Pharmacol 2021; 178:3849-3863. [PMID: 33948934 DOI: 10.1111/bph.15521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/23/2021] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
As an agonist of the classical nuclear receptors, estrogen receptor-α and -β (NR3A1/2), estrogen has been assumed to inhibit the development of cardiovascular disease in premenopausal women. Indeed, reduced levels of estrogen after menopause are believed to contribute to accelerated morbidity and mortality rates in women. However, estrogen replacement therapy has variable effects on cardiovascular risk in postmenopausal women, including increased serious adverse events. Interestingly, preclinical studies have shown that selective activation of the novel membrane-associated G protein-coupled estrogen receptor, GPER, can promote cardiovascular protection. These benefits are more evident in ovariectomised than intact females or in males. It is therefore possible that selective targeting of the GPER in postmenopausal women could provide cardiovascular protection with fewer adverse effects that are caused by conventional 'receptor non-specific' estrogen replacement therapy. This review describes new data regarding the merits of targeting GPER to treat cardiovascular disease with a focus on sex differences.
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Antony Vinh
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Thiruma V Arumugam
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Grant R Drummond
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Christopher G Sobey
- Department of Physiology, Anatomy and Microbiology and Centre for Cardiovascular Biology and Disease Research, School of Life Sciences, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
25
|
Gohar EY, Pollock DM. Functional Interaction of Endothelin Receptors in Mediating Natriuresis Evoked by G Protein-Coupled Estrogen Receptor 1. J Pharmacol Exp Ther 2021; 376:98-105. [PMID: 33127751 PMCID: PMC7788354 DOI: 10.1124/jpet.120.000322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/26/2020] [Indexed: 01/14/2023] Open
Abstract
The G protein-coupled estrogen receptor 1 (GPER1) mediates rapid estrogenic signaling. We recently reported that activation of GPER1 in the renal medulla evokes endothelin-1-dependent natriuresis in female, but not male, rats. However, the involvement of the ET receptors, ETA and ETB, underlying GPER1 natriuretic action remain unclear. In this study, we used genetic and pharmacologic methods to identify the contributions of ETA and ETB in mediating this female-specific natriuretic effect of renal medullary GPER1. Infusion of the GPER1-selective agonist G1 (5 pmol/kg per minute) into the renal medulla for 40 minutes increased Na+ excretion and urine flow in anesthetized female ETB-deficient (ETB def) rats and littermate controls but did not affect blood pressure or urinary K+ excretion in either group. Pretreatment with the selective ETA inhibitor ABT-627 (5 mg/kg, intravenous) abolished G1-induced natriuresis in ETB def rats. To further isolate the effects of inhibiting either receptor alone, we conducted the same experiments in anesthetized female Sprague-Dawley (SD) rats pretreated or not with ABT-627 and/or the selective ETB inhibitor A-192621 (10 mg/kg, intravenous). Neither antagonism of ETA nor antagonism of ETB receptor alone affected the G1-induced increase in Na+ excretion and urine flow in SD rats. However, simultaneous antagonism of both receptors completely abolished these effects. These data suggest that ETA and ETB receptors can mediate the natriuretic and diuretic response to renal medullary GPER1 activation in female rats. SIGNIFICANCE STATEMENT: Activation of G protein-coupled estrogen receptor 1 (GPER1) in the renal medulla of female rats evokes natriuresis via endothelin receptors A and/or B, suggesting that GPER1 and endothelin signaling pathways help efficient sodium excretion in females. Thus, GPER1 activation could be potentially useful to mitigate salt sensitivity in females.
Collapse
Affiliation(s)
- Eman Y Gohar
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama (E.Y.G, D.M.P); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (E.Y.G)
| | - David M Pollock
- Cardio-Renal Physiology and Medicine, Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Alabama (E.Y.G, D.M.P); and Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (E.Y.G)
| |
Collapse
|
26
|
Gohar EY. G protein-coupled estrogen receptor 1 as a novel regulator of blood pressure. Am J Physiol Renal Physiol 2020; 319:F612-F617. [PMID: 32893662 DOI: 10.1152/ajprenal.00045.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying hypertension are multifaceted and incompletely understood. New evidence suggests that G protein-coupled estrogen receptor 1 (GPER1) mediates protective actions within the cardiovascular and renal systems. This mini-review focuses on recent advancements in our understanding of the vascular, renal, and cardiac GPER1-mediated mechanisms that influence blood pressure regulation. We emphasize clinical and basic evidence that suggests GPER1 as a novel target to aid therapeutic strategies for hypertension. Furthermore, we discuss current controversies and challenges facing GPER1-related research.
Collapse
Affiliation(s)
- Eman Y Gohar
- Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
27
|
Ren G, Hao X, Yang S, Chen J, Qiu G, Ang KP, Mohd Tamrin MI. 10H-3,6-Diazaphenothiazines triggered the mitochondrial-dependent and cell death receptor-dependent apoptosis pathways and further increased the chemosensitivity of MCF-7 breast cancer cells via inhibition of AKT1 pathways. J Biochem Mol Toxicol 2020; 34:e22544. [PMID: 32619082 DOI: 10.1002/jbt.22544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/21/2020] [Accepted: 05/29/2020] [Indexed: 11/11/2022]
Abstract
Breast cancer is one of the leading causes of death in cancer categories, followed by lung, colorectal, and ovarian among the female gender across the world. 10H-3,6-diazaphenothiazine (PTZ) is a thiazine derivative compound that exhibits many pharmacological activities. Herein, we proceed to investigate the pharmacological activities of PTZ toward breast cancer MCF-7 cells as a representative in vitro breast cancer cell model. The PTZ exhibited a proliferation inhibition (IC50 = 0.895 µM) toward MCF-7 cells. Further, cell cycle analysis illustrated that the S-phase checkpoint was activated to achieve proliferation inhibition. In vitro cytotoxicity test on three normal cell lines (HEK293 normal kidney cells, MCF-10A normal breast cells, and H9C2 normal heart cells) demonstrated that PTZ was more potent toward cancer cells. Increase in the levels of reactive oxygen species results in polarization of mitochondrial membrane potential (ΔΨm), together with suppression of mitochondrial thioredoxin reductase enzymatic activity suggested that PTZ induced oxidative damages toward mitochondria and contributed to improved drug efficacy toward treatment. The RT2 PCR Profiler Array (human apoptosis pathways) proved that PTZ induced cell death via mitochondria-dependent and cell death receptor-dependent pathways, through a series of modulation of caspases, and the respective morphology of apoptosis was observed. Mechanistic studies of apoptosis suggested that PTZ inhibited AKT1 pathways resulting in enhanced drug efficacy despite it preventing invasion of cancer cells. These results showed the effectiveness of PTZ in initiation of apoptosis, programmed cell death, toward highly chemoresistant MCF-7 cells, thus suggesting its potential as a chemotherapeutic drug.
Collapse
Affiliation(s)
- Guanghui Ren
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Xiaoyan Hao
- Department of Thyroid and Breast Surgery, Longgang Central Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Shuyi Yang
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Jun Chen
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Guobin Qiu
- Department of General Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong, China
| | - Kok Pian Ang
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Islahuddin Mohd Tamrin
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
28
|
Taguchi K, Tano I, Kaneko N, Matsumoto T, Kobayashi T. Plant polyphenols Morin and Quercetin rescue nitric oxide production in diabetic mouse aorta through distinct pathways. Biomed Pharmacother 2020; 129:110463. [PMID: 32768953 DOI: 10.1016/j.biopha.2020.110463] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Diabetic vascular complications are associated with endothelial dysfunction. Various plant-derived polyphenols benefit cardiovascular function by protecting endothelial nitric oxide (NO) production through as yet unclear mechanisms. This study compared the effects of two structurally similar polyphenols, Morin (MO) and Quercetin (QU), on endothelial function in isolated aorta from control and streptozotocin (STZ)-induced diabetic mice. Vascular function under treatment with MO, QU, and various signaling pathway modulators was measured by isometric tension in an organ bath system, NO production by chemical assay and HPLC, and changes in protein signaling factor expression or activity by western blotting (WB). Both polyphenols acted as potent vasodilators and this effect was associated with increased phosphorylation of Akt and endothelial NO synthase (eNOS). An Akt inhibitor blocked MO- and QU-induced vasorelaxation as well as Akt phosphorylation. However, inhibitors of phosphoinositide 3-kinase (PI3K) and AMP-activated protein kinase (AMPK) suppressed only QU-induced vasorelaxation, NO production, and AMPK phosphorylation. These results suggested that plant polyphenols MO and QU both promote eNOS-mediated NO production and vasodilation in diabetic aorta, MO via Akt pathway activation and QU via PI3K/Akt and AMPK pathway activation. Elucidation of these pathways may define effective therapeutic targets for diabetic vascular dysfunction.
Collapse
Affiliation(s)
- Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Ikumi Tano
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Nozomu Kaneko
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Takayuki Matsumoto
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo 142-8501, Japan.
| |
Collapse
|
29
|
Contreras-Zárate MJ, Cittelly DM. Sex steroid hormone function in the brain niche: Implications for brain metastatic colonization and progression. Cancer Rep (Hoboken) 2020; 5:e1241. [PMID: 33350105 PMCID: PMC8022872 DOI: 10.1002/cnr2.1241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/04/2020] [Accepted: 01/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND While sex hormones and their receptors play well-known roles in progression of primary tumors through direct action on sex steroid hormone-responsive cancer cells, emerging evidence suggest that hormones also play important roles in metastatic progression by modulating the tumor microenvironment. Estrogens and androgens synthesized in gonads and within the brain influence memory, behavior, and outcomes of brain pathologies. Yet, their impact on brain metastatic colonization and progression is just beginning to be explored. RECENT FINDINGS Estradiol and testosterone cross the blood-brain barrier and are synthesized de novo in astrocytes and other cells within the adult brain. Circulating and brain-synthesized estrogens have been shown to promote brain metastatic colonization of tumors lacking estrogen receptors (ERs), through mechanisms involving the upregulation of growth factors and neurotrophins in ER+ reactive astrocytes. In this review, we discuss additional mechanisms by which hormones may influence brain metastases, through modulation of brain endothelial cells, astrocytes, and microglia. CONCLUSION A greater understanding of hormone-brain-tumor interactions may shed further light on the mechanisms underlying the adaptation of cancer cells to the brain niche, and provide therapeutic alternatives modulating the brain metastatic niche.
Collapse
Affiliation(s)
| | - Diana M Cittelly
- Department of Pathology, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
30
|
Jacenik D, Krajewska WM. Significance of G Protein-Coupled Estrogen Receptor in the Pathophysiology of Irritable Bowel Syndrome, Inflammatory Bowel Diseases and Colorectal Cancer. Front Endocrinol (Lausanne) 2020; 11:390. [PMID: 32595606 PMCID: PMC7303275 DOI: 10.3389/fendo.2020.00390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/15/2020] [Indexed: 12/12/2022] Open
Abstract
The regulatory role of estrogens and nuclear estrogen receptors, i. e., estrogen receptor α and β has been reported in gastrointestinal diseases. However, the contribution of G protein-coupled estrogen receptor, the membrane-bound estrogen receptor, is still poorly understood. Unlike nuclear estrogen receptors, which are responsible for the genomic activity of estrogens, the G protein-coupled estrogen receptor affects the "rapid" non-genomic activity of estrogens, leading to modulation of many signaling pathways and ultimately changing gene expression. Recently, the crucial role of G protein-coupled estrogen receptor in intestinal pathogenesis has been documented. It has been shown that the G protein-coupled estrogen receptor can modulate the progression of irritable bowel syndrome, inflammatory bowel diseases such as Crohn's disease and ulcerative colitis as well as colorectal cancer. The G protein-coupled estrogen receptor appears to be a potent factor regulating abdominal sensitivity and pain, intestinal peristalsis, colitis development, proliferation and migration potential of colorectal cancer cells and seems to be a useful target in gastrointestinal diseases. In this review, we present the current state of knowledge about the contribution of the G protein-coupled estrogen receptor to irritable bowel syndrome, inflammatory bowel diseases and colorectal cancer.
Collapse
|
31
|
Fardoun M, Dehaini H, Shaito A, Mesmar J, El-Yazbi A, Badran A, Beydoun E, Eid AH. The hypertensive potential of estrogen: An untold story. Vascul Pharmacol 2019; 124:106600. [PMID: 31629918 DOI: 10.1016/j.vph.2019.106600] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/24/2022]
Abstract
Cardiovascular disease (CVD) is the major cause of morbidity and mortality worldwide. The implication of estrogen in this disease has been extensively studied. While the vast majority of published research argue for a cardioprotective role of estrogen in vascular inflammation such as in atherosclerosis, the role of estrogen in hypertension remains far from being resolved. The vasorelaxant effect of estrogen has already been well-established. However, emerging evidence supports a vasoconstrictive potential of this hormone. It has been proposed that the microenvironment dictates the effect of estrogen-induced type 1 nitric oxide synthase-1 (nNOS) on vasotone. Indeed, depending on nNOS product, nitric oxide or superoxide, estrogen can induce vasodilation or vasoconstriction, respectively. In this review, we discuss the evidence supporting the vasorelaxant effects of estrogen, and the molecular players involved. Furthermore, we shed light on recent reports revealing a vasoconstrictive role of estrogen, and speculate on the underlying signaling pathways. In addition, we identify certain factors that can account for the discrepant estrogenic effects. This review emphasizes a yin-yang role of estrogen in regulating blood pressure.
Collapse
Affiliation(s)
- Manal Fardoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Hassan Dehaini
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Abdallah Shaito
- Department of Biological and Chemical Sciences, Faculty of Arts and Sciences, Lebanese International University, 1105 Beirut, Lebanon
| | - Joelle Mesmar
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ahmed El-Yazbi
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon; Department of Pharmacology and Toxicology, Alexandria University, Alexandria, Egypt
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman, Jordan
| | - Elias Beydoun
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon; Department of Biomedical Sciences, College of Health Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
32
|
Chang Y, Han Z, Zhang Y, Zhou Y, Feng Z, Chen L, Li X, Li L, Si JQ. G protein-coupled estrogen receptor activation improves contractile and diastolic functions in rat renal interlobular artery to protect against renal ischemia reperfusion injury. Biomed Pharmacother 2019; 112:108666. [PMID: 30784936 DOI: 10.1016/j.biopha.2019.108666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE This work aimed to investigate whether G protein-coupled estrogen receptor (GPER) can improve the renal interlobular artery vascular function by increasing the NO content, thereby protecting against renal ischemia-reperfusion (IR) injury. METHODS This study classified ovariectomised (OVX) female Sprague-Dawley rats into OVX, OVX + IR, OVX + IR + G1 (the GPER agonist G1), OVX + IR + G1+G15 (GPER blocker) and OVX + IR + G1+L-NAME (eNOS blocker) groups. Enzyme-linked immunosorbent assay was performed to detect the estrogen levels in the body and eliminate interference from endogenous estrogens. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labelling (TUNEL) and HE staining, renal function test and Paller scoring were performed to identify the successful model and detect the degree of renal and renal interlobular arteries injury. The in vitro microvascular pressure diameter measurement technique was used to detect the contraction and diastolic activities of the renal interlobular arteries in each group. Immunofluorescence technique was used to observe the localisation and expression levels of GPER and eNOS in renal interlobular arteries. The GPER and eNOS protein expression levels in each group were detected by Western blot. The NO content in the serum of each group was detected by the nitrate reductase method. RESULT After OVX, the estrogen level in the body decreased significantly (P < 0.01), and TUNEL staining showed a significant increase in the degree of renal tubular epithelial cell apoptosis in the IR group. Serum creatinine (SCr) and blood urea nitrogen (BUN) levels were significantly increased in the IR group (P < 0.01), and the Paller score showed significantly increased kidney damage. When performing drug treatment, the G1 intervention group significantly decreased serum BUN and SCr levels after IR injury (P < 0.01). The Paller score showed significantly decreased the degree of renal injury (P < 0.01). After IR, the renal interlobular artery contraction rate and systolic velocity of blood vessels were significantly decreased (P < 0.01). The G1 intervention group significantly restored contraction rate and systolic velocity of blood vessels (P < 0.01), and G15 and L-NAME partially reversed this effect (P < 0.01). Immunofluorescence technique showed that GPER was expressed in renal interlobular artery smooth muscle and endothelial cells. After IR injury, the GPER protein expression increased, and the eNOS protein expression decreased significantly (P < 0.01). Western blot showed that after IR injury, the GPER protein expression increased, and the eNOS protein expression decreased significantly. After G1 intervention, the GPER content did not change, and the eNOS content increased significantly (P < 0.01). After ischemia and reperfusion, the serum NO content decreased significantly, but it increased after G1 intervention. G15 and L-NAME reversed the effects of G1 to varying degrees (both at P < 0.01). CONCLUSION GPER may improve the renal interlobular artery vascular function by increasing the NO content, thereby protecting against renal IR injury.
Collapse
Affiliation(s)
- Yuechen Chang
- Department of Physiology, Shihezi University Medical College, Shihezi, 832002, China
| | - Ziwei Han
- Department of Physiology, Shihezi University Medical College, Shihezi, 832002, China
| | - Yang Zhang
- Department of Physiology, Shihezi University Medical College, Shihezi, 832002, China
| | - Ying Zhou
- Department of Physiology, Shihezi University Medical College, Shihezi, 832002, China
| | - Ziyi Feng
- Department of Physiology, Shihezi University Medical College, Shihezi, 832002, China
| | - Long Chen
- Department of Physiology, Shihezi University Medical College, Shihezi, 832002, China
| | - XueRui Li
- Department of Physiology, Shihezi University Medical College, Shihezi, 832002, China
| | - Li Li
- Department of Physiology, Shihezi University Medical College, Shihezi, 832002, China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, 832002, China; Department of Physiology, Jiaxing University Medical College, Jiaxing, 314001, China.
| | - Jun-Qiang Si
- Department of Physiology, Shihezi University Medical College, Shihezi, 832002, China; The Key Laboratory of Xinjiang Endemic and Ethnic Diseases, Shihezi University Medical College, Shihezi, 832002, China; Department of Physiology, Wuhan University School of Basic Medical Sciences, Wuhan, 430070, China; Department of Physiology, Huazhong University of Science and Technology of Basic Medical Sciences, Wuhan, 430070, China.
| |
Collapse
|
33
|
Bian C, Bai B, Gao Q, Li S, Zhao Y. 17β-Estradiol Regulates Glucose Metabolism and Insulin Secretion in Rat Islet β Cells Through GPER and Akt/mTOR/GLUT2 Pathway. Front Endocrinol (Lausanne) 2019; 10:531. [PMID: 31447779 PMCID: PMC6691154 DOI: 10.3389/fendo.2019.00531] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022] Open
Abstract
Aims: To explore the molecular mechanism by which 17β-estradiol (estrogen 2, E2) regulates glucose transporter 2 (GLUT2) and insulin secretion in islet β cells through G protein-coupled estrogen receptor (GPER) via Akt/mTOR pathway. Methods: SPF-grade SD male rats were used to establish an in vivo type 2 diabetes model treated with E2. Rat insulinoma cells (INS-1) were cultured in normal or high glucose media with or without E2. Immunofluorescence double staining was used to detect GPER, GLUT2, insulin, and glucagon immunolocalization in rat islet tissues. Western blot was used to detect GPER, Akt, mTOR, and GLUT2 protein immunocontent. Real-time PCR detected Slc2a2 and glucose kinase (GK) content, and ELISA was used to detect insulin levels. Glucose uptake, GK activity and pyruvate dehydrogenase (PDH) activity were analyzed with glucose detection, GK activity and PDH activity assay kit. Results: Immunofluorescence double staining confocal indicated that E2 treatment up-regulated expression levels of GPER, GLUT2, and insulin, while down-regulated glucagon. Western blot results revealed E2 increased GPER, Akt/mTOR pathway, and GLUT2 protein immunocontent. Real-time PCR showed E2 elevated Slc2a2, GK content. Moreover, E2 improved insulin secretion, glucose uptake, GK activity, and PDH activity. Conclusion: Our findings indicated that exogenous E2 up-regulated GPER via the Akt/mTOR pathway to increase GLUT2 protein content and insulin secretion in islet β cells.
Collapse
Affiliation(s)
- Che Bian
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
- Department of Endocrinology and Metabolism, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Bowen Bai
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Qian Gao
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Siyi Li
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuyan Zhao
- Department of Endocrinology, The First Affiliated Hospital of China Medical University, Shenyang, China
- *Correspondence: Yuyan Zhao
| |
Collapse
|
34
|
Peixoto P, da Silva JF, Aires RD, Costa ED, Lemos VS, Bissoli NS, dos Santos RL. Sex difference in GPER expression does not change vascular relaxation or reactive oxygen species generation in rat mesenteric resistance arteries. Life Sci 2018; 211:198-205. [DOI: 10.1016/j.lfs.2018.09.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 08/29/2018] [Accepted: 09/18/2018] [Indexed: 01/01/2023]
|
35
|
Wilkenfeld SR, Lin C, Frigo DE. Communication between genomic and non-genomic signaling events coordinate steroid hormone actions. Steroids 2018; 133:2-7. [PMID: 29155216 PMCID: PMC5864526 DOI: 10.1016/j.steroids.2017.11.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 01/30/2023]
Abstract
Steroid hormones are lipophilic molecules produced in one cell that can travel great distances within the body to elicit biological effects in another cell. In the canonical pathway, steroid hormone binding to a nuclear receptor (NR), often in the cytoplasm, causes the receptor to undergo a conformational change and translocate to the nucleus, where it interacts with specific sequences of DNA to regulate transcription. In addition to the classical genomic mechanism of action, alternate mechanisms of steroid activity have emerged that involve rapid, non-genomic signaling. The distinction between these two major mechanisms of action lies in the subcellular location of the initiating steroid hormone action. Importantly, the mechanisms of action are not exclusive, in that each can affect the activity of the other. Here, we describe the different types of genomic and non-genomic steroid hormone signaling mechanisms and how they can influence one another to ultimately regulate biology. Further, we discuss the approaches being used to study the non-genomic signaling events and address important caveats to be considered when designing new experiments. Thus, this minireview can serve as an introduction to the diverse signaling mechanisms of steroid hormones and offers initial, experimental guidance to those entering the field.
Collapse
Affiliation(s)
- Sandi R Wilkenfeld
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Chenchu Lin
- Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Daniel E Frigo
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, TX, USA; Department of Biology and Biochemistry, University of Houston, Houston, TX, USA; Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Molecular Medicine Program, The Houston Methodist Research Institute, Houston, TX, USA.
| |
Collapse
|