1
|
Bai RY, Wu LH, Wang Y, Guo C, She G, Pang ZD, Li JJ, Zhao XY, Han MZ, Hai XX, Yang YY, Zhang Y, Zhao LM, Jiao LY, Du XJ, Deng XL. Glutaminolysis and α-ketoglutarate-stimulated K Ca3.1 expression contribute to β-adrenoceptor activation-induced myocardial fibrosis in mice. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2811-x. [PMID: 40343579 DOI: 10.1007/s11427-024-2811-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/19/2024] [Indexed: 05/11/2025]
Abstract
Heart failure is associated with myocardial fibrosis, a pivotal histopathological feature arising from β-adrenergic receptor (β-AR) stimulation through sympathetic nervous system activation. Augmented glutaminolysis with increased bioavailability of α-ketoglutarate (α-KG) is suggested to contribute to fibrogenesis and changes in cellular gene expression. KCa3.1 is a calcium-activated potassium channel expressed in fibroblasts and has been implicated in mediating fibrosis, yet the putative interactions between glutaminolysis and KCa3.1 in β-AR-mediated cardiac fibrosis remain poorly understood. Here, we performed a series of in vitro and in vivo experiments to investigate how α-KG might influence the expression of KCa3.1 in the context of experimental myocardial fibrosis driven by β-AR activation. In cultured adult mouse cardiac fibroblasts, α-KG exposure resulted in the upregulation of KCa3.1 mRNA and protein levels that were commensurate with the dose and duration of exposure, and also led to increased KCa3.1 channel currents. Exposure to α-KG led to a significant decrease in levels of histone methylation (H3K27me3) within the KCa3.1 promoter, a decrease in the association of the transcription repressor REST from this site, as well as an enrichment of transcription activator AP-1 binding. The exacerbated fibrotic signaling induced by α-KG in cultured fibroblasts was suppressed by functional inhibition of KCa3.1 or by genetic knockdown of Kcnn4. Moreover, β-AR activation by isoproterenol significantly augmented glutaminolysis mediated by glutaminase 1 (GLS1) and significantly increased α-KG levels detected in the supernatant of cultured fibroblasts and cardiomyocytes. In addition, isoproterenol-induced KCa3.1 expression in fibroblasts was curtailed by treatment with the GLS1 inhibitor CB-839, or by GLS1 gene knockdown, or by treatment with the selective β2-AR antagonist, ICI118551. In mouse models of established cardiac fibrosis evoked by isoproterenol-stimulation or β2-AR overexpression, treatment with CB-839 for 4 weeks suppressed the phenotypic features of fibrosis, and this was associated with a decline in α-KG tissue content, a lack of histone demethylation at the KCa3.1 promoter, as well as suppression of KCa3.1 expression. Taken together, our study demonstrates for the first time that glutaminolysis contributes to β-AR activation-induced myocardial fibrosis via α-KG-stimulated KCa3.1 expression. We anticipate that treatments which target the β-AR/GLS1/α-KG/KCa3.1 signaling pathway might be effective for cardiac fibrosis.
Collapse
Affiliation(s)
- Ru-Yue Bai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Lin-Hong Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yan Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Chen Guo
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Zheng-Da Pang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Jing-Jing Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xin-Yi Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Meng-Zhuan Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xia-Xia Hai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yi-Yi Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China
| | - Li-Mei Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Lian-Ying Jiao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China.
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
- Cardiometabolic Innovation Center, Ministry of Education, Xi'an, 710061, China.
| |
Collapse
|
2
|
Xu H, Mao X, Wang Y, Zhu C, Liang B, Zhao Y, Zhou M, Ye L, Hong M, Shao H, Wang Y, Li H, Qi Y, Yang Y, Chen L, Guan Y, Zhang X. Targeting the E Prostanoid Receptor EP4 Mitigates Cardiac Fibrosis Induced by β-Adrenergic Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413324. [PMID: 39921269 PMCID: PMC11948031 DOI: 10.1002/advs.202413324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/10/2025] [Indexed: 02/10/2025]
Abstract
Sustained β-adrenergic activation induces cardiac fibrosis characterized by excessive deposition of extracellular matrix (ECM). Prostaglandin E2 (PGE2) receptor EP4 is essential for cardiovascular homeostasis. This study aims to investigate the roles of cardiomyocyte (CM) and cardiac fibroblast (CF) EP4 in isoproterenol (ISO)-induced cardiac fibrosis. By crossing the EP4f/f mice with α-MyHC-Cre or S100A4-Cre mice, this work obtains the CM-EP4 knockout (EP4f/f-α-MyHCCre+) or CF-EP4 knockout (EP4f/f-S100A4Cre+) mice. The mice of both genders are subcutaneously injected with ISO (5 mg kg-1 day-1) for 7 days. Compared to the control mice, both EP4f/f-α-MyHCCre+ and EP4f/f-S100A4Cre+ mice show a significant improvement in cardiac diastolic function and fibrosis as assessed by echocardiography and histological staining, respectively. In the CMs, inhibition of EP4 suppresses ISO-induced TGF-β1 expression via blocking the cAMP/PKA pathway. In the CFs, inhibition of EP4 reversed TGF-β1-triggers production of ECM via preventing the formation of the TGF-β1/TGF-β receptor complex and blocks CF proliferation via suppressing the ERK1/2 pathway. Furthermore, double knockout of the CM- and CF-EP4 or administration of EP4 antagonist, grapiprant, markedly improves ISO-induced cardiac diastolic dysfunction and fibrosis. Collectively, this study demonstrates that both CM-EP4 and CF-EP4 contribute to β-adrenergic activation-induced cardiac fibrosis. Targeting EP4 may offer a novel therapeutic approach for cardiac fibrosis.
Collapse
Affiliation(s)
- Hu Xu
- Wuhu HospitalEast China Normal UniversityShanghai200241China
- Health Science CenterEast China Normal UniversityShanghai200241China
| | - Xiuhui Mao
- Health Science CenterEast China Normal UniversityShanghai200241China
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Yali Wang
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Chunhua Zhu
- Health Science CenterEast China Normal UniversityShanghai200241China
| | - Bo Liang
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Yihang Zhao
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Mengfei Zhou
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Lan Ye
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Mengting Hong
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Huishu Shao
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Yashuo Wang
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Haonan Li
- MOE Key Laboratory of Bio‐Intelligent ManufacturingSchool of BioengineeringDalian University of TechnologyDalian116024China
| | - Yinghui Qi
- Department of NephrologyPudong New District Punan HospitalShanghai200125China
| | - Yongliang Yang
- MOE Key Laboratory of Bio‐Intelligent ManufacturingSchool of BioengineeringDalian University of TechnologyDalian116024China
| | - Lihong Chen
- Health Science CenterEast China Normal UniversityShanghai200241China
| | - Youfei Guan
- Health Science CenterEast China Normal UniversityShanghai200241China
- Advanced Institute for Medical SciencesDalian Medical UniversityDalian116044China
| | - Xiaoyan Zhang
- Wuhu HospitalEast China Normal UniversityShanghai200241China
- Health Science CenterEast China Normal UniversityShanghai200241China
| |
Collapse
|
3
|
Liu J, Li W, Jiao R, Liu Z, Zhang T, Chai D, Meng L, Yang Z, Liu Y, Wu H, Gu X, Li X, Yang C. Miglustat ameliorates isoproterenol-induced cardiac fibrosis via targeting UGCG. Mol Med 2025; 31:55. [PMID: 39934657 PMCID: PMC11812238 DOI: 10.1186/s10020-025-01093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/19/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Cardiac fibrosis is significant global health problem, which is associated with numerous cardiovascular diseases, and ultimately leads to the progression to heart failure. β-adrenergic receptor (β-AR) overactivation play a role in the development of cardiac fibrosis. Miglustat (Mig) has shown anti-fibrosis effects in multiple fibrotic diseases. However, it is unclear whether and how Mig can ameliorate cardiac fibrosis induced by β-AR overactivation. METHODS In vivo, mice were injected with isoproterenol (ISO) to induce cardiac fibrosis and treated with Mig. In vitro, primary cardiac fibroblasts were stimulated by ISO and treated with Mig. Levels of cardiac fibrosis, cardiac dysfunction, activation of cardiac fibroblasts were evaluated by real-time polymerase chain reaction, western blots, sirius red staining, immunohistochemistry staining and echocardiography. Through GEO data and knockdown UDP-glucose ceramide glycosyltransferase (UGCG) in primary cardiac fibroblasts, whether Mig alleviates cardiac fibrosis by targeting UGCG was explored. RESULTS The results indicated that Mig alleviated ISO-induced cardiac dysfunction. Consistently, Mig also suppressed ISO-induced cardiac fibrosis. Moreover, Mig attenuated ISO-induced cardiac fibroblasts (CFs) activation. To identify the protective mechanism of Mig on cardiac fibrosis, several classical β-AR downstream signaling pathways, including ERK, STAT3, Akt and GSK3β, were further analyzed. As expected, ISO activated the ERK, STAT3, Akt and GSK3β in both CFs and mouse hearts, but this effect was reversed pretreated with Mig. Besides, Mig ameliorates ISO-induced cardiac fibrosis by targeting UDP-glucose ceramide glycosyltransferase (UGCG) in CFs. CONCLUSIONS Mig ameliorates β-AR overactivation-induced cardiac fibrosis by inhibiting ERK, STAT3, Akt and GSK3β signaling and UGCG may be a potential target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Wenqi Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Ran Jiao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Zhigang Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Tiantian Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Dan Chai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Lingxin Meng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Zhongyi Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Yuming Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China
| | - Hongliang Wu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, China
| | - Xiaoting Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
- Tianjin Key Laboratory of Molecular Drug Research, International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Xiaohe Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
- Tianjin Key Laboratory of Molecular Drug Research, International Joint Academy of Biomedicine, Tianjin, 300457, China.
| | - Cheng Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, China.
- Tianjin Key Laboratory of Molecular Drug Research, International Joint Academy of Biomedicine, Tianjin, 300457, China.
| |
Collapse
|
4
|
Zhu Y, Zhang F, Li Z, Zhou Y, Shu Y, Ruan J, Chen G. Chinese and western medicine treatment of myocardial fibrosis drugs. Front Cardiovasc Med 2025; 11:1477601. [PMID: 39882321 PMCID: PMC11774883 DOI: 10.3389/fcvm.2024.1477601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Myocardial fibrosis (MF) is a common pathological manifestation of many cardiovascular diseases, such as myocardial infarction, myocardial ischemia, and sudden cardiac death. It is characterized by excessive proliferation and activation of fibroblasts, transformation into myofibroblasts, and, eventually, excessive deposition of the extracellular matrix, resulting in heart damage. Currently, modern drugs such as angiotensin-converting enzyme inhibitors, diuretics, and β-blockers can improve myocardial fibrosis in clinical treatment, but their therapeutic effect on this disease is limited, with obvious side effects and high cost. Traditional Chinese medicine (TCM) has the advantages of multiple targets, low cost, and few side effects. Traditional Chinese medicines, such as Salvia miltiorrhiza, Astragalus, and Angelica extracts, and patent Chinese medicines, such as Qiliqiangxin capsules, Shenqi Yiqi dropping pills, and Tongxinluo capsules, can improve myocardial fibrosis. In this review, current Chinese and Western medicine methods for treating myocardial fibrosis are discussed. The signaling pathways and targets of Chinese and Western medicine are involved in the treatment of myocardial fibrosis. This review aimed to provide valuable insights and ideas for both clinical treatment and basic research on myocardial fibrosis.
Collapse
Affiliation(s)
- Yuxi Zhu
- Department of Acupuncture, Bao’an Authentic TCM Therapy Hospital, Shenzheng, China
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Fangmei Zhang
- Fever Clinic, The 334 Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhongcheng Li
- Department of Acupuncture, Bao’an Authentic TCM Therapy Hospital, Shenzheng, China
| | - Yu Zhou
- Department of Acupuncture, Bao’an Authentic TCM Therapy Hospital, Shenzheng, China
| | - Yi Shu
- Department of Acupuncture, Bao’an Authentic TCM Therapy Hospital, Shenzheng, China
| | - Jian Ruan
- Graduate School, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Guo Chen
- Department of Acupuncture, Bao’an Authentic TCM Therapy Hospital, Shenzheng, China
| |
Collapse
|
5
|
Schmidt CE, Müller HD. WITHDRAWN: Myocardial Fibrosis in Diabetic Cardiomyopathy: Mechanisms, Implications, and Therapeutic Perspectives. Curr Probl Cardiol 2024:102976. [PMID: 39706391 DOI: 10.1016/j.cpcardiol.2024.102976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal
Collapse
Affiliation(s)
- Clara Elisabeth Schmidt
- Bioanalytical Lab, Meso Scale Discovery, Rockville, MD 20850-3173, USA; Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| | - Hans Dietrich Müller
- Department of Pediatric Endocrinology and Rheumatology, Institute of Pediatrics, Poznan University of Medical Sciences, 60-572 Poznan, Poland
| |
Collapse
|
6
|
Xu J, Lv M, Ni X. Marein Alleviates Doxorubicin-Induced Cardiotoxicity through FAK/AKT Pathway Modulation while Potentiating its Anticancer Activity. Cardiovasc Toxicol 2024; 24:818-835. [PMID: 38896162 DOI: 10.1007/s12012-024-09882-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Doxorubicin (DOX) is an effective anticancer agent, yet its clinical utility is hampered by dose-dependent cardiotoxicity. This study explores the cardioprotective potential of Marein (Mar) against DOX-induced cardiac injury and elucidates underlying molecular mechanisms. Neonatal rat cardiomyocytes (NRCMs) and murine models were employed to assess the impact of Mar on DOX-induced cardiotoxicity (DIC). In vitro, cell viability, oxidative stress were evaluated. In vivo, a chronic injection method was employed to induce a DIC mouse model, followed by eight weeks of Mar treatment. Cardiac function, histopathology, and markers of cardiotoxicity were assessed. In vitro, Mar treatment demonstrated significant cardioprotective effects in vivo, as evidenced by improved cardiac function and reduced indicators of cardiac damage. Mechanistically, Mar reduced inflammation, oxidative stress, and apoptosis in cardiomyocytes, potentially via activation of the Focal Adhesion Kinase (FAK)/AKT pathway. Mar also exhibited an anti-ferroptosis effect. Interestingly, Mar did not compromise DOX's efficacy in cancer cells, suggesting a dual benefit in onco-cardiology. Molecular docking studies suggested a potential interaction between Mar and FAK. This study demonstrates Mar's potential as a mitigator of DOX-induced cardiotoxicity, offering a translational perspective on its clinical application. By activating the FAK/AKT pathway, Mar exerts protective effects against DOX-induced cardiomyocyte damage, highlighting its promise in onco-cardiology. Further research is warranted to validate these findings and advance Mar as a potential adjunctive therapy in cancer treatment.
Collapse
MESH Headings
- Animals
- Doxorubicin/toxicity
- Cardiotoxicity
- Proto-Oncogene Proteins c-akt/metabolism
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/metabolism
- Signal Transduction/drug effects
- Focal Adhesion Kinase 1/metabolism
- Oxidative Stress/drug effects
- Apoptosis/drug effects
- Humans
- Disease Models, Animal
- Heart Diseases/chemically induced
- Heart Diseases/metabolism
- Heart Diseases/prevention & control
- Heart Diseases/enzymology
- Heart Diseases/pathology
- Male
- Anthraquinones/pharmacology
- Mice, Inbred C57BL
- Rats, Sprague-Dawley
- Rats
- Cell Line, Tumor
- Cytoprotection
- Cells, Cultured
- Antibiotics, Antineoplastic/toxicity
- Mice
Collapse
Affiliation(s)
- Juanjuan Xu
- Department of Cardiology, Huanggang Central Hospital, Huanggang, China.
| | - Manjun Lv
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohong Ni
- Department of Neurology, Huanggang Central Hospital, Huanggang, China
| |
Collapse
|
7
|
Zhang T, Lv J, Liu ZY, Lei QL, Jiang ZF, Sun XX, Yue X, Li X, Zhu KL, Yang YK, Luo L, Cao X. P2X7 receptor is essential for ST36-attenuated cardiac fibrosis upon beta-adrenergic insult. Purinergic Signal 2024:10.1007/s11302-024-10009-y. [PMID: 38676825 DOI: 10.1007/s11302-024-10009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
P2X7 receptor (P2X7R) plays an important role in modulating inflammation and fibrosis, but information is limited whether Zusanli (ST36) can inhibit inflammation and fibrosis by regulating P2X7R. Isoprenaline at 5 mg/kg was subcutaneously injected to wild-type and P2X7R knockout mice for 7 days, while treatment groups received electroacupuncture (EA) stimulation at ST36 for 7 sessions. Following 7-session treatment, Masson's trichrome staining was performed to assess the fibrosis. Morphology, electrocardiogram, and echocardiography were carried out to evaluate the cardiac function and structure. Western blotting, hematoxylin and eosin staining, immunohistochemistry, and biochemical analysis of inflammatory cytokine and transmission electron microscopy were carried out to characterize the effect of ST36 on inflammation. P2X7R was overexpressed in ISO-treated mice. EA at ST36, but not at non-points, reduced ISO-induced cardiac fibrosis, increases in HW/BW, R+S wave relative to mice in ISO groups. In addition, EA at ST36 downregulated ISO-upregulated P2X7R and NLRP3 in ventricle. Moreover, EA reduced cytokines of IL-1β, IL-6, and IL-18 in serum, and inhibited foam cell gathering, inflammatory cell infiltration, and autophagy. However, EA at ST36 failed to attenuate the cardiac fibrosis and hypertrophy in P2X7R knockout mice. In conclusion, EA at ST36 attenuated ISO-induced fibrosis possibly via P2X7R.
Collapse
Affiliation(s)
- Ting Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Jing Lv
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Zhong-Yue Liu
- School of Nursing, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, Sichuan, China
| | - Qiu-Lian Lei
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Ze-Fei Jiang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Xiao-Xiang Sun
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Xing Yue
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Xuan Li
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Ke-Li Zhu
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China
| | - Yun-Kuan Yang
- Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China
| | - Ling Luo
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.
| | - Xin Cao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang District, Chengdu, 611137, Sichuan Province, China.
- Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
8
|
Qian L, Xu H, Yuan R, Yun W, Ma Y. Formononetin ameliorates isoproterenol induced cardiac fibrosis through improving mitochondrial dysfunction. Biomed Pharmacother 2024; 170:116000. [PMID: 38070245 DOI: 10.1016/j.biopha.2023.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
Formononetin, an isoflavone compound, has been extensively researched due to its various biological activities, including a potent protective effect on the cardiovascular system. However, the impact of formononetin on cardiac fibrosis has not been investigated. In this study, C57BL/6 mice were used to establish cardiac fibrosis animal models by subcutaneous injecting of isoproterenol (ISO) and formononetin was orally administrated. The results showed that formononetin reversed ISO-induced heart stiffness revealed by early-to-atrial wave ratio (E/A ratio). Masson staining, western blot, immunohistochemistry and real-time PCR exhibited that the cardiac fibrosis and fibrosis-related proteins (collage III, fibronectin, TGF-β1, α-SMA, and vimentin) and genes (Col1a1, Col3a1, Acta2 and Tgfb1) induced by ISO were significantly suppressed by formononetin. Furthermore, by combining metabolomics and network pharmacology, we found three important targets (ALDH2, HADH, and MAOB), which are associated with mitochondrial function, were involved in the beneficial effect of formononetin. Further validation revealed that these three genes were more abundance in cardiomyocyte than in cardiac fibroblast. The mRNA expression of ALDH2 and HADH were decreased, while MOAB was increased in cardiomyocyte upon ISO treatment and these phenomena were reversed by formononetin. In addition, we investigated mitochondrial membrane potential and ROS production in cardiomyocytes, the results showed that formononetin effectively improved mitochondrial dysfunction induced by ISO. In summary, we demonstrated that formononetin via regulating the expressions of ALDH2, HADH, and MAOB in cardiomyocyte to improve mitochondrial dysfunction and alleviate β-adrenergic activation cardiac fibrosis.
Collapse
Affiliation(s)
- Lei Qian
- Department of Biochemistry and Molecular Biology, College of Basic Sciences, Dalian Medical University, Dalian 116044, China; Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Hu Xu
- Wuhu Hospital and Health Science Center, East China Normal University, Shanghai 200241, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Weijing Yun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, College of Basic Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
9
|
Qiu Y, Song X, Liu Y, Wu Y, Shi J, Zhang F, Pan Y, Cao Z, Zhang K, Liu J, Chu Y, Yuan X, Wu D. Application of recombinant TGF-β1 inhibitory peptide to alleviate isoproterenol-induced cardiac fibrosis. Appl Microbiol Biotechnol 2023; 107:6251-6262. [PMID: 37606791 DOI: 10.1007/s00253-023-12722-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/23/2023]
Abstract
Cardiac fibrosis is a remodeling process of the cardiac interstitium, characterized by abnormal metabolism of the extracellular matrix, excessive accumulation of collagen fibers, and scar tissue hyperplasia. Persistent activation and transdifferentiation into myofibroblasts of cardiac fibroblasts promote the progression of fibrosis. Transforming growth factor-β1 (TGF-β1) is a pivotal factor in cardiac fibrosis. Latency-associated peptide (LAP) is essential for activating TGF-β1 and its binding to the receptor. Thus, interference with TGF-β1 and the signaling pathways using LAP may attenuate cardiac fibrosis. Recombinant full-length and truncated LAP were previously constructed, expressed, and purified. Their effects on cardiac fibrosis were investigated in isoproterenol (ISO)-induced cardiac fibroblasts (CFs) and C57BL/6 mice. The study showed that LAP and tLAP inhibited ISO-induced CF activation, inflammation, and fibrosis, improved cardiac function, and alleviated myocardial injury in ISO-induced mice. LAP and tLAP alleviated the histopathological alterations and inhibited the elevated expression of inflammatory and fibrosis-related markers in cardiac tissue. In addition, LAP and tLAP decreased the ISO-induced elevated expression of TGF-β, αvβ3, αvβ5, p-Smad2, and p-Smad3. The study indicated that LAP and tLAP attenuated ISO-induced cardiac fibrosis via suppressing TGF-β/Smad pathway. This study may provide a potential approach to alleviate cardiac fibrosis. KEY POINTS: • LAP and tLAP inhibited ISO-induced CF activation, inflammation, and fibrosis. • LAP and tLAP improved cardiac function and alleviated myocardial injury, inflammation, and fibrosis in ISO-induced mice. • LAP and tLAP attenuated cardiac fibrosis via suppressing TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Yufei Qiu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Xudong Song
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yong Liu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- Center for Comparative Medicine, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yan Wu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Jiayi Shi
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Fan Zhang
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yu Pan
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Zhiqin Cao
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Keke Zhang
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Jingruo Liu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Yanhui Chu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China
| | - Xiaohuan Yuan
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.
- Center for Comparative Medicine, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China.
| | - Dan Wu
- Heilongjiang Province Key Laboratory of Anti-Fibrosis Biotherapy, Mudanjiang Medical University, No.3, Tongxiang Street, Aimin District, Mudanjiang, 157011, Heilongjiang, China.
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, 157011, Heilongjiang, China.
| |
Collapse
|
10
|
Ren Z, Zhang Z, Ling L, Liu X, Wang X. Drugs for treating myocardial fibrosis. Front Pharmacol 2023; 14:1221881. [PMID: 37771726 PMCID: PMC10523299 DOI: 10.3389/fphar.2023.1221881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Myocardial fibrosis, which is a common pathological manifestation of many cardiovascular diseases, is characterized by excessive proliferation, collagen deposition and abnormal distribution of extracellular matrix fibroblasts. In clinical practice, modern medicines, such as diuretic and β receptor blockers, and traditional Chinese medicines, such as salvia miltiorrhiza and safflower extract, have certain therapeutic effects on myocardial fibrosis. We reviewed some representative modern medicines and traditional Chinese medicines (TCMs) and their related molecular mechanisms for the treatment of myocardial fibrosis. These drugs alleviate myocardial fibrosis by affecting related signaling pathways and inhibiting myocardial fibrosis-related protein synthesis. This review will provide more references and help for the research and treatment of myocardial fibrosis.
Collapse
Affiliation(s)
- Zhanhong Ren
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Zixuan Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
- School of Basic Medical Sciences, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Li Ling
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xiufen Liu
- Hubei Key Laboratory of Diabetes and Angiopathy, Medicine Research Institute, Xianning Medical College, Hubei University of Science and Technology, Xianning, China
| | - Xin Wang
- School of Mathematics and Statistics, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
11
|
Tatman PD, Kao DP, Chatfield KC, Carroll IA, Wagner JA, Jonas ER, Sucharov CC, Port JD, Lowes BD, Minobe WA, Huebler SP, Karimpour-Fard A, Rodriguez EM, Liggett SB, Bristow MR. An extensive β1-adrenergic receptor gene signaling network regulates molecular remodeling in dilated cardiomyopathies. JCI Insight 2023; 8:e169720. [PMID: 37606047 PMCID: PMC10543724 DOI: 10.1172/jci.insight.169720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/11/2023] [Indexed: 08/23/2023] Open
Abstract
We investigated the extent, biologic characterization, phenotypic specificity, and possible regulation of a β1-adrenergic receptor-linked (β1-AR-linked) gene signaling network (β1-GSN) involved in left ventricular (LV) eccentric pathologic remodeling. A 430-member β1-GSN was identified by mRNA expression in transgenic mice overexpressing human β1-ARs or from literature curation, which exhibited opposite directional behavior in interventricular septum endomyocardial biopsies taken from patients with beta-blocker-treated, reverse remodeled dilated cardiomyopathies. With reverse remodeling, the major biologic categories and percentage of the dominant directional change were as follows: metabolic (19.3%, 81% upregulated); gene regulation (14.9%, 78% upregulated); extracellular matrix/fibrosis (9.1%, 92% downregulated); and cell homeostasis (13.3%, 60% upregulated). Regarding the comparison of β1-GSN categories with expression from 19,243 nonnetwork genes, phenotypic selection for major β1-GSN categories was exhibited for LV end systolic volume (contractility measure), ejection fraction (remodeling index), and pulmonary wedge pressure (wall tension surrogate), beginning at 3 months and persisting to study completion at 12 months. In addition, 121 lncRNAs were identified as possibly involved in cis-acting regulation of β1-GSN members. We conclude that an extensive 430-member gene network downstream from the β1-AR is involved in pathologic ventricular remodeling, with metabolic genes as the most prevalent category.
Collapse
Affiliation(s)
| | - David P. Kao
- Division of Cardiology, Department of Medicine, and
- Colorado Center for Personalized Medicine University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kathryn C. Chatfield
- Division of Cardiology, Department of Medicine, and
- Department of Pediatric Cardiology, Children’s Hospital Colorado, Aurora, Colorado, USA
| | - Ian A. Carroll
- Division of Cardiology, Department of Medicine, and
- ARCA biopharma, Westminster, Colorado, USA
| | | | | | | | | | - Brian D. Lowes
- Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | | | | | - Anis Karimpour-Fard
- Department of Biomedical Informatics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Stephen B. Liggett
- Departments of Medicine and Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Michael R. Bristow
- Division of Cardiology, Department of Medicine, and
- ARCA biopharma, Westminster, Colorado, USA
| |
Collapse
|
12
|
Mao Y, Fu Q, Su F, Zhang W, Zhang Z, Zhou Y, Yang C. Trends in worldwide research on cardiac fibrosis over the period 1989-2022: a bibliometric study. Front Cardiovasc Med 2023; 10:1182606. [PMID: 37342441 PMCID: PMC10277498 DOI: 10.3389/fcvm.2023.1182606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Background Cardiac fibrosis is a hallmark of various end-stage cardiovascular diseases (CVDs) and a potent contributor to adverse cardiovascular events. During the past decades, extensive publications on this topic have emerged worldwide, while a bibliometric analysis of the current status and research trends is still lacking. Methods We retrieved relevant 13,446 articles on cardiac fibrosis published between 1989 and 2022 from the Web of Science Core Collection (WoSCC). Bibliometrix was used for science mapping of the literature, while VOSviewer and CiteSpace were applied to visualize co-authorship, co-citation, co-occurrence, and bibliographic coupling networks. Results We identified four major research trends: (1) pathophysiological mechanisms; (2) treatment strategies; (3) cardiac fibrosis and related CVDs; (4) early diagnostic methods. The most recent and important research themes such as left ventricular dysfunction, transgenic mice, and matrix metalloproteinase were generated by burst analysis of keywords. The reference with the most citations was a contemporary review summarizing the role of cardiac fibroblasts and fibrogenic molecules in promoting fibrogenesis following myocardial injury. The top 3 most influential countries were the United States, China, and Germany, while the most cited institution was Shanghai Jiao Tong University, followed by Nanjing Medical University and Capital Medical University. Conclusions The number and impact of global publications on cardiac fibrosis has expanded rapidly over the past 30 years. These results are in favor of paving the way for future research on the pathogenesis, diagnosis, and treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiangqiang Fu
- Department of General Practice, Clinical Research Center for General Practice, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Su
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wenjia Zhang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhong Zhang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yimeng Zhou
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chuanxi Yang
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Duangrat R, Parichatikanond W, Mangmool S. Dual Blockade of TGF-β Receptor and Endothelin Receptor Synergistically Inhibits Angiotensin II-Induced Myofibroblast Differentiation: Role of AT 1R/G αq-Mediated TGF-β1 and ET-1 Signaling. Int J Mol Sci 2023; 24:ijms24086972. [PMID: 37108136 PMCID: PMC10138810 DOI: 10.3390/ijms24086972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Angiotensin II (Ang II) upregulates transforming growth factor-beta1 (TGF-β1) and endothelin-1 (ET-1) in various types of cells, and all of them act as profibrotic mediators. However, the signal transduction of angiotensin II receptor (ATR) for upregulation of TGF-β1 and ET-1, and their effectors that play an essential role in myofibroblast differentiation, are not fully understood. Therefore, we investigated the ATR networking with TGF-β1 and ET-1 and identified the signal transduction of these mediators by measuring the mRNA expression of alpha-smooth muscle actin (α-SMA) and collagen I using qRT-PCR. Myofibroblast phenotypes were monitored by α-SMA and stress fiber formation with fluorescence microscopy. Our findings suggested that Ang II induced collagen I and α-SMA synthesis and stress fiber formation through the AT1R/Gαq axis in adult human cardiac fibroblasts (HCFs). Following AT1R stimulation, Gαq protein, not Gβγ subunit, was required for upregulation of TGF-β1 and ET-1. Moreover, dual inhibition of TGF-β and ET-1 signaling completely inhibited Ang II-induced myofibroblast differentiation. The AT1R/Gαq cascade transduced signals to TGF-β1, which in turn upregulated ET-1 via the Smad- and ERK1/2-dependent pathways. ET-1 consecutively bound to and activated endothelin receptor type A (ETAR), leading to increases in collagen I and α-SMA synthesis and stress fiber formation. Remarkably, dual blockade of TGF-β receptor and ETR exhibited the restorative effects to reverse the myofibroblast phenotype induced by Ang II. Collectively, TGF-β1 and ET-1 are major effectors of AT1R/Gαq cascade, and therefore, negative regulation of TGF-β and ET-1 signaling represents a targeted therapeutic strategy for the prevention and restoration of cardiac fibrosis.
Collapse
Affiliation(s)
- Ratchanee Duangrat
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Molecular Medicine Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Warisara Parichatikanond
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing (BSHA), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
14
|
Bekedam FT, Goumans MJ, Bogaard HJ, de Man FS, Llucià-Valldeperas A. Molecular mechanisms and targets of right ventricular fibrosis in pulmonary hypertension. Pharmacol Ther 2023; 244:108389. [PMID: 36940790 DOI: 10.1016/j.pharmthera.2023.108389] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/19/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Right ventricular fibrosis is a stress response, predominantly mediated by cardiac fibroblasts. This cell population is sensitive to increased levels of pro-inflammatory cytokines, pro-fibrotic growth factors and mechanical stimulation. Activation of fibroblasts results in the induction of various molecular signaling pathways, most notably the mitogen-activated protein kinase cassettes, leading to increased synthesis and remodeling of the extracellular matrix. While fibrosis confers structural protection in response to damage induced by ischemia or (pressure and volume) overload, it simultaneously contributes to increased myocardial stiffness and right ventricular dysfunction. Here, we review state-of-the-art knowledge of the development of right ventricular fibrosis in response to pressure overload and provide an overview of all published preclinical and clinical studies in which right ventricular fibrosis was targeted to improve cardiac function.
Collapse
Affiliation(s)
- F T Bekedam
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - M J Goumans
- Department of Cell and Chemical Biology, Leiden UMC, 2300 RC Leiden, the Netherlands
| | - H J Bogaard
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands
| | - F S de Man
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| | - A Llucià-Valldeperas
- Amsterdam UMC location Vrije Universiteit Amsterdam, PHEniX laboratory, Department of Pulmonary Medicine, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Pulmonary Hypertension and Thrombosis, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Claridge B, Drack A, Pinto AR, Greening DW. Defining cardiac fibrosis complexity and regulation towards therapeutic development. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2025]
Abstract
AbstractCardiac fibrosis is insidious, accelerating cardiovascular diseases, heart failure, and death. With a notable lack of effective therapies, advances in both understanding and targeted treatment of fibrosis are urgently needed. Remodelling of the extracellular matrix alters the biomechanical and biochemical cardiac structure and function, disrupting cell‐matrix interactions and exacerbating pathogenesis to ultimately impair cardiac function. Attempts at clinical fibrotic reduction have been fruitless, constrained by an understanding which severely underestimates its dynamic complexity and regulation. Integration of single‐cell sequencing and quantitative proteomics has provided new insights into cardiac fibrosis, including reparative or maladaptive processes, spatiotemporal changes and fibroblast heterogeneity. Further studies have revealed microenvironmental and intercellular signalling mechanisms (including soluble mediators and extracellular vesicles), and intracellular regulators including post‐translational/epigenetic modifications, RNA binding proteins, and non‐coding RNAs. This understanding of novel disease processes and molecular targets has supported the development of innovative therapeutic strategies. Indeed, targeted modulation of cellular heterogeneity, microenvironmental signalling, and intracellular regulation offer promising pre‐clinical therapeutic leads. Clinical development will require further advances in our mechanistic understanding of cardiac fibrosis and dissection of the molecular basis for fibrotic remodelling. This review provides an overview of the complexities of cardiac fibrosis, emerging regulatory mechanisms and therapeutic strategies, and highlights knowledge gaps and opportunities for further investigation towards therapeutic/clinical translation.
Collapse
Affiliation(s)
- Bethany Claridge
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
| | - Auriane Drack
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
| | - Alexander R. Pinto
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
- Baker Department of Cardiometabolic Health University of Melbourne Melbourne Australia
- Central Clinical School Monash University Melbourne Australia
| |
Collapse
|
16
|
Fu J, Li L, Chen L, Su C, Feng X, Huang K, Zhang L, Yang X, Fu Q. PGE2 protects against heart failure through inhibiting TGF-β1 synthesis in cardiomyocytes and crosstalk between TGF-β1 and GRK2. J Mol Cell Cardiol 2022; 172:63-77. [PMID: 35934102 DOI: 10.1016/j.yjmcc.2022.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 12/14/2022]
Abstract
Inflammation plays a central role in the development of heart failure. Prostaglandin E2 (PGE2) is a key mediator of the inflammatory process in the cardiovascular system. However, the role of PGE2 in heart failure is complex and controversial. A recent report suggested that PGE2 inhibits acute β adrenergic receptor (β-AR) stimulation-enhanced cardiac contractility. The aim of this study was to characterize the influence of PGE2 on chronic β-AR stimulation-induced heart failure. Male C57BL/6 J mice received isoproterenol (ISO) or vehicle for 4 weeks. PGE2 significantly reversed ISO-induced cardiac contractile dysfunction and remodeling. Mechanically, ventricular myocytes were found to be an important source of TGF-β1 in ISO-model and PGE2 ablated TGF-β1 synthesis in cardiomyocytes through inhibition of β-AR activated PKA-CREB signaling. Furthermore, PGE2 significantly suppressed TGF-β1-GRK2 crosstalk-induced pro-hypertrophy and pro-fibrotic signaling in cardiomyocytes and cardiac fibroblasts, respectively. Pharmacological inhibition of GRK2 also attenuated contractile dysfunction and cardiac hypertrophy and fibrosis in ISO-model. These studies elucidate a novel mechanism by which PGE2 reduces TGF-β1 synthesis and its downstream signaling in heart failure and identify PGE2 or TGF-β1-GRK2 crosstalk as plausible therapeutic targets for preventing or treating heart failure induced by chronic β-AR stimulation.
Collapse
Affiliation(s)
- Jing Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430000, China
| | - Li Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430000, China
| | - Long Chen
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Congping Su
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430000, China
| | - Xiuling Feng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Kai Huang
- Clinical Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Laxi Zhang
- Division of Cardiology, Wenchang People's Hospital, Wenchang 571300, China.
| | - Xiaoyan Yang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430000, China.
| | - Qin Fu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan 430000, China.
| |
Collapse
|
17
|
Duangrat R, Parichatikanond W, Morales NP, Pinthong D, Mangmool S. Sustained AT1R stimulation induces upregulation of growth factors in human cardiac fibroblasts via Gαq/TGF-β/ERK signaling that influences myocyte hypertrophy. Eur J Pharmacol 2022; 937:175384. [DOI: 10.1016/j.ejphar.2022.175384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
|
18
|
Mao Y, Zhao K, Li P, Sheng Y. The emerging role of leptin in obesity-associated cardiac fibrosis: evidence and mechanism. Mol Cell Biochem 2022; 478:991-1011. [PMID: 36214893 DOI: 10.1007/s11010-022-04562-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2022]
Abstract
Cardiac fibrosis is a hallmark of various cardiovascular diseases, which is quite commonly found in obesity, and may contribute to the increased incidence of heart failure arrhythmias, and sudden cardiac death in obese populations. As an endogenous regulator of adiposity metabolism, body mass, and energy balance, obesity, characterized by increased circulating levels of the adipocyte-derived hormone leptin, is a critical contributor to the pathogenesis of cardiac fibrosis. Although there are some gaps in our knowledge linking leptin and cardiac fibrosis, this review will focus on the interplay between leptin and major effectors involved in the pathogenesis underlying cardiac fibrosis at both cellular and molecular levels based on the current reports. The profibrotic effect of leptin is predominantly mediated by activated cardiac fibroblasts but may also involve cardiomyocytes, endothelial cells, and immune cells. Moreover, a series of molecular signals with a known profibrotic property is closely involved in leptin-induced fibrotic events. A more comprehensive understanding of the underlying mechanisms through which leptin contributes to the pathogenesis of cardiac fibrosis may open up a new avenue for the rapid emergence of a novel therapy for preventing or even reversing obesity-associated cardiac fibrosis.
Collapse
Affiliation(s)
- Yukang Mao
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China.,Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, Jiangsu, People's Republic of China.
| | - Yanhui Sheng
- Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, People's Republic of China. .,Department of Cardiology, Jiangsu Province Hospital, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
19
|
Activation of cAMP Signaling in Response to α-Phellandrene Promotes Vascular Endothelial Growth Factor Levels and Proliferation in Human Dermal Papilla Cells. Int J Mol Sci 2022; 23:ijms23168959. [PMID: 36012223 PMCID: PMC9409021 DOI: 10.3390/ijms23168959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Dermal papilla cells (DPCs) are growth factor reservoirs that are specialized for hair morphogenesis and regeneration. Due to their essential role in hair growth, DPCs are commonly used as an in vitro model to investigate the effects of hair growth-regulating compounds and their molecular mechanisms of action. Cyclic adenosine monophosphate (cAMP), an intracellular second messenger, is currently employed as a growth-promoting target molecule. In a pilot test, we found that α-phellandrene, a naturally occurring phytochemical, increased cAMP levels in DPCs. Therefore, we sought to determine whether α-phellandrene increases growth factors and proliferation in human DPCs and to identify the underlying mechanisms. We demonstrated that α-phellandrene promotes cell proliferation concentration-dependently. In addition, it increases the cAMP downstream effectors, such as protein kinase A catalytic subunit (PKA Cα) and phosphorylated cAMP-responsive element-binding protein (CREB). Also, among the CREB-dependent growth factor candidates, we identified that α-phellandrene selectively upregulated vascular endothelial growth factor (VEGF) mRNA expression in DPCs. Notably, the beneficial effects of α-phellandrene were nullified by a cAMP inhibitor. This study demonstrated the cAMP-mediated growth effects in DPCs and the therapeutic potential of α-phellandrene for preventing hair loss.
Collapse
|
20
|
Liang Q, Xu H, Liu M, Qian L, Yan J, Yang G, Chen L. Postnatal Deletion of Bmal1 in Cardiomyocyte Promotes Pressure Overload Induced Cardiac Remodeling in Mice. J Am Heart Assoc 2022; 11:e025021. [PMID: 35730615 PMCID: PMC9333388 DOI: 10.1161/jaha.121.025021] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Background Mice with cardiomyocyte-specific deletion of Bmal1, a core clock gene, had spontaneous abnormal cardiac metabolism, dilated cardiomyopathy, and shortened lifespan. However, the role of cardiomyocyte Bmal1 in pressure overload induced cardiac remodeling is unknown. Here we aimed to understand the contribution of cardiomyocyte Bmal1 to cardiac remodeling in response to pressure overload induced by transverse aortic constriction or chronic angiotensin Ⅱ (AngⅡ) infusion. Methods and Results By generating a tamoxifen-inducible cardiomyocyte-specific Bmal1 knockout mouse line (cKO) and challenging the mice with transverse aortic constriction or AngⅡ, we found that compared to littermate controls, the cKO mice displayed remarkably increased cardiac hypertrophy and augmented fibrosis both after transverse aortic constriction and AngⅡ induction, as assessed by echocardiographic, gravimetric, histologic, and molecular analyses. Mechanistically, RNA-sequencing analysis of the heart after transverse aortic constriction exposure revealed that the PI3K/AKT signaling pathway was significantly activated in the cKOs. Consistent with the in vivo findings, in vitro study showed that knockdown of Bmal1 in cardiomyocytes significantly promoted phenylephrine-induced cardiomyocyte hypertrophy and triggered fibroblast-to-myofibroblast differentiation, while inhibition of AKT remarkedly reversed the pro-hypertrophy and pro-fibrosis effects of Bmal1 knocking down. Conclusions These results suggest that postnatal deletion of Bmal1 in cardiomyocytes may promote pressure overload-induced cardiac remodeling. Moreover, we identified PI3K/AKT signaling pathway as the potential mechanistic ties between Bmal1 and cardiac remodeling.
Collapse
Affiliation(s)
- Qing Liang
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Hu Xu
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Min Liu
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Lei Qian
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Jin Yan
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| | - Guangrui Yang
- School of BioengineeringDalian University of TechnologyDalianChina
| | - Lihong Chen
- Advanced Institute for Medical SciencesDalian Medical UniversityDalianChina
| |
Collapse
|
21
|
Yun W, Qian L, Yuan R, Xu H. Periplocymarin Alleviates Doxorubicin-Induced Heart Failure and Excessive Accumulation of Ceramides. Front Cardiovasc Med 2021; 8:732554. [PMID: 34869633 PMCID: PMC8639694 DOI: 10.3389/fcvm.2021.732554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022] Open
Abstract
Doxorubicin-driven cardiotoxicity could result in dilated cardiomyopathy and heart failure (HF). Previously, we showed that periplocymarin exerted a cardiotonic role by promoting calcium influx and attenuating myocardial fibrosis induced by isoproterenol (ISO) by improving the metabolism of cardiomyocytes. However, the impact of periplocymarin on doxorubicin (DOX)-triggered cardiomyopathy has not been investigated. In the current study, C57BL/6 mice were randomly divided into three groups, namely, the control, DOX, and DOX+periplocymarin groups. The cardiac function and apoptosis were measured. Our results revealed that periplocymarin administration greatly improved the DOX-induced cardiac dysfunction manifested by the ejection fraction (EF%), fractional shortening (FS%), left ventricular posterior wall thickness (LVPW), left ventricular anterior wall thickness (LVAW), left ventricular (LV) mass, and attenuated DOX-induced cardiomyocyte apoptosis assessed by hematoxylin and eosin (H&E) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and western blotting. Further study using H9c2 cells revealed that the pretreatment of periplocymarin suppressed DOX-induced apoptosis evidenced by annexin V staining. Moreover, liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis demonstrated that DOX lead to an accumulation in serum ceramide, and the pre-treatment of periplocymarin could reverse this phenomenon. Network pharmacology also demonstrated that ceramide metabolism was involved in the process. Consistently, real-time PCR showed that periplocymarin significantly abolished the induction of the genes involved in the de novo synthesis of ceramide, i.e., CerS2, CerS4, CerS5, and CerS6, and the induction was attributed to the treatment of DOX. Collectively, these results suggested that periplocymarin reduced cardiomyocyte apoptosis to protect hearts from DOX-induced cardiotoxicity and the de novo synthesis of ceramides was involved in this process.
Collapse
Affiliation(s)
| | | | | | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| |
Collapse
|
22
|
Du Y, Demillard LJ, Ren J. Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury. Life Sci 2021; 287:120106. [PMID: 34756930 DOI: 10.1016/j.lfs.2021.120106] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/20/2023]
Abstract
Cerebrovascular diseases such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage provoke cardiac complications such as heart failure, neurogenic stress-related cardiomyopathy and Takotsubo cardiomyopathy. With regards to the pathophysiology of stroke-induced heart injury, several mechanisms have been postulated to contribute to this complex interaction between brain and heart, including damage from gut dysbiosis, immune and systematic inflammatory responses, microvesicle- and microRNA-mediated vascular injury and damage from a surge of catecholamines. All these cerebrovascular diseases may trigger pronounced catecholamine surges through diverse ways, including stimulation of hypothalamic-pituitary adrenal axis, dysregulation of autonomic system, and secretion of adrenocorticotropic hormone. Primary catecholamines involved in this pathophysiological response include norepinephrine (NE) and epinephrine. Both are important neurotransmitters that connect the nervous system with the heart, leading to cardiac damage via myocardial ischemia, calcium (Ca2+) overload, oxidative stress, and mitochondrial dysfunction. In this review, we will aim to summarize the molecular mechanisms behind catecholamine-induced cardiotoxicity including Ca2+ overload, oxidative stress, apoptosis, cardiac hypertrophy, interstitial fibrosis, and inflammation. In addition, we will focus on how synchronization among these pathways evokes cardiotoxicity.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Laurie J Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Flores-Vergara R, Olmedo I, Aránguiz P, Riquelme JA, Vivar R, Pedrozo Z. Communication Between Cardiomyocytes and Fibroblasts During Cardiac Ischemia/Reperfusion and Remodeling: Roles of TGF-β, CTGF, the Renin Angiotensin Axis, and Non-coding RNA Molecules. Front Physiol 2021; 12:716721. [PMID: 34539441 PMCID: PMC8446518 DOI: 10.3389/fphys.2021.716721] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/26/2021] [Indexed: 11/20/2022] Open
Abstract
Communication between cells is a foundational concept for understanding the physiology and pathology of biological systems. Paracrine/autocrine signaling, direct cell-to-cell interplay, and extracellular matrix interactions are three types of cell communication that regulate responses to different stimuli. In the heart, cardiomyocytes, fibroblasts, and endothelial cells interact to form the cardiac tissue. Under pathological conditions, such as myocardial infarction, humoral factors released by these cells may induce tissue damage or protection, depending on the type and concentration of molecules secreted. Cardiac remodeling is also mediated by the factors secreted by cardiomyocytes and fibroblasts that are involved in the extensive reciprocal interactions between these cells. Identifying the molecules and cellular signal pathways implicated in these processes will be crucial for creating effective tissue-preserving treatments during or after reperfusion. Numerous therapies to protect cardiac tissue from reperfusion-induced injury have been explored, and ample pre-clinical research has attempted to identify drugs or techniques to mitigate cardiac damage. However, despite great success in animal models, it has not been possible to completely translate these cardioprotective effects to human applications. This review provides a current summary of the principal molecules, pathways, and mechanisms underlying cardiomyocyte and cardiac fibroblast crosstalk during ischemia/reperfusion injury. We also discuss pre-clinical molecules proposed as treatments for myocardial infarction and provide a clinical perspective on these potential therapeutic agents.
Collapse
Affiliation(s)
- Raúl Flores-Vergara
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago de Chile, Chile
| | - Pablo Aránguiz
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, Viña del Mar, Chile
| | - Jaime Andrés Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago de Chile, Chile
| | - Raúl Vivar
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile
| | - Zully Pedrozo
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile.,Red para el Estudio de Enfermedades Cardiopulmonares de alta letalidad (REECPAL), Universidad de Chile, Santiago de Chile, Chile
| |
Collapse
|
24
|
Peter AK, Walker CJ, Ceccato T, Trexler CL, Ozeroff CD, Lugo KR, Perry AR, Anseth KS, Leinwand LA. Cardiac Fibroblasts Mediate a Sexually Dimorphic Fibrotic Response to β-Adrenergic Stimulation. J Am Heart Assoc 2021; 10:e018876. [PMID: 33998248 PMCID: PMC8483546 DOI: 10.1161/jaha.120.018876] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Biological sex is an important modifier of cardiovascular disease and women generally have better outcomes compared with men. However, the contribution of cardiac fibroblasts (CFs) to this sexual dimorphism is relatively unexplored. Methods and Results Isoproterenol (ISO) was administered to rats as a model for chronic β‐adrenergic receptor (β‐AR)‐mediated cardiovascular disease. ISO‐treated males had higher mortality than females and also developed fibrosis whereas females did not. Gonadectomy did not abrogate this sex difference. To determine the cellular contribution to this phenotype, CFs were studied. CFs from both sexes had increased proliferation in vivo in response to ISO, but CFs from female hearts proliferated more than male cells. In addition, male CFs were significantly more activated to myofibroblasts by ISO. To investigate potential regulatory mechanisms for the sexually dimorphic fibrotic response, β‐AR mRNA and PKA (protein kinase A) activity were measured. In response to ISO treatment, male CFs increased expression of β1‐ and β2‐ARs, whereas expression of both receptors decreased in female CFs. Moreover, ISO‐treated male CFs had higher PKA activity relative to vehicle controls, whereas ISO did not activate PKA in female CFs. Conclusions Chronic in vivo β‐AR stimulation causes fibrosis in male but not female rat hearts. Male CFs are more activated than female CFs, consistent with elevated fibrosis in male rat hearts and may be caused by higher β‐AR expression and PKA activation in male CFs. Taken together, our data suggest that CFs play a substantial role in mediating sex differences observed after cardiac injury.
Collapse
Affiliation(s)
- Angela K Peter
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Molecular, Cellular and Developmental Biology University of Colorado Boulder CO
| | - Cierra J Walker
- BioFrontiers Institute University of Colorado Boulder CO.,Materials Science and Engineering Program University of Colorado Boulder Boulder CO
| | - Tova Ceccato
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Molecular, Cellular and Developmental Biology University of Colorado Boulder CO
| | - Christa L Trexler
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Molecular, Cellular and Developmental Biology University of Colorado Boulder CO
| | - Christopher D Ozeroff
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Molecular, Cellular and Developmental Biology University of Colorado Boulder CO
| | | | - Amy R Perry
- BioFrontiers Institute University of Colorado Boulder CO
| | - Kristi S Anseth
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Chemical and Biological Engineering University of Colorado Boulder CO
| | - Leslie A Leinwand
- BioFrontiers Institute University of Colorado Boulder CO.,Department of Molecular, Cellular and Developmental Biology University of Colorado Boulder CO
| |
Collapse
|
25
|
Yun W, Qian L, Yuan R, Xu H. Periplocymarin protects against myocardial fibrosis induced by β-adrenergic activation in mice. Biomed Pharmacother 2021; 139:111562. [PMID: 33839492 DOI: 10.1016/j.biopha.2021.111562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 11/24/2022] Open
Abstract
Periplocymarin is an effective component of Periplocae Cortex, which was wildly used as an ingredient in Traditional Chinese Medicine. Our group previously reported that periplocymarin exerted cardiotonic role via promoting calcium influx. However, its exact role in the pathogenesis of myocardial fibrosis has not been elucidated yet. The present study was aimed at determining the potential effect and underlying mechanism of periplocymarin in isoproterenol (ISO)-induced myocardial fibrosis. C57BL/6 mice were subcutaneously injected with ISO (5 mg/kg/day) or saline for 1 week. The early-to-atrial wave ratio (E/A ratio) measured by echocardiography revealed that ISO-induced heart stiffness was remarkably reversed by administration of periplocymarin (5 mg/kg/day). Masson trichrome staining exhibited that treatment of periplocymarin reduced the excessive deposition of extracellular matrix (ECM). Further investigations employing real-time PCR and western blot demonstrated that periplocymarin suppressed the expression of fibrosis related genes (Col1a1, Col3a1, Acta2 and Tgfb1) and proteins (Collagen I, Collagen III, α-SMA and TGF-β1) induced by ISO. Metabolomics analysis demonstrated that periplocymarin ameliorated the disorders triggered by ISO and many of the differential metabolic substances were involved in amino acid, glucose and lipid metabolism. Further analysis using network pharmacology revealed that three key genes, namely NOS2, NOS3 and Ptgs2, may be the potential targets of periplocymarin and responsible for the disorders. Validation using heart tissues showed that the mRNA expression of NOS3 was decreased while Ptgs2 was increased upon ISO treatment, which were reversed by periplocymarin. Moreover, the expression of COX-2 (Ptgs2 encoded protein) was consistent with the aspect of Ptgs2 mRNA, while eNOS (NOS3 encoded protein) expression was unchanged. In vitro studies exhibited that periplocymarin exerts anti-fibrotic function via regulating at least eNOS and COX-2 in cardiomyocyte. Taken together, periplocymarin protects against myocardial fibrosis induced by β-adrenergic activation, the potential mechanism was that periplocymarin targeted on, at least eNOS and COX-2, to improve the metabolic processes of cardiomyocyte and thus attenuated the myocardial fibrosis. Our study highlighted that periplocymarin is a potential therapeutic agent for the prevention of myocardial fibrosis.
Collapse
Affiliation(s)
- Weijing Yun
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
26
|
Medzikovic L, Heese H, van Loenen PB, van Roomen CPAA, Hooijkaas IB, Christoffels VM, Creemers EE, de Vries CJM, de Waard V. Nuclear Receptor Nur77 Controls Cardiac Fibrosis through Distinct Actions on Fibroblasts and Cardiomyocytes. Int J Mol Sci 2021; 22:ijms22041600. [PMID: 33562500 PMCID: PMC7915046 DOI: 10.3390/ijms22041600] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/19/2022] Open
Abstract
Fibrosis is a hallmark of adverse cardiac remodeling, which promotes heart failure, but it is also an essential repair mechanism to prevent cardiac rupture, signifying the importance of appropriate regulation of this process. In the remodeling heart, cardiac fibroblasts (CFs) differentiate into myofibroblasts (MyoFB), which are the key mediators of the fibrotic response. Additionally, cardiomyocytes are involved by providing pro-fibrotic cues. Nuclear receptor Nur77 is known to reduce cardiac hypertrophy and associated fibrosis; however, the exact function of Nur77 in the fibrotic response is yet unknown. Here, we show that Nur77-deficient mice exhibit severe myocardial wall thinning, rupture and reduced collagen fiber density after myocardial infarction and chronic isoproterenol (ISO) infusion. Upon Nur77 knockdown in cultured rat CFs, expression of MyoFB markers and extracellular matrix proteins is reduced after stimulation with ISO or transforming growth factor–β (TGF-β). Accordingly, Nur77-depleted CFs produce less collagen and exhibit diminished proliferation and wound closure capacity. Interestingly, Nur77 knockdown in neonatal rat cardiomyocytes results in increased paracrine induction of MyoFB differentiation, which was blocked by TGF-β receptor antagonism. Taken together, Nur77-mediated regulation involves CF-intrinsic promotion of CF-to-MyoFB transition and inhibition of cardiomyocyte-driven paracrine TGF-β-mediated MyoFB differentiation. As such, Nur77 provides distinct, cell-specific regulation of cardiac fibrosis.
Collapse
MESH Headings
- Animals
- Cardiomyopathies/genetics
- Cardiomyopathies/metabolism
- Cardiomyopathies/pathology
- Cells, Cultured
- Collagen/metabolism
- Disease Models, Animal
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Fibrosis
- Gene Knockdown Techniques
- Heart Rupture/genetics
- Heart Rupture/metabolism
- Heart Rupture/pathology
- Intercellular Signaling Peptides and Proteins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Knockout, ApoE
- Models, Cardiovascular
- Myocardium/metabolism
- Myocardium/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myofibroblasts/metabolism
- Myofibroblasts/pathology
- Nuclear Receptor Subfamily 4, Group A, Member 1/antagonists & inhibitors
- Nuclear Receptor Subfamily 4, Group A, Member 1/deficiency
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Rats
- Transforming Growth Factor beta/metabolism
- Ventricular Remodeling/genetics
- Ventricular Remodeling/physiology
Collapse
Affiliation(s)
- Lejla Medzikovic
- Department of Medical Biochemistry, Amsterdam University Medical Centers (Amsterdam UMC), Location Academic Medical Center (AMC), Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.M.); (H.H.); (P.B.v.L.); (C.P.A.A.v.R.); (C.J.M.d.V.)
- Department of Anesthesiology and Perioperative Medicine, Division of Molecular Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hylja Heese
- Department of Medical Biochemistry, Amsterdam University Medical Centers (Amsterdam UMC), Location Academic Medical Center (AMC), Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.M.); (H.H.); (P.B.v.L.); (C.P.A.A.v.R.); (C.J.M.d.V.)
| | - Pieter B. van Loenen
- Department of Medical Biochemistry, Amsterdam University Medical Centers (Amsterdam UMC), Location Academic Medical Center (AMC), Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.M.); (H.H.); (P.B.v.L.); (C.P.A.A.v.R.); (C.J.M.d.V.)
| | - Cindy P. A. A. van Roomen
- Department of Medical Biochemistry, Amsterdam University Medical Centers (Amsterdam UMC), Location Academic Medical Center (AMC), Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.M.); (H.H.); (P.B.v.L.); (C.P.A.A.v.R.); (C.J.M.d.V.)
| | - Ingeborg B. Hooijkaas
- Department of Medical Biology, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.B.H.); (V.M.C.)
| | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (I.B.H.); (V.M.C.)
| | - Esther E. Creemers
- Department of Experimental Cardiology, Amsterdam UMC, Location AMC, Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Carlie J. M. de Vries
- Department of Medical Biochemistry, Amsterdam University Medical Centers (Amsterdam UMC), Location Academic Medical Center (AMC), Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.M.); (H.H.); (P.B.v.L.); (C.P.A.A.v.R.); (C.J.M.d.V.)
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam University Medical Centers (Amsterdam UMC), Location Academic Medical Center (AMC), Amsterdam Cardiovascular Sciences, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (L.M.); (H.H.); (P.B.v.L.); (C.P.A.A.v.R.); (C.J.M.d.V.)
- Correspondence:
| |
Collapse
|
27
|
Wen Z, Zhan J, Li H, Xu G, Ma S, Zhang J, Li Z, Ou C, Yang Z, Cai Y, Chen M. Dual-ligand supramolecular nanofibers inspired by the renin-angiotensin system for the targeting and synergistic therapy of myocardial infarction. Theranostics 2021; 11:3725-3741. [PMID: 33664858 PMCID: PMC7914367 DOI: 10.7150/thno.53644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: The compensatory activation of the renin-angiotensin system (RAS) after myocardial infarction (MI) plays a crucial role in the pathogenesis of heart failure. Most existing studies on this subject focus on mono- or dual-therapy of blocking the RAS, which exhibit limited efficacy and often causes serious adverse reactions. Few studies have been conducted on targeted therapy based on the activated RAS post-MI. Thus, the development of multiple-functional nanomedicine with concurrent targeting ability and synergistic therapeutic effect against RAS may show great promise in improving cardiac function post-MI. Methods: We utilized a cooperative self-assembly strategy constructing supramolecular nanofibers— telmisartan-doped co-assembly nanofibers (TDCNfs) to counter-regulate RAS through targeted delivery and combined therapy. TDCNfs were prepared through serial steps of solvent exchange, heating incubation, gelation, centrifugation, and lyophilization, in which the telmisartan was doped in the self-assembly process of Ang1-7 to obtain the co-assembly nanofibers wherein they act as both therapeutic agents and target-guide agents. Results: TDCNfs exhibited the desired binding affinity to the two different receptors, AT1R and MasR. Through the dual ligand-receptor interactions to mediate the coincident downstream pathways, TDCNfs not only displayed favorably targeted properties to hypoxic cardiomyocytes, but also exerted synergistic therapeutic effects in apoptosis reduction, inflammatory response alleviation, and fibrosis inhibition in vitro and in vivo, significantly protecting cardiac function and mitigating post-MI adverse outcomes. Conclusion: A dual-ligand nanoplatform was successfully developed to achieve targeted and synergistic therapy against cardiac deterioration post-MI. We envision that the integration of multiple therapeutic agents through supramolecular self-assembly would offer new insight for the systematic and targeted treatment of cardiovascular diseases.
Collapse
|
28
|
Kang GJ, Kim EJ, Lee CH. Therapeutic Effects of Specialized Pro-Resolving Lipids Mediators on Cardiac Fibrosis via NRF2 Activation. Antioxidants (Basel) 2020; 9:antiox9121259. [PMID: 33321955 PMCID: PMC7764646 DOI: 10.3390/antiox9121259] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Heart disease is the number one mortality disease in the world. In particular, cardiac fibrosis is considered as a major factor causing myocardial infarction and heart failure. In particular, oxidative stress is a major cause of heart fibrosis. In order to control such oxidative stress, the importance of nuclear factor erythropoietin 2 related factor 2 (NRF2) has recently been highlighted. In this review, we will discuss the activation of NRF2 by docosahexanoic acid (DHA), eicosapentaenoic acid (EPA), and the specialized pro-resolving lipid mediators (SPMs) derived from polyunsaturated lipids, including DHA and EPA. Additionally, we will discuss their effects on cardiac fibrosis via NRF2 activation.
Collapse
Affiliation(s)
- Gyeoung Jin Kang
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
| | - Eun Ji Kim
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN 55455, USA; (G.J.K.); (E.J.K.)
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Seoul 04620, Korea
- Correspondence: ; Tel.: +82-31-961-5213
| |
Collapse
|
29
|
Hamano S, Tomokiyo A, Hasegawa D, Yuda A, Sugii H, Yoshida S, Mitarai H, Wada N, Maeda H. Functions of beta2-adrenergic receptor in human periodontal ligament cells. J Cell Biochem 2020; 121:4798-4808. [PMID: 32115771 DOI: 10.1002/jcb.29706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 01/30/2020] [Indexed: 12/12/2022]
Abstract
Adrenergic receptors (ARs) are receptors of noradrenalin and adrenalin, of which there are nine different subtypes. In particular, β2 adrenergic receptor (β2-AR) is known to be related to the restoration and maintenance of homeostasis in bone and cardiac tissues; however, the functional role of signaling through β2-AR in periodontal ligament (PDL) tissue has not been fully examined. In this report, we investigated that β2-AR expression in PDL tissues and their features in PDL cells. β2-AR expressed in rat PDL tissues and human PDL cells (HPDLCs) derived from two different patients (HPDLCs-2G and -3S). Rat PDL tissue with occlusal loading showed high β2-AR expression, while its expression was downregulated in that without loading. In HPDLCs, β2-AR expression was increased exposed to stretch loading. The gene expression of PDL-related molecules was investigated in PDL clone cells (2-23 cells) overexpressing β2-AR. Their gene expression and intracellular cyclic adenosine monophosphate (cAMP) levels were also investigated in HPDLCs treated with a specific β2-AR agonist, fenoterol (FEN). Overexpression of β2-AR significantly promoted the gene expression of PDL-related molecules in 2 to 23 cells. FEN led to an upregulation in the expression of PDL-related molecules and increased intracellular cAMP levels in HPDLCs. In both HPDLCs, inhibition of cAMP signaling by using protein kinase A inhibitor suppressed the FEN-induced gene expression of α-smooth muscle actin. Our findings suggest that the occlusal force is important for β2-AR expression in PDL tissue and β2-AR is involved in fibroblastic differentiation and collagen synthesis of PDL cells. The signaling through β2-AR might be important for restoration and homeostasis of PDL tissue.
Collapse
Affiliation(s)
- Sayuri Hamano
- Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of OBT Research Center, Kyushu University, Fukuoka, Japan
| | - Atsushi Tomokiyo
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Daigaku Hasegawa
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Asuka Yuda
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hideki Sugii
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Shinichiro Yoshida
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hiromi Mitarai
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Naohisa Wada
- Division of General Dentistry, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| | - Hidefumi Maeda
- Division of Oral Rehabilitation, Department of Endodontology and Operative Dentistry, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
- Division of Endodontology, Kyushu University Hospital, Kyushu University, Fukuoka, Japan
| |
Collapse
|
30
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
31
|
Ding Y, Wang Y, Zhang W, Jia Q, Wang X, Li Y, Lv S, Zhang J. Roles of Biomarkers in Myocardial Fibrosis. Aging Dis 2020; 11:1157-1174. [PMID: 33014530 PMCID: PMC7505259 DOI: 10.14336/ad.2020.0604] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Myocardial fibrosis is observed in various cardiovascular diseases and plays a key role in the impairment of cardiac function. Endomyocardial biopsy, as the gold standard for the diagnosis of myocardial fibrosis, has limitations in terms of clinical application. Therefore, biomarkers have been recommended for noninvasive assessment of myocardial fibrosis. This review discusses the role of biomarkers in myocardial fibrosis from the perspective of collagen.
Collapse
Affiliation(s)
- Yuejia Ding
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Yuan Wang
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wanqin Zhang
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qiujin Jia
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Xiaoling Wang
- 3Qian'an Hospital of Traditional Chinese Medicine, Qian'an 064400, China
| | - Yanyang Li
- 4Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shichao Lv
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.,2Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin 300000, China
| | - Junping Zhang
- 1First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| |
Collapse
|
32
|
Ji S, Guo R, Wang J, Qian L, Liu M, Xu H, Zhang J, Guan Y, Yang G, Chen L. Microsomal Prostaglandin E 2 Synthase-1 Deletion Attenuates Isoproterenol-Induced Myocardial Fibrosis in Mice. J Pharmacol Exp Ther 2020; 375:40-48. [PMID: 32759273 DOI: 10.1124/jpet.120.000023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/10/2020] [Indexed: 11/22/2022] Open
Abstract
Deletion of microsomal prostaglandin E2 synthase-1 (mPGES-1) inhibits inflammation and protects against atherosclerotic vascular diseases but displayed variable influence on pathologic cardiac remodeling. Overactivation of β-adrenergic receptors (β-ARs) causes heart dysfunction and cardiac remodeling, whereas the role of mPGES-1 in β-AR-induced cardiac remodeling is unknown. Here we addressed this question using mPGES-1 knockout mice, subjecting them to isoproterenol, a synthetic nonselective agonist for β-ARs, at 5 or 15 mg/kg per day to induce different degrees of cardiac remodeling in vivo. Cardiac structure and function were assessed by echocardiography 24 hours after the last of seven consecutive daily injections of isoproterenol, and cardiac fibrosis was examined by Masson trichrome stain in morphology and by real-time polymerase chain reaction for the expression of fibrosis-related genes. The results showed that deletion of mPGES-1 had no significant effect on isoproterenol-induced cardiac dysfunction or hypertrophy. However, the cardiac fibrosis was dramatically attenuated in the mPGES-1 knockout mice after either low-dose or high-dose isoproterenol exposure. Furthermore, in vitro study revealed that overexpression of mPGES-1 in cultured cardiac fibroblasts increased isoproterenol-induced fibrosis, whereas knocking down mPGES-1 in cardiac myocytes decreased the fibrogenesis of fibroblasts. In conclusion, mPGES-1 deletion protects against isoproterenol-induced cardiac fibrosis in mice, and targeting mPGES-1 may represent a novel strategy to attenuate pathologic cardiac fibrosis, induced by β-AR agonists. SIGNIFICANCE STATEMENT: Inhibitors of microsomal prostaglandin E2 synthase-1 (mPGES-1) are being developed as alternative analgesics that are less likely to elicit cardiovascular hazards than cyclooxygenase-2 selective nonsteroidal anti-inflammatory drugs. We have demonstrated that deletion of mPGES-1 protects inflammatory vascular diseases and promotes post-myocardial infarction survival. The role of mPGES-1 in β-adrenergic receptor-induced cardiomyopathy is unknown. Here we illustrated that deletion of mPGES-1 alleviated isoproterenol-induced cardiac fibrosis without deteriorating cardiac dysfunction. These results illustrated that targeting mPGES-1 may represent an efficacious approach to the treatment of inflammatory cardiovascular diseases.
Collapse
Affiliation(s)
- Shuang Ji
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Rui Guo
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Jing Wang
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Lei Qian
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Min Liu
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Hu Xu
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Jiayang Zhang
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Youfei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Guangrui Yang
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| | - Lihong Chen
- Advanced Institute for Medical Sciences, Dalian Medical University, China (S.J., R.G., J.W., L.Q., M.L., H.X., J.Z., Y.G., L.C.) and School of Bioengineering, Dalian University of Technology, China (G.Y.)
| |
Collapse
|
33
|
Berberine hydrochloride inhibits inflammation and fibrosis after canalicular laceration repair in rabbits. Life Sci 2020; 261:118479. [PMID: 32966840 DOI: 10.1016/j.lfs.2020.118479] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023]
Abstract
AIMS This study was designed to investigate the molecular mechanisms underlying the anti-inflammatory and anti-fibrosis effects of Berberine hydrochloride (BBR) following canalicular laceration (CL) surgical repair. MAIN METHODS We used a rabbit CL model in this study. BBR and the control medicine were administered during and after the surgical operation. The degree of fibrosis in the canaliculi was evaluated using hematoxylin and eosin and Masson's trichrome staining 7 days after the operation. Inflammation inside the canaliculi was observed using a transcanalicular endoscope. Expression levels of inflammatory cell cytokines [tumor growth factor-β1 (TGF-β1), connective tissue growth factor (CTGF), intracellular adhesion molecule-I (ICAM-1), and interleukin-β1 (IL-1β)] were detected using immunohistochemistry. P38 and ERK1 phosphorylation and activation were determined using western blot analysis. KEY FINDINGS The degree of inflammation and fibrosis were less in the BBR groups compared to Surgery group. The anti-inflammatory and anti-fibrosis effects of BBR were concentration-dependent. The levels of TGF-β1, CTGF, ICAM-1, and IL-1β were significantly lower in the BBR groups compared to Surgery group. BBR reduced the phosphorylation of P38 compared to Surgery group. SIGNIFICANCE In conclusion, this study shows that BBR can reduce local fibrosis after CL surgical repair via its anti-inflammatory and anti-fibrosis effects.
Collapse
|
34
|
Zhao Y, Sun D, Chen Y, Zhan K, Meng Q, Zhang X, Zhu L, Yao X. Si-Miao-Yong-An Decoction attenuates isoprenaline-induced myocardial fibrosis in AMPK-driven Akt/mTOR and TGF-β/SMAD3 pathways. Biomed Pharmacother 2020; 130:110522. [PMID: 32736236 DOI: 10.1016/j.biopha.2020.110522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 12/30/2022] Open
Abstract
Myocardial fibrosis is well-known to be the aberrant deposition of extracellular matrix (ECM), which may cause cardiac dysfunction, morbidity, and death. Traditional Chinese medicine formula Si-Miao-Yong-An Decoction (SMYAD), which is used clinically in cardiovascular diseases has been recently reported to able to resist myocardial fibrosis. The anti-fibrosis effects of SMYAD have been evaluated; however, its intricate mechanisms remain to be clarified. Here, we found that SMYAD treatment reduced the fibrosis injury and collagen fiber deposition that could improve cardiac function in isoprenaline (ISO)-induced fibrosis rat models. Combined with our systematic RNA-seq data of SMYAD treatment, we demonstrated that the remarkable up-regulation or down-regulation of several genes were closely related to the functional enrichment of TGF-β and AMPK pathways that were involved in myocardial fibrosis. Accordingly, we further explored the molecular mechanisms of SMYAD were mainly caused by AMPK activation and thereby suppressing its downstream Akt/mTOR and TGF-β/SMAD3 pathways. Moreover, we showed that the ECM deposition and secretion process were attenuated, suggesting that the fibrosis pathological features are changed. Interestingly, we found the similar AMPK-driven pathways in NIH-3T3 mouse fibroblasts treated with ISO. Taken together, these results demonstrate that SMYAD may be a new candidate agent by regulating AMPK-driven Akt/mTOR and TGF-β/SMAD3 pathways for potential therapeutic implications of myocardial fibrosis.
Collapse
Affiliation(s)
- Yuqian Zhao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Dejuan Sun
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Yanmei Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Kaixuan Zhan
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Qu Meng
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Xue Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lingjuan Zhu
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang 110847, China.
| | - Xinsheng Yao
- School of Traditional Chinese Materia Medica, Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China; Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
35
|
Callegari S, Macchi E, Monaco R, Magnani L, Tafuni A, Croci S, Nicastro M, Garrapa V, Banchini A, Becchi G, Corradini E, Goldoni M, Rocchio F, Sala R, Benussi S, Ferrara D, Alfieri O, Corradi D. Clinicopathological Bird's-Eye View of Left Atrial Myocardial Fibrosis in 121 Patients With Persistent Atrial Fibrillation: Developing Architecture and Main Cellular Players. Circ Arrhythm Electrophysiol 2020; 13:e007588. [PMID: 32538131 DOI: 10.1161/circep.119.007588] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Scientific research on atrial fibrosis in atrial fibrillation (AF) has mainly focused on quantitative or molecular features. The purpose of this study was to perform a clinicoarchitectural/structural investigation of fibrosis to provide one key to understanding the electrophysiological/clinical aspects of AF. METHODS We characterized the fibrosis (amount, architecture, cellular components, and ultrastructure) in left atrial biopsies from 121 patients with persistent/long-lasting persistent AF (group 1; 59 males; 60±11 years; 91 mitral disease-related AF, 30 nonmitral disease-related AF) and from 39 patients in sinus rhythm with mitral valve regurgitation (group 2; 32 males; 59±12 years). Ten autopsy hearts served as controls. RESULTS Qualitatively, the fibrosis exhibited the same characteristics in all cases and displayed particular architectural scenarios (which we arbitrarily subdivided into 4 stages) ranging from isolated foci to confluent sclerotic areas. The percentage of fibrosis was larger and at a more advanced stage in group 1 versus group 2 and, within group 1, in patients with rheumatic disease versus nonrheumatic cases. In patients with AF with mitral disease and no rheumatic disease, the percentage of fibrosis and the fibrosis stages correlated with both left atrial volume index and AF duration. The fibrotic areas mainly consisted of type I collagen with only a minor cellular component (especially fibroblasts/myofibroblasts; average value range 69-150 cells/mm2, depending on the areas in AF biopsies). A few fibrocytes-circulating and bone marrow-derived mesenchymal cells-were also detectable. The fibrosis-entrapped cardiomyocytes showed sarcolemmal damage and connexin 43 redistribution/internalization. CONCLUSIONS Atrial fibrosis is an evolving and inhomogeneous histological/architectural change that progresses through different stages ranging from isolated foci to confluent sclerotic zones which-seemingly-constrain impulse conduction across restricted regions of electrotonically coupled cardiomyocytes. The fibrotic areas mainly consist of type I collagen extracellular matrix and, only to a lesser extent, mesenchymal cells.
Collapse
Affiliation(s)
- Sergio Callegari
- Center of Excellence for Toxicological Research (CERT) (S.C.), University of Parma, Italy
| | - Emilio Macchi
- Department of Chemistry, Life Sciences and Environmental Sustainability (E.M., L.M., V.G.), University of Parma, Italy
| | - Rodolfo Monaco
- Pathology Unit (R.M., A.T., G.B., E.C., D.C.), Department of Medicine and Surgery, University of Parma, Italy
| | - Luca Magnani
- Department of Chemistry, Life Sciences and Environmental Sustainability (E.M., L.M., V.G.), University of Parma, Italy
| | - Alessandro Tafuni
- Pathology Unit (R.M., A.T., G.B., E.C., D.C.), Department of Medicine and Surgery, University of Parma, Italy
| | - Stefania Croci
- Clinical Immunology, Allergy & Advanced Biotechnologies Unit, Azienda Unità, Sanitaria Locale-IRCCS, Reggio Emilia, Italy (S.C., M.N.)
| | - Maria Nicastro
- Clinical Immunology, Allergy & Advanced Biotechnologies Unit, Azienda Unità, Sanitaria Locale-IRCCS, Reggio Emilia, Italy (S.C., M.N.)
| | - Valentina Garrapa
- Department of Chemistry, Life Sciences and Environmental Sustainability (E.M., L.M., V.G.), University of Parma, Italy
| | - Antonio Banchini
- Forensic Medicine Unit (A.B.), Department of Medicine and Surgery, University of Parma, Italy
| | - Gabriella Becchi
- Pathology Unit (R.M., A.T., G.B., E.C., D.C.), Department of Medicine and Surgery, University of Parma, Italy
| | - Emilia Corradini
- Pathology Unit (R.M., A.T., G.B., E.C., D.C.), Department of Medicine and Surgery, University of Parma, Italy
| | - Matteo Goldoni
- Laboratory of Industrial Toxicology (M.G.), Department of Medicine and Surgery, University of Parma, Italy
| | - Francesca Rocchio
- International Centre for T1D, Paediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", Department of Biomedical & Clinical Science, Hospital "L. Sacco", University of Milan, Italy (F.R.)
| | - Roberto Sala
- General Pathology Unit (R.S.), Department of Medicine and Surgery, University of Parma, Italy
| | | | - David Ferrara
- Cardiothoracic Surgery Unit, Department of Cardiology, San Raffaele University Hospital, Milan, Italy (D.F., O.A.)
| | - Ottavio Alfieri
- Cardiothoracic Surgery Unit, Department of Cardiology, San Raffaele University Hospital, Milan, Italy (D.F., O.A.)
| | - Domenico Corradi
- Pathology Unit (R.M., A.T., G.B., E.C., D.C.), Department of Medicine and Surgery, University of Parma, Italy
| |
Collapse
|
36
|
Li Y, Feng L, Li G, An J, Zhang S, Li J, Liu J, Ren J, Yang L, Qi Z. Resveratrol prevents ISO-induced myocardial remodeling associated with regulating polarization of macrophages through VEGF-B/AMPK/NF-kB pathway. Int Immunopharmacol 2020; 84:106508. [PMID: 32339921 DOI: 10.1016/j.intimp.2020.106508] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 02/07/2023]
Abstract
Macrophage expansion and inflammatory responses are involved in induction of cardiac remodeling. Resveratrol has strong anti-inflammatory effects, however its effect on macrophage infiltration and polarization is unknown. This study aimed to investigate the anti-inflammatory effects of RSV on ISO-induced myocardial remodeling in mice and its regulatory role in macrophage polarization. BALB/c mice were orally administered with RSV (100 mg/kg) daily for one week, then were subcutaneously injected with ISO (50 mg/kg) daily for another week. ISO injections to mouse caused cardiac dysfunction evidenced by cardiac hypertrophy and cardiomyocyte fibrosis. Meanwhile, macrophage M1 polarization was found in ISO treated mice, which was evidenced by increased percentage of Ly6Clow macrophages in the heart, levels of M1 cytokines and expression of CD68, and decreased percentage of Ly6Chigh macrophage, levels of M2 cytokines and expression of CD206. All these changes in cardiac and macrophage M1 polarization were ameliorated when mice were pretreated with RSV. The effect of RSV on macrophage polarization was also tested in RAW264.7 cells. It was found that pre-treatment with RSV decreased the levels of M1 marker or proinflammatory cytokines, while increased the levels of M2 markers in ISO treated cells. In addition, it was found that RSV could upregulate the expression of VEGF-B and the activity of AMPK, while it downregulated the expression of phosphorylated NF-κB p65 both in RAW264.7 cells and in mice. Furthermore, pretreatment with VEGF-B siRNA greatly reversed changes in almost all above parameters evoked by RSV in RAW264.7 cells. Therefore, our findings suggest RSV has potential therapeutic effects in ISO-induced myocardial injury, which may be by inhibiting the M1 polarization of macrophages through VEGFB/AMPK/NF-кB pathway.
Collapse
Affiliation(s)
- Yafei Li
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Lifeng Feng
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Guangru Li
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jiale An
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Shengzheng Zhang
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jing Li
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jie Liu
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Jiling Ren
- Department of Pathogen Biology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
| | - Liang Yang
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Zhi Qi
- Department of Pharmacology, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
37
|
Parichatikanond W, Luangmonkong T, Mangmool S, Kurose H. Therapeutic Targets for the Treatment of Cardiac Fibrosis and Cancer: Focusing on TGF-β Signaling. Front Cardiovasc Med 2020; 7:34. [PMID: 32211422 PMCID: PMC7075814 DOI: 10.3389/fcvm.2020.00034] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a common mediator of cancer progression and fibrosis. Fibrosis can be a significant pathology in multiple organs, including the heart. In this review, we explain how inhibitors of TGF-β signaling can work as antifibrotic therapy. After cardiac injury, profibrotic mediators such as TGF-β, angiotensin II, and endothelin-1 simultaneously activate cardiac fibroblasts, resulting in fibroblast proliferation and migration, deposition of extracellular matrix proteins, and myofibroblast differentiation, which ultimately lead to the development of cardiac fibrosis. The consequences of fibrosis include a wide range of cardiac disorders, including contractile dysfunction, distortion of the cardiac structure, cardiac remodeling, and heart failure. Among various molecular contributors, TGF-β and its signaling pathways which play a major role in carcinogenesis are considered master fibrotic mediators. In fact, recently the inhibition of TGF-β signaling pathways using small molecule inhibitors, antibodies, and gene deletion has shown that the progression of several cancer types was suppressed. Therefore, inhibitors of TGF-β signaling are promising targets for the treatment of tissue fibrosis and cancers. In this review, we discuss the molecular mechanisms of TGF-β in the pathogenesis of cardiac fibrosis and cancer. We will review recent in vitro and in vivo evidence regarding antifibrotic and anticancer actions of TGF-β inhibitors. In addition, we also present available clinical data on therapy based on inhibiting TGF-β signaling for the treatment of cancers and cardiac fibrosis.
Collapse
Affiliation(s)
| | - Theerut Luangmonkong
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Ren Q, Lin P, Wang Q, Zhang B, Feng L. Chronic peripheral ghrelin injection exerts antifibrotic effects by increasing growth differentiation factor 15 in rat hearts with myocardial fibrosis induced by isoproterenol. Physiol Res 2019; 69:439-450. [PMID: 31852204 DOI: 10.33549/physiolres.934183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the anti-fibrotic effects of ghrelin in isoproterenol (ISO)-induced myocardial fibrosis and the underlying mechanism. Sprague-Dawley rats were randomized to control, ISO, and ISO + ghrelin groups. ISO (2 mg/kg per day, subcutaneous) or vehicle was administered once daily for 7 days, then ghrelin (100 microg/kg per day, subcutaneous) was administered once daily for the next 3 weeks. Ghrelin treatment greatly improved the cardiac function of ISO-treated rats. Ghrelin also decreased plasma brain natriuretic peptide level and ratios of heart weight to body weight and left ventricular weight to body weight. Ghrelin significantly reduced myocardial collagen area and hydroxyproline content, accompanied by decreased mRNA levels of collagen type I and III. Furthermore, ghrelin increased plasma level of growth differentiation factor 15 (GDF15) and GDF15 mRNA and protein levels in heart tissues, which were significantly decreased with ISO alone. The phosphorylation of Akt at Ser473 and GSK-3beta at Ser9 was decreased with ISO, and ghrelin significantly reversed the downregulation of p-Akt and p-GSK-3beta. Mediated by GDF15, ghrelin could attenuate ISO-induced myocardial fibrosis via Akt-GSK-3beta signaling.
Collapse
Affiliation(s)
- Q Ren
- Geriatric Department of the Third Hospital of Hangzhou, Hangzhou, China.
| | | | | | | | | |
Collapse
|
39
|
Dissection of heterocellular cross-talk in vascularized cardiac tissue mimetics. J Mol Cell Cardiol 2019; 138:269-282. [PMID: 31866374 DOI: 10.1016/j.yjmcc.2019.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 12/07/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023]
Abstract
Cellular specialization and interaction with other cell types in cardiac tissue is essential for the coordinated function of cell populations in the heart. The complex interplay between cardiomyocytes, endothelial cells and fibroblasts is necessary for adaptation but can also lead to pathophysiological remodeling. To understand this complex interplay, we developed 3D vascularized cardiac tissue mimetics (CTM) to study heterocellular cross-talk in hypertrophic, hypoxic and fibrogenic environments. This 3D platform responds to physiologic and pathologic stressors and mimics the microenvironment of diseased tissue. In combination with endothelial cell fluorescence reporters, these cardiac tissue mimetics can be used to precisely visualize and quantify cellular and functional responses upon stress stimulation. Utilizing this platform, we demonstrate that stimulation of α/β-adrenergic receptors with phenylephrine (PE) promotes cardiomyocyte hypertrophy, metabolic maturation and vascularization of CTMs. Increased vascularization was promoted by conditioned medium of PE-stimulated cardiomyocytes and blocked by inhibiting VEGF or upon β-adrenergic receptor antagonist treatment, demonstrating cardiomyocyte-endothelial cross-talk. Pathophysiological stressors such as severe hypoxia reduced angiogenic sprouting and increased cell death, while TGF β2 stimulation increased collagen deposition concomitant to endothelial-to-mesenchymal transition. In sum, we have developed a cardiac 3D culture system that reflects native cardiac tissue function, metabolism and morphology - and for the first time enables the tracking and analysis of cardiac vascularization dynamics in physiology and pathology.
Collapse
|
40
|
Che Y, Shen DF, Wang ZP, Jin YG, Wu QQ, Wang SS, Yuan Y. Protective role of berberine in isoprenaline-induced cardiac fibrosis in rats. BMC Cardiovasc Disord 2019; 19:219. [PMID: 31615408 PMCID: PMC6792193 DOI: 10.1186/s12872-019-1198-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cardiac fibrosis is a crucial aspect of cardiac remodeling that can severely affect cardiac function. Cardiac fibroblasts surely influence this process. Besides, macrophage plays an essential role in cardiac remodeling after heart injury. However, whether macrophage influence fibroblasts remain a question worth exploring. This study aimed to define the role of berberine (BBR) on isoprenaline (ISO)-induced cardiac fibrosis in an in vivo rat model and try to figure out the mechanism in vitro study. METHODS The Sprague-Dawley rats were divided into five groups: control group, ISO-treated group, and ISO + BBR (10 mg/kg/d, 30 mg/kg/d, and 60 mg/kg/d orally)-pretreatment groups. Fibrosis was induced by ISO administration (5 mg/kg/d subcutaneously) for 10 days. One day after the last injection, all of the rats were sacrificed. Using picrosirius red (PSR) straining, immunohistochemistry, immunofluorescence, flow cytometry, western blot, RT-qPCR and cell co-culture, we explored the influence of pretreatment by BBR on ISO-induced cardiac fibrosis. RESULTS Our results showed that BBR pretreatment greatly limited ISO-induced cardiac fibrosis and dysfunction. Moreover, BBR administration reduced macrophage infiltration into the myocardium of ISO-treated rats and inhibited transforming growth factor (TGF)-β1/smads signaling pathways in comparison to that seen in the ISO group. Besides, in vitro study showed that BBR-pretreatment reduced ISO-induced TGF-β1 mRNA expression in macrophages and ISO stimulation of macrophages significantly increased the expression of fibrotic markers in fibroblasts, but BBR-pretreatment blocked this increase. CONCLUSION Our results showed that BBR may have a protective role to cardiac injury via reducing of macrophage infiltration and forbidding fibroblasts transdifferent into an 'activated' secretory phenotype, myofibroblasts.
Collapse
Affiliation(s)
- Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Di-Fei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhao-Peng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ya-Ge Jin
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Sha-Sha Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.
| |
Collapse
|
41
|
2,5-Dimethylcelecoxib prevents isoprenaline-induced cardiomyocyte hypertrophy and cardiac fibroblast activation by inhibiting Akt-mediated GSK-3 phosphorylation. Biochem Pharmacol 2019; 168:82-90. [DOI: 10.1016/j.bcp.2019.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/18/2019] [Indexed: 11/22/2022]
|
42
|
Psarras S, Beis D, Nikouli S, Tsikitis M, Capetanaki Y. Three in a Box: Understanding Cardiomyocyte, Fibroblast, and Innate Immune Cell Interactions to Orchestrate Cardiac Repair Processes. Front Cardiovasc Med 2019; 6:32. [PMID: 31001541 PMCID: PMC6454035 DOI: 10.3389/fcvm.2019.00032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Following an insult by both intrinsic and extrinsic pathways, complex cellular, and molecular interactions determine a successful recovery or inadequate repair of damaged tissue. The efficiency of this process is particularly important in the heart, an organ characterized by very limited regenerative and repair capacity in higher adult vertebrates. Cardiac insult is characteristically associated with fibrosis and heart failure, as a result of cardiomyocyte death, myocardial degeneration, and adverse remodeling. Recent evidence implies that resident non-cardiomyocytes, fibroblasts but also macrophages -pillars of the innate immunity- form part of the inflammatory response and decisively affect the repair process following a cardiac insult. Multiple studies in model organisms (mouse, zebrafish) of various developmental stages (adult and neonatal) combined with genetically engineered cell plasticity and differentiation intervention protocols -mainly targeting cardiac fibroblasts or progenitor cells-reveal particular roles of resident and recruited innate immune cells and their secretome in the coordination of cardiac repair. The interplay of innate immune cells with cardiac fibroblasts and cardiomyocytes is emerging as a crucial platform to help our understanding and, importantly, to allow the development of effective interventions sufficient to minimize cardiac damage and dysfunction after injury.
Collapse
Affiliation(s)
- Stelios Psarras
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitris Beis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Sofia Nikouli
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Mary Tsikitis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Yassemi Capetanaki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| |
Collapse
|
43
|
Wang Y, Liu C, He X, Li Y, Zou Y. Effects of metoprolol, methyldopa, and nifedipine on endothelial progenitor cells in patients with gestational hypertension and preeclampsia. Clin Exp Pharmacol Physiol 2019; 46:302-312. [PMID: 30614608 DOI: 10.1111/1440-1681.13063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 12/25/2018] [Accepted: 01/04/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Yangui Wang
- Department of General Practice Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University Changsha China
| | - Cuizhong Liu
- Department of General Practice Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University Changsha China
| | - Xin He
- Department of Obstetrics and GynaecologyHunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University Changsha China
| | - Yingzhao Li
- Department of General Practice Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University Changsha China
| | - Yan Zou
- Department of General Practice Hunan Provincial People’s Hospital/The First Affiliated Hospital of Hunan Normal University Changsha China
| |
Collapse
|
44
|
Dong Y, Bai Y, Zhang S, Xu W, Xu J, Zhou Y, Zhang S, Wu Y, Yu H, Cao N, Liu H, Wang W. Cyclic peptide RD808 reduces myocardial injury induced by β 1-adrenoreceptor autoantibodies. Heart Vessels 2018; 34:1040-1051. [PMID: 30554265 DOI: 10.1007/s00380-018-1321-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Abstract
Autoantibodies against the second extracellular loop of β1-adrenergic receptor (β1-AA) have been shown to be involved in the development of cardiovascular diseases. Recently, there has been considerable interest in strategies to remove these autoantibodies, particularly therapeutic peptides to neutralize β1-AA. Researchers are investigating the roles of cyclic peptides that mimic the structure of relevant epitopes on the β1-AR-ECII in a number of immune-mediated diseases. Here, we used a cyclic peptide, namely, RD808, to neutralize β1-AA, consequently alleviating β1-AA-induced myocardial injury. We investigated the protective effects of RD808 on the myocardium both in vitro and in vivo. RD808 was found to increase the survival rate of cardiomyocytes; furthermore, it decreased myocardial necrosis and apoptosis and improved the cardiac function of BalB/c mice in a β1-AA transfer model. In vitro and in vivo experiments showed that myocardial autophagy was increased in the presence of RD808, which might contribute to its cardioprotective effects. Our findings indicate that RD808 reduced myocardial injury induced by β1-AA.
Collapse
Affiliation(s)
- Yu Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Yan Bai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Shangyue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Wenli Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Jiahui Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Yi Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Suli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Ye Wu
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Haicun Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Ning Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China. .,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China.
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China. .,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China.
| |
Collapse
|
45
|
Mangmool S, Parichatikanond W, Kurose H. Therapeutic Targets for Treatment of Heart Failure: Focus on GRKs and β-Arrestins Affecting βAR Signaling. Front Pharmacol 2018; 9:1336. [PMID: 30538631 PMCID: PMC6277550 DOI: 10.3389/fphar.2018.01336] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 10/30/2018] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) is a heart disease that is classified into two main types: HF with reduced ejection fraction (HFrEF) and HF with preserved ejection fraction (HFpEF). Both types of HF lead to significant risk of mortality and morbidity. Pharmacological treatment with β-adrenergic receptor (βAR) antagonists (also called β-blockers) has been shown to reduce the overall hospitalization and mortality rates and improve the clinical outcomes in HF patients with HFrEF but not HFpEF. Although, the survival rate of patients suffering from HF continues to drop, the management of HF still faces several limitations and discrepancies highlighting the need to develop new treatment strategies. Overstimulation of the sympathetic nervous system is an adaptive neurohormonal response to acute myocardial injury and heart damage, whereas prolonged exposure to catecholamines causes defects in βAR regulation, including a reduction in the amount of βARs and an increase in βAR desensitization due to the upregulation of G protein-coupled receptor kinases (GRKs) in the heart, contributing in turn to the progression of HF. Several studies show that myocardial GRK2 activity and expression are raised in the failing heart. Furthermore, β-arrestins play a pivotal role in βAR desensitization and, interestingly, can mediate their own signal transduction without any G protein-dependent pathway involved. In this review, we provide new insight into the role of GRKs and β-arrestins on how they affect βAR signaling regarding the molecular and cellular pathophysiology of HF. Additionally, we discuss the therapeutic potential of targeting GRKs and β-arrestins for the treatment of HF.
Collapse
Affiliation(s)
- Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Hitoshi Kurose
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
46
|
Anti-fibrotic impact of Carvedilol in a CCl-4 model of liver fibrosis via serum microRNA-200a/SMAD7 enhancement to bridle TGF-β1/EMT track. Sci Rep 2018; 8:14327. [PMID: 30254303 PMCID: PMC6156520 DOI: 10.1038/s41598-018-32309-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 08/30/2018] [Indexed: 12/15/2022] Open
Abstract
Circulating microRNAs (miRNAs) play a role in modulating the prevalence of fibrosis and have been a target of the cardiac anti-fibrotic effect of Carvedilol. However, the impact of miRNAs on the hepatoprotective effect of this non-selective β-blocker has not been yet elucidated. Hence, the current goal is to evaluate the potential role of circulating miR-200a in the hepatic anti-fibrotic pathway of Carvedilol. Male Wistar rats were randomized into normal, CCl4 (2 ml/kg, i.p, twice weekly for 8 weeks), and CCl4 + Carvedilol (10 mg/kg, p.o, daily). Carvedilol over-expressed the circulating miR-200a to modulate epithelial mesenchymal transition (EMT) markers (vimentin, E-Cadherin). In turn, Carvedilol increased SMAD7 gene expression and protein content to attenuate the pro-fibrogenic marker transforming growth factor β1 (TGF-β1) and the inflammatory markers (p-38 MAPK and p-S536-NF-κB p65). The anti-fibrotic potential was reflected on the decreased expression of the mesenchymal product and EMT marker α-SMA, besides the improved histopathological examination, and the fibrosis scores/collagen quantification to enhance liver functions (AST, ALT, ALP, and AST/platelet ratio index; APRI). In conclusion, circulating miR-200a/SMAD7/TGF-β1/EMT/MAPK axis is crucial in the hepatic anti-fibrotic mechanism of Carvedilol.
Collapse
|
47
|
Frangogiannis NG. Cardiac fibrosis: Cell biological mechanisms, molecular pathways and therapeutic opportunities. Mol Aspects Med 2018; 65:70-99. [PMID: 30056242 DOI: 10.1016/j.mam.2018.07.001] [Citation(s) in RCA: 586] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Cardiac fibrosis is a common pathophysiologic companion of most myocardial diseases, and is associated with systolic and diastolic dysfunction, arrhythmogenesis, and adverse outcome. Because the adult mammalian heart has negligible regenerative capacity, death of a large number of cardiomyocytes results in reparative fibrosis, a process that is critical for preservation of the structural integrity of the infarcted ventricle. On the other hand, pathophysiologic stimuli, such as pressure overload, volume overload, metabolic dysfunction, and aging may cause interstitial and perivascular fibrosis in the absence of infarction. Activated myofibroblasts are the main effector cells in cardiac fibrosis; their expansion following myocardial injury is primarily driven through activation of resident interstitial cell populations. Several other cell types, including cardiomyocytes, endothelial cells, pericytes, macrophages, lymphocytes and mast cells may contribute to the fibrotic process, by producing proteases that participate in matrix metabolism, by secreting fibrogenic mediators and matricellular proteins, or by exerting contact-dependent actions on fibroblast phenotype. The mechanisms of induction of fibrogenic signals are dependent on the type of primary myocardial injury. Activation of neurohumoral pathways stimulates fibroblasts both directly, and through effects on immune cell populations. Cytokines and growth factors, such as Tumor Necrosis Factor-α, Interleukin (IL)-1, IL-10, chemokines, members of the Transforming Growth Factor-β family, IL-11, and Platelet-Derived Growth Factors are secreted in the cardiac interstitium and play distinct roles in activating specific aspects of the fibrotic response. Secreted fibrogenic mediators and matricellular proteins bind to cell surface receptors in fibroblasts, such as cytokine receptors, integrins, syndecans and CD44, and transduce intracellular signaling cascades that regulate genes involved in synthesis, processing and metabolism of the extracellular matrix. Endogenous pathways involved in negative regulation of fibrosis are critical for cardiac repair and may protect the myocardium from excessive fibrogenic responses. Due to the reparative nature of many forms of cardiac fibrosis, targeting fibrotic remodeling following myocardial injury poses major challenges. Development of effective therapies will require careful dissection of the cell biological mechanisms, study of the functional consequences of fibrotic changes on the myocardium, and identification of heart failure patient subsets with overactive fibrotic responses.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B, Bronx, NY, 10461, USA.
| |
Collapse
|
48
|
Castaldo C, Chimenti I. Cardiac Progenitor Cells: The Matrix Has You. Stem Cells Transl Med 2018; 7:506-510. [PMID: 29688622 PMCID: PMC6052608 DOI: 10.1002/sctm.18-0023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/27/2018] [Indexed: 12/14/2022] Open
Abstract
Components of the cardiac extracellular matrix (ECM) are synthesized by residing cells and are continuously remodeled by them. Conversely, residing cells (including primitive cells) receive constant biochemical and mechanical signals from the ECM that modulate their biology. The pathological progression of heart failure affects all residing cells, inevitably causing profound changes in ECM composition and architecture that, in turn, impact on cell phenotypes. Any regenerative medicine approach must aim at sustaining microenvironment conditions that favor cardiogenic commitment of therapeutic cells and minimize pro‐fibrotic signals, while conversely boosting the capacity of therapeutic cells to counteract adverse remodeling of the ECM. In this Perspective article, we discuss multiple issues about the features of an optimal scaffold for supporting cardiac tissue engineering strategies with cardiac progenitor cells, and, conversely, about the possible antifibrotic mechanisms induced by cell therapy. Stem Cells Translational Medicine2018;7:506–510
Collapse
Affiliation(s)
- Clotilde Castaldo
- Department of Public Health, University of Naples "Federico II", Naples, Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, "La Sapienza" University of Rome, Latina, Italy
| |
Collapse
|
49
|
Phosri S, Bunrukchai K, Parichatikanond W, Sato VH, Mangmool S. Epac is required for exogenous and endogenous stimulation of adenosine A 2B receptor for inhibition of angiotensin II-induced collagen synthesis and myofibroblast differentiation. Purinergic Signal 2018; 14:141-156. [PMID: 29322373 DOI: 10.1007/s11302-017-9600-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/25/2017] [Indexed: 12/31/2022] Open
Abstract
Angiotensin II (Ang II) plays an important role on the pathogenesis of cardiac fibrosis. Prolong and overstimulation of angiotensin II type 1 receptor with Ang II-induced collagen synthesis and myofibroblast differentiation in cardiac fibroblasts, leading to cardiac fibrosis. Although adenosine and its analogues are known to have cardioprotective effects, the mechanistic by which adenosine A2 receptors (A2Rs) inhibit Ang II-induced cardiac fibrosis is not clearly understood. In the present study, we examined the effects of exogenous adenosine and endogenous adenosine on Ang II-induced collagen and myofibroblast differentiation determined by α-smooth muscle action (α-SMA) overexpression and their underlying signal transduction. Elevation of endogenous adenosine levels resulted in the inhibition of Ang II-induced collagen type I and III and α-SMA synthesis in cardiac fibroblasts. Moreover, treatment with exogenous adenosine which selectively stimulated A2Rs also suppressed Ang II-induced collagen synthesis and α-SMA production. These antifibrotic effects of both endogenous and exogenous adenosines are mediated through the A2B receptor (A2BR) subtype. Stimulation of A2BR exhibited antifibrotic effects via the cAMP-dependent and Epac-dependent pathways. Our results provide new mechanistic insights regarding the role for cAMP and Epac on A2BR-mediated antifibrotic effects. Thus, A2BR is one of the potential therapeutic targets against cardiac fibrosis.
Collapse
Affiliation(s)
- Sarawuth Phosri
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Kwanchai Bunrukchai
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | | | - Vilasinee H Sato
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand
| | - Supachoke Mangmool
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|