1
|
Fu J, Liu H, Liang Y, Shi Y, Gao X, Chen P, Yu D, Wang Y, Lu F, Liu S. Study on the mechanism of Huangqi Chifeng decoction regulating ferroptosis inhibiting smooth muscle cells derived foam cell formation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 344:119507. [PMID: 39978445 DOI: 10.1016/j.jep.2025.119507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/22/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese medicine, specifically Huangqi Chifeng Decoction (HQCF), is recognized for its efficacy in treating atherosclerosis (AS), a common cardiovascular disease. Despite its established benefits in addressing Qi deficiency, blood stasis, and collateral obstruction, the precise mechanism through which HQCF affects AS remains unclear. AIM OF THE STUDY This study investigated the potential of HQCF to mitigate AS by suppressing smooth muscle cell (SMC) foam formation through the ferroptosis pathway. MATERIALS AND METHODS An AS model was established using ApoE-/- mice fed a high-fat diet (HFD), and the role of HQCF in regulating ferroptosis in AS was examined. Using a single-cell proteomics analysis strategy, we identified the primary targets of HQCF in SMCs. Additionally, an oxidized low-density lipoprotein (ox-LDL)-treated SMC-derived foam cell model was established. The effects HQCF on SMC ferroptosis were analyzed, and ox-LDL-induced SMCs were pretreated with small interfering RNA (siRNA) and overexpressing carrier plasmids (pcDNA) to identify potential therapeutic targets, for specifically thioredoxin (TXN). RESULTS HQCF the pathological state of the aorta in ApoE-/- mice, regulated lipid levels, improved antioxidant capacity, modulated the phenotypic transformation of SMCs, and maintained the dynamic balance of extracellular matrix degradation and remodeling. Additionally, HQCF may inhibit ferroptosis via positive regulation of the GPX4/xCT signaling pathway. Single-cell proteomics revealed 36 common differentially expressed proteins (DEPs), suggesting that HQCF's treatment of AS may be associated with the regulation of cellular function and redox homeostasis. The abnormal expression of TXN in SMCs may be related to the phenotypic transition induced by AS. HQCF was also found to ameliorate oxidative stress and mitochondrial dysfunction during SMC foaming. Moreover, ferroptosis was involved in ox-LDL-induced foam cell formation, and HQCF alleviated these pathologies by inhibiting ferroptosis. The protective effect of HQCF on SMCs was enhanced by TXN overexpression but partially reversed by TXN knockdown, further indicating that HQCF's regulation of SMC function and inhibition of ferroptosis is, at least in part, mediated by TXN. CONCLUSION These findings suggest that HQCF protects SMCs from ferroptosis by regulating the TXN/xCT/GPX4 pathway, ameliorating the aortic pathological state, alleviating oxidative stress, and maintaining mitochondrial homeostasis in mice.
Collapse
MESH Headings
- Animals
- Ferroptosis/drug effects
- Drugs, Chinese Herbal/pharmacology
- Foam Cells/drug effects
- Foam Cells/metabolism
- Foam Cells/pathology
- Atherosclerosis/drug therapy
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Male
- Mice
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Mice, Inbred C57BL
- Diet, High-Fat
- Lipoproteins, LDL
- Thioredoxins/metabolism
- Thioredoxins/genetics
- Disease Models, Animal
- Mice, Knockout, ApoE
- Mice, Knockout
Collapse
Affiliation(s)
- Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China; Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hongyu Liu
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yuqin Liang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yunhe Shi
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Xin Gao
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China.
| |
Collapse
|
2
|
Jin X, Zhang H, Xie X, Zhang M, Wang R, Liu H, Wang X, Wang J, Li D, Li Y, Xue W, Li J, He J, Liu Y, Yao J. From Traditional Efficacy to Drug Design: A Review of Astragali Radix. Pharmaceuticals (Basel) 2025; 18:413. [PMID: 40143189 PMCID: PMC11945149 DOI: 10.3390/ph18030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Astragali Radix (AR), a traditional Chinese herbal medicine, is derived from the dried roots of Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao (A. membranaceus var. mongholicus, AMM) or Astragalus membranaceus (Fisch.) Bge (A. membranaceus, AM). According to traditional Chinese medicine (TCM) theory, AR is believed to tonify qi, elevate yang, consolidate the body's surface to reduce sweating, promote diuresis and reduce swelling, generate body fluids, and nourish the blood. It has been widely used to treat general weakness and chronic illnesses and to improve overall vitality. Extensive research has identified various medicinal properties of AR, including anti-tumor, antioxidant, cardiovascular-protective, immunomodulatory, anti-inflammatory, anti-diabetic, and neuroprotective effects. With advancements in technology, methods such as computer-aided drug design (CADD) and artificial intelligence (AI) are increasingly being applied to the development of TCM. This review summarizes the progress of research on AR over the past decades, providing a comprehensive overview of its traditional efficacy, botanical characteristics, drug design and distribution, chemical constituents, and phytochemistry. This review aims to enhance researchers' understanding of AR and its pharmaceutical potential, thereby facilitating further development and utilization.
Collapse
Affiliation(s)
- Xiaojie Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Huijuan Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Xiaorong Xie
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Min Zhang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Ruifeng Wang
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Hao Liu
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Xinyu Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Jiao Wang
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Dangui Li
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
| | - Yaling Li
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Weiwei Xue
- Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 404100, China;
| | - Jintian Li
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Jianxin He
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- School of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China
| | - Yongqi Liu
- Provincial Key Laboratory of Molecular Medicine and Prevention Research of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China; (R.W.); (Y.L.); (J.H.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| | - Juan Yao
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730000, China; (X.J.); (H.Z.); (X.X.); (M.Z.); (X.W.); (J.W.)
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Traditional Chinese Medicine, Lanzhou 730000, China;
| |
Collapse
|
3
|
Pan J, Wang J, Lei Z, Wang H, Zeng N, Zou J, Zhang X, Sun J, Guo D, Luan F, Shi Y. Therapeutic Potential of Chinese Herbal Medicine and Underlying Mechanism for the Treatment of Myocardial Infarction. Phytother Res 2025; 39:189-232. [PMID: 39523856 DOI: 10.1002/ptr.8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction (MI) is a prevalent disease with high mortality rates worldwide. The course of MI is intricate and variable, necessitating personalized treatment strategies based on different mechanisms. However, variety of postoperative complications and rejections, such as heart failure, arrhythmias, cardiac rupture, and left ventricular thrombus, contribute to a poor prognosis. Despite the inclusion of antiplatelet agents and statins in the conventional treatment regimen, their clinical applicability is constrained by potential adverse effects and limited efficacy. Additionally, the mechanisms leading to MI are complex and diverse. Therefore, the development of novel compounds for MI treatment. The use of traditional Chinese medicine (TCM) in the prevention and treatment of cardiovascular diseases, including MI, is grounded in its profound historical background, comprehensive theoretical system, and accumulated knowledge. An increasing number of contemporary evidence-based medical studies have demonstrated that TCM plays a significant role in alleviating symptoms and improving the quality of life for MI patients. Chinese herbal formulations and active ingredients can intervene in the pathological process of MI through key factors such as inflammation, oxidative stress, apoptosis, ferroptosis, pyroptosis, myocardial fibrosis, angiogenesis, and autophagy. This article critically reviews existing herbal formulations from an evidence-based medicine perspective, evaluating their research status and potential clinical applications. Additionally, it explores recent advancements in the use of herbal medicines and their components for the prevention and treatment of MI, offering detailed insights into their mechanisms of action.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jinhui Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Ziwen Lei
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - He Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
4
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
5
|
Guo Y, Wang J, Hua Y, Jiang M, Xu W, Shi Y, Yang J, Wan H, Yang R. Network pharmacology and in vitro experimental verification to reveal the mechanism of Astragaloside IV against kidney ischemia-reperfusion injury. Heliyon 2023; 9:e21711. [PMID: 38027853 PMCID: PMC10660051 DOI: 10.1016/j.heliyon.2023.e21711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Ischemic acute kidney injury (AKI) is a prevalent disorder among hospitalized patients worldwide. Astragaloside IV (AS-IV) has been shown to protect against ischemic AKI. However, the specific effects and mechanisms of AS-IV on alleviating kidney ischemia-reperfusion (I/R) injury remain unclear. The objective of this research was to elucidate the regulatory targets and mechanisms through which AS-IV protects kidney I/R injury. A combination of network pharmacology, molecular docking, molecular dynamics (MD) simulation, pharmacodynamic study and Western blot were employed to explore the underlying mechanisms. Network pharmacology revealed that ferroptosis was a potential mechanism of AS-IV against kidney I/R injury. Molecular docking and MD simulations demonstrated strong binding affinity between the GPX4/SLC7A11 and AS-IV. The experimental verification demonstrated that AS-IV improved cell proliferation, decreased the level of ROS and Fe2+, and increased the expressions of GPX4 and SLC7A11 as same as Ferrostatin-1 in OGD/R-injured HUVECs. In conclusion, AS-IV had a significant inhibition on ferroptosis in kidney I/R injury, providing a new perspective for drug development on kidney I/R injury. Definitely, further exploration in vivo is necessary to fully understand whether AS-IV alleviates kidney I/R injury through inhibiting endothelial ferroptosis.
Collapse
Affiliation(s)
- Yan Guo
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, 310053, China
| | - Jinfu Wang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yanjie Hua
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Mengya Jiang
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, 310053, China
| | - Wanyue Xu
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, 310053, China
| | - Yanpeng Shi
- Linping Hospital of Integrated Traditional Chinese and Western Medicine, Hangzhou, Zhejiang, 310053, China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Ruchun Yang
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Zhejiang Province, 310053, China
| |
Collapse
|
6
|
Yang C, Pan Q, Ji K, Tian Z, Zhou H, Li S, Luo C, Li J. Review on the protective mechanism of astragaloside IV against cardiovascular diseases. Front Pharmacol 2023; 14:1187910. [PMID: 37251311 PMCID: PMC10213926 DOI: 10.3389/fphar.2023.1187910] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cardiovascular disease is a global health problem. Astragaloside IV (AS-IV) is a saponin compound extracted from the roots of the Chinese herb Astragalus. Over the past few decades, AS-IV has been shown to possess various pharmacological properties. It can protect the myocardium through antioxidative stress, anti-inflammatory effects, regulation of calcium homeostasis, improvement of myocardial energy metabolism, anti-apoptosis, anti-cardiomyocyte hypertrophy, anti-myocardial fibrosis, regulation of myocardial autophagy, and improvement of myocardial microcirculation. AS-IV exerts protective effects on blood vessels. For example, it can protect vascular endothelial cells through antioxidative stress and anti-inflammatory pathways, relax blood vessels, stabilize atherosclerotic plaques, and inhibit the proliferation and migration of vascular smooth muscle cells. Thus, the bioavailability of AS-IV is low. Toxicology indicates that AS-IV is safe, but should be used cautiously in pregnant women. In this paper, we review the mechanisms of AS-IV prevention and treatment of cardiovascular diseases in recent years to provide a reference for future research and drug development.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhuang Tian
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Hongyuan Zhou
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Chuanchao Luo
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Wang LT, Huang H, Chang YH, Wang YQ, Wang JD, Cai ZH, Efferth T, Fu YJ. Biflavonoids from Ginkgo biloba leaves as a novel anti-atherosclerotic candidate: Inhibition potency and mechanistic analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154053. [PMID: 35567993 DOI: 10.1016/j.phymed.2022.154053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 02/14/2022] [Accepted: 03/13/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Ginkgo biloba L. is one of the oldest trees on earth, and its leaves have been used since ages as herbal medicine to treat cerebrovascular disorders. It is worth noting that in addition to the widely concerned flavonoids and terpenoids, it also contains various thus far neglected biflavonoids. In fact, biflavonoids are flavonoids consisting of apigenin or its derivatives as monomeric scaffold, and are linked via C-C or C-O-C bond. PURPOSE Based on the structural similarity of flavonoids, we hypothesized that biflavonoids may play a potential role in the treatment of cerebrovascular diseases. Here, we describe the effectiveness and underlying mechanisms for prevention and treatment of atherosclerosis (AS) by biflavonoids. STUDY DESIGN AND METHODS Four main biflavonoids in Ginkgo biloba leaves were screened by oleic acid-induced lipid production in HepG2 cells. The non-covalent effects of biflavonoids on the potential targets of atherosclerosis were screened by reverse targeting and molecular dynamics simulation. The interactions between biflavonoids and potential targets were evaluated by an exogenous cell model, which verified the consistency of the simulation results. CONCLUSION Among all four biflavonoids, ginkgetin significantly inhibited oleic acid-induced lipid production in HepG2 cells and reduced total cholesterol and triglyceride levels. The interaction of ginkgetin with CDK2 through π-alkyl and hydrogen bonds increased the binding of molecules and proteins. Ginkgetin arrested the cells in the G1-S phase, which significantly inhibited abnormal cell growth which closely related to the occurrence and development of atherosclerosis. Biflavonoids could be a promising natural medicine for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Li-Tao Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China
| | - Han Huang
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yuan-Hang Chang
- Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yan-Qiu Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China
| | - Jian-Dong Wang
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China
| | - Zi-Hui Cai
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Mainz 55128, Germany
| | - Yu-Jie Fu
- The College of Forestry, Beijing Forestry University, Beijing 100083, PR China; The Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 100083, Beijing, PR China.
| |
Collapse
|
8
|
Tian H, Wang T, Zhang Y, Pan T, Yao S, Yu H, Ma K, Wang S. Astragaloside IV protects against C/EBP homologous protein-mediated apoptosis in oxidized low-density lipoprotein-treated macrophages by promoting autophagy. Eur J Pharmacol 2022; 923:174912. [PMID: 35339476 DOI: 10.1016/j.ejphar.2022.174912] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/19/2022] [Accepted: 03/19/2022] [Indexed: 11/03/2022]
Abstract
Astragaloside Ⅳ (AS-Ⅳ) is one of the main active components extracted from Astragalus membranaceus that exerts an antiatherosclerotic effect. Our study explored the underlying anti-apoptotic effects and the mechanisms of action of AS-Ⅳ in oxidized low-density lipoprotein (oxLDL)-stimulated macrophages and in vulnerable plaques. The results showed that AS-Ⅳ lowered the oxLDL-induced lipid content and reversed the oxLDL-induced reduction in cell viability and elevation in lactate dehydrogenase (LDH) leakage and apoptosis in RAW264.7 macrophages, similar to the effects of 4-phenylbutyric acid (PBA, an ER stress inhibitor). In addition, consistent with the effect exerted by PBA, AS-Ⅳ inhibited oxLDL-triggered ER stress activation by decreasing the level of inositol-requiring enzyme1 phosphorylation and transcription factor 6 nuclear translocation and upregulating the protein and mRNA expression of glucose-regulated protein 78 (GPR78) and C/EBP homologous protein (CHOP). As expected, autophagy activation was induced by AS-IV, evidenced by increased expression of microtubule-associated protein 1 light chain 3-Ⅱ (LC3-Ⅱ), autophagy-related gene 5, and beclin-1 in macrophages. Furthermore, after pretreatment with 3-methyladenine and beclin-1 small interfering RNA, the inhibitory role played by AS-Ⅳ in oxLDL-induced ER stress-CHOP-mediated macrophage apoptosis was weakened, while its inhibitory effect was further enhanced by rapamycin pretreatment. Moreover, administration of AS-Ⅳ or rapamycin to Apoe-/- mice upregulated LC3-Ⅱ expression and collagen content but decreased CHOP expression, macrophage apoptosis, and lipid areas. Overall, by promoting autophagy, AS-Ⅳ effectively protects macrophages from oxLDL-induced apoptosis mediated by ER stress-CHOP, which may reinforce the stability of atherosclerotic plaques.
Collapse
Affiliation(s)
- Hua Tian
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China; Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China.
| | - Tong Wang
- College of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Yumei Zhang
- Department of Follow-up Visit, Binzhou People's Hospital Affiliated to Shandong First Medical University & Shandong Academy of Medical Sciences, Binzhou, 256610, Shandong, China
| | - Tianqi Pan
- College of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Shutong Yao
- College of Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, Shandong, China
| | - Huayun Yu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Ke Ma
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, Shandong, China.
| |
Collapse
|
9
|
Sheng S, Xu J, Liang Q, Hong L, Zhang L. Astragaloside IV Inhibits Bleomycin-Induced Ferroptosis in Human Umbilical Vein Endothelial Cells by Mediating LPC. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6241242. [PMID: 34760046 PMCID: PMC8575634 DOI: 10.1155/2021/6241242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/27/2021] [Accepted: 10/12/2021] [Indexed: 01/13/2023]
Abstract
Ferroptosis, as an iron-dependent programmed cell death pathway, can induce a variety of cardiovascular diseases. Astragaloside IV (AS-IV), which is purified from Astragalus membranaceus, can protect endothelial function and promote vascular regeneration. However, the role played by AS-IV in ferroptosis remains unknown. In this study, the lipid metabolomics in HUVECs treated with/without bleomycin and/or AS-IV were explored using LC/MS. The most differential metabolite between groups was further identified via GO and pathway enrichment analyses. The effects of lysophosphatidylcholine (LPC), AS-IV, and FIN56 on cell viability were explored using the CCK-8 assay, their effects on cell senescence were examined by β-galactosidase staining, and their effects on ferroptosis were detected by a flow cytometric analysis of lipid ROS levels, transmission electron microscopy, and an assay for cellular iron levels. The related mechanisms were investigated by real-time PCR and Western blot assays. Our results showed that LPC, as the most differential metabolite, inhibited cell viability but promoted cell apoptosis and senescence as its concentration increased. Also, the decreased cell activity, increased iron ion and lipid ROS levels, and the enhanced cell senescence induced by LPC treatment were all significantly reversed by AS-IV but further enhanced by FIN56 treatment. The changes in mitochondrial morphology caused by the LPC treatment were significantly alleviated by the AS-IV treatment, while treatment with FIN56 reversed those phenomena. Moreover, AS-IV partially upregulated the levels of SLC7A11 and GPX4 expression which were reduced by LPC. However, those changes were prevented by FIN56 treatment. In conclusion, our data suggested that AS-IV could serve as a novel drug for treating ferroptosis-related diseases.
Collapse
Affiliation(s)
- Shuai Sheng
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jialin Xu
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qingyang Liang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Hong
- Department of Cardiology, Long Gang Central Hospital of Shenzhen, Shenzhen, China
| | - Li Zhang
- Department of Cardiology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
10
|
Zhao C, Wang W, Yan K, Sun H, Han J, Hu Y. The therapeutic effect and mechanism of Qishen Yiqi dripping pills on cardiovascular and cerebrovascular diseases and diabetic complications. Curr Mol Pharmacol 2021; 15:547-556. [PMID: 34382512 DOI: 10.2174/1874467214666210811153610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/30/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
The alterations in vascular homeostasis is deeply involved in the development of numerous diseases, such as coronary heart disease, stroke, and diabetic complications. Changes in blood flow and endothelial permeability caused by vascular dysfunction are the common mechanisms for these three types of diseases. The disorders of glucose and lipid metabolism can result in changes of the energy production patterns in endothelium and surrounding cells which may consequently cause local energy metabolic disorders, oxidative stress and inflammatory responses. Traditional Chinese medicine (TCM) follows the principle of the "treatment by the syndrome differentiation". TCM considers of that coronary heart disease, stroke and diabetes complications all as the type of "Qi deficiency and Blood stasis" syndrome, which mainly happens to the vascular system. Therefore, the common pathogenesis of these three types of diseases suggests the treatment strategy by TCM should be in a close manner and named as "treating different diseases by the same treatment". Qishen Yiqi dripping pills is a modern Chinese herbal medicine which has been widely used for treatment of patients with coronary heart disease characterized as "Qi deficiency and blood stasis" in China. Recently, many clinical reports have demonstrated the potent therapeutic effects of Qishen Yiqi dripping pills on ischemic stroke and diabetic nephropathy. Based on these reports, we will summarize the clinical applications of Qishen Yiqi dripping pills on coronary heart disease, ischemic stroke and diabetic nephropathy, including the involved mechanisms with basic researches.
Collapse
Affiliation(s)
- Chunlai Zhao
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - Wenjia Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - Kaijing Yan
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - He Sun
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| | - Jihong Han
- Department of Biochemistry and Molecular Biology, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin. China
| | - Yunhui Hu
- GeneNet Pharmaceuticals Co. Ltd., Tianjin. China
| |
Collapse
|
11
|
Yao J, Fang X, Zhang C, Yang Y, Wang D, Chen Q, Zhong G. Astragaloside IV attenuates hypoxia‑induced pulmonary vascular remodeling via the Notch signaling pathway. Mol Med Rep 2020; 23:89. [PMID: 33236156 PMCID: PMC7716412 DOI: 10.3892/mmr.2020.11726] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
The Notch signaling pathway participates in pulmonary artery smooth muscle cell (PASMC) proliferation and apoptosis. Astragaloside IV (AS-IV) is an effective antiproliferative treatment for vascular diseases. The present study aimed to investigate the protective effects and mechanisms underlying AS-IV on hypoxia-induced PASMC proliferation and pulmonary vascular remodeling in pulmonary arterial hypertension (PAH) model rats. Rats were divided into the following four groups: i) normoxia; ii) hypoxia (10% O2); iii) treatment, hypoxia + intragastrical administration of AS-IV (2 mg/kg) daily for 28 days; and iv) DAPT, hypoxia + AS-IV treatment + subcutaneous administration of DAPT (10 mg/kg) three times daily. The effects of AS-IV treatment on the development of hypoxia-induced PAH, right ventricle (RV) hypertrophy and pulmonary vascular remodeling were examined. Furthermore, PASMCs were treated with 20 µmol/l AS-IV under hypoxic conditions for 48 h. To determine the effect of Notch signaling in vascular remodeling and the potential mechanisms underlying AS-IV treatment, 5 mmol/l γ-secretase inhibitor [N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT)] was used. Cell viability and apoptosis were determined by performing the MTT assay and flow cytometry, respectively. Immunohistochemistry was conducted to detect the expression of proliferating cell nuclear antigen (PCNA). Moreover, the mRNA and protein expression levels of Notch-3, Jagged-1, hes family bHLH transcription factor 5 (Hes-5) and PCNA were measured via reverse transcription-quantitative PCR and western blotting, respectively. Compared with the normoxic group, hypoxia-induced PAH model rats displayed characteristics of PAH and RV hypertrophy, whereas AS-IV treatment alleviated PAH and prevented RV hypertrophy. AS-IV also inhibited hypoxia-induced pulmonary vascular remodeling, as indicated by reduced wall thickness and increased lumen diameter of pulmonary arterioles, and decreased muscularization of distal pulmonary vasculature in hypoxia-induced PAH model rats. Compared with normoxia, hypoxia promoted PASMC proliferation in vitro, whereas AS-IV treatment inhibited hypoxia-induced PASMC proliferation by downregulating PCNA expression in vitro and in vivo. In hypoxia-treated PAH model rats and cultured PASMCs, AS-IV treatment reduced the expression levels of Jagged-1, Notch-3 and Hes-5. Furthermore, Notch signaling inhibition via DAPT significantly inhibited the pulmonary vascular remodeling effect of AS-IV in vitro and in vivo. Collectively, the results indicated that AS-IV effectively reversed hypoxia-induced pulmonary vascular remodeling and PASMC proliferation via the Notch signaling pathway. Therefore, the present study provided novel insights into the mechanism underlying the use of AS-IV for treatment of vascular diseases, such as PAH.
Collapse
Affiliation(s)
- Jiamei Yao
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xia Fang
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Cui Zhang
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Yushu Yang
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Dongsheng Wang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Qiong Chen
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Guangwei Zhong
- Department of International Medical Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
12
|
Jiang S, Jiao G, Chen Y, Han M, Wang X, Liu W. Astragaloside IV attenuates chronic intermittent hypoxia-induced myocardial injury by modulating Ca 2+ homeostasis. Cell Biochem Funct 2020; 38:710-720. [PMID: 32306464 DOI: 10.1002/cbf.3538] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/12/2020] [Accepted: 03/29/2020] [Indexed: 12/16/2022]
Abstract
Obstructive sleep apnea syndrome (OSAS) is an important consequence of chronic intermittent hypoxia (CIH). Astragaloside IV (AS-IV) exerts multiple protective effects in diverse diseases. However, whether AS-IV can attenuate CIH-induced myocardial injury is unclear. In this study, rats exposed to CIH were established and treated with AS-IV for 4 weeks. In vitro, H9C2 cardiomyocytes subjected to CIH exposure were treated with AS-IV for 48 hours. Then the cardiac function, morphology, fibrosis, apoptosis and Ca2+ homeostasis were determined to assess cardiac damage. Results showed that AS-IV attenuated cardiac dysfunction and histological lesions in CIH rats. The increased TUNEL-positive cells and activated apoptotic proteins in CIH rats were reduced by AS-IV. We also noticed that AS-IV reversed the accumulation of Ca2+ and altered expressions of Ca2+ handling proteins (decreases of SERCA2a and RYR2, and increases of p-CaMKII and NCX1) under CIH exposure. Furthermore, CIH-induced reduction of SERCA2a activity was increased by AS-IV in rats. Similar results were also observed in H9C2 cells. Altogether, these findings indicate that AS-IV modulates Ca2+ homeostasis to inhibit apoptosis, protecting against CIH-induced myocardial injury eventually, suggesting it may be a potential agent for cardiac damage of OSAS patients. SIGNIFICANCE OF THE STUDY: Chronic intermittent hypoxia (CIH) is a great contributor of OSAS, which is closely associated with cardiovascular diseases. It is necessary for developing a promising drug to attenuate CIH-induced myocardial injury. This work suggests that AS-IV can attenuate myocardial apoptosis and calcium disruption, thus protecting against CIH-induced myocardial injury. It may represent a novel therapeutic for cardiac damage of OSAS.
Collapse
Affiliation(s)
- Shan Jiang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Guangyu Jiao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yunqiu Chen
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Mingxin Han
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Xinzhuo Wang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| | - Wenjuan Liu
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
13
|
Cheng S, Zhang X, Feng Q, Chen J, Shen L, Yu P, Yang L, Chen D, Zhang H, Sun W, Chen X. Astragaloside IV exerts angiogenesis and cardioprotection after myocardial infarction via regulating PTEN/PI3K/Akt signaling pathway. Life Sci 2019; 227:82-93. [DOI: 10.1016/j.lfs.2019.04.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/08/2019] [Accepted: 04/16/2019] [Indexed: 12/27/2022]
|
14
|
Zhu Z, Li J, Zhang X. Astragaloside IV Protects Against Oxidized Low-Density Lipoprotein (ox-LDL)-Induced Endothelial Cell Injury by Reducing Oxidative Stress and Inflammation. Med Sci Monit 2019; 25:2132-2140. [PMID: 30901320 PMCID: PMC6441302 DOI: 10.12659/msm.912894] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Endothelial injury is the main mechanism of atherosclerosis, and is caused by oxidized low-density lipoprotein (ox-LDL). Astragaloside IV (AS-IV) is the primary active ingredient of the Chinese herb Huangqi, and exhibits antioxidant and anti-inflammatory properties in cardiovascular diseases. This study investigated the protective effect of AS-IV in human umbilical vein endothelial cells (HUVECs). Material/Methods HUVEC cells were induced with ox-LDL to establish an in vitro atherosclerosis model. Then HUVECs were pretreated for 1 h with AS-IV at different concentrations (10, 20, and 50 μM) and then exposed to ox-LDL (100 μg/mL) for 48 h. The cell viability, lactate dehydrogenase (LDH) release, apoptosis, migration, intracellular reactive oxygen species (ROS), and NADPH oxidase activity of HUVECs were measured. qRT-PCR was performed to measure the mRNA expressions of Nrf2, HO-1, TNFα, and IL-6. Enzyme-linked immunosorbent assay (ELISA) was performed to measure the supernatant contents of TNFα and IL-6. Results Exposure of HUVECs to ox-LDL reduced cell viability and migration, induced apoptosis, and increased intracellular ROS production and NADPH oxidase. Pretreatment with AS-IV (10, 20, and 50 μM) significantly enhanced the cell viability and migration, suppressed LDH release, apoptosis, ROS production, and NADPH oxidase in HUVECs, in a concentration-dependent manner. The AS-IV (50 μM) alone did not show significant differences from control. AS-IV increased mRNA expressions of Nrf2 and HO-1 and decreased mRNA expressions of TNFα and IL-6 in the ox-LDL-HUEVC cells. Furthermore, AS-IV reduced supernatant contents of TNFα and IL-6. Conclusions Astragaloside IV prevents ox-LDL-induced endothelial cell injury by reducing apoptosis, oxidative stress, and inflammatory response.
Collapse
Affiliation(s)
- Zhongsheng Zhu
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China (mainland)
| | - Jinyu Li
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China (mainland)
| | - Xiaorong Zhang
- Department of Cardiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China (mainland)
| |
Collapse
|
15
|
Lee JS, Cho JH, Lee DS, Son CG. Genotoxicity Evaluation of an Ethanol Extract Mixture of Astragali Radix and Salviae miltiorrhizae Radix. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2018; 2018:5684805. [PMID: 30402128 PMCID: PMC6198562 DOI: 10.1155/2018/5684805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/02/2018] [Indexed: 12/13/2022]
Abstract
Myelophil, a combination of Astragali Radix and Salviae Radix, is one of the most commonly used remedies for disorders of Qi and blood in traditional Chinese medicine. Based on the clinical applications of these plants, in particular to pregnant woman, this study aimed to evaluate the genotoxic potential of an ethanol extract mixture of the above two herbs, called Myelophil. Following the Organization for Economic Cooperation and Development (OECD) Guideline methods, a genotoxicity test was conducted using a bacterial reverse mutation test with Salmonella typhimurium (TA98, TA100, TA1535, and TA1537) and Escherichia coli (WP2μvrA), an in vitro mammalian chromosome aberration test using a Chinese hamster ovary cell line (CHO-K1), and an in vivo mammalian erythrocyte micronucleus test using ICR mouse bone marrow. In the Ames test, for both types of mutations (base substitution and frameshift) under conditions with/without an S9 mix up to 5,000 μg/plate, Myelophil did not increase the number of revertant colonies of all S. typhimurium strains as well as E. coli strain. For both short (6 h) and long tests with/without S9 mix, the chromosome aberration test did not show any significant increase in the number of structural or numerical chromosome aberrations by Myelophil. In addition, no significant change in the number of micronucleated polychromatic erythrocytes or polychromatic erythrocytes was observed in the bone marrow of an ICR mouse administered Myelophil orally at 2,000 mg/kg/day for 2 days, respectively. These results are the first to provide experimental evidence that Myelophil, an ethanol extract mixture of Astragali Radix and Salviae Radix, has no risk of genotoxicity.
Collapse
Affiliation(s)
- Jin-Seok Lee
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | - Jung-Hyo Cho
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| | - Dong-Soo Lee
- Department of Internal Medicine, Daejeon St. Mary's Hospital of Catholic University, Daejeon, Republic of Korea
| | - Chang-Gue Son
- Liver and Immunology Research Center, Oriental Medical Collage of Daejeon University, 22-5 Daehung-dong, Jung-gu, Daejeon 301-724, Republic of Korea
| |
Collapse
|
16
|
Qiao L, Chen W. Atheroprotective effects and molecular targets of bioactive compounds from traditional Chinese medicine. Pharmacol Res 2018; 135:212-229. [PMID: 30107203 DOI: 10.1016/j.phrs.2018.07.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/12/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023]
Abstract
Traditional Chinese medicine (TCM) has served the Chinese people since antiquity, and is playing an important role in today's healthcare. However, there has been controversy in the use of these traditional herbs due to unclear components and absence of scientific proof. As China plans to modernize traditional medicine, successful attempts to better understand the molecular mechanisms of TCM have been made by focusing on isolating active ingredients from these remedies. In this review, we critically examined the current evidence on atheroprotective effects of bioactive compounds from TCM using in vitro or in vivo models in the past two decades. A total of 47 active compounds were included in our review, which were introduced in the order of chemical structures, source, model, efficacy and mechanism. Notablely, this review highlighted the cellular and molecular mechanisms of these active compounds in prevention and treatment of atherosclerosis. Two compounds were also involved in double-blind, randomized, placebo-controlled clinical trials (RCTs). Besides, we introduced the legislations of the People's Republic of China ensuring quality and safety of products used in TCM. In summary, studies on bioactive compounds from TCM will provide a new approach for better management of atherosclerosis.
Collapse
Affiliation(s)
- Lei Qiao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenqiang Chen
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|