1
|
Ye X, Song Q, Zhang L, Jing M, Fu Y, Yan W. Cysteine-rich intestinal protein family: structural overview, functional diversity, and roles in human disease. Cell Death Discov 2025; 11:114. [PMID: 40118853 PMCID: PMC11928533 DOI: 10.1038/s41420-025-02395-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/24/2025] Open
Abstract
The cysteine-rich intestinal protein (CRIP) family, including CRIP1, CRIP2, and CRIP3, is a subfamily of the highly conserved Lin-1, Isl1, Mec3/double zinc finger protein family that exhibits diverse biological functions. The CRIP family is known to play an important role in cellular epithelial-mesenchymal transition, cell death, and tumor progression and participate in multiple signaling pathways. This article summarizes the roles and potential molecular mechanisms of the CRIP family in diseases, which will help to explore new research directions for this family and provide useful information for clinical applications such as disease diagnosis and treatment.
Collapse
Affiliation(s)
- Xilin Ye
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qianben Song
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lumiao Zhang
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjia Jing
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Yang S, Zhang X, Li X, Li H. Crip2 affects vascular development by fine-tuning endothelial cell aggregation and proliferation. Cell Mol Life Sci 2025; 82:110. [PMID: 40074973 PMCID: PMC11904032 DOI: 10.1007/s00018-025-05624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/04/2025] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Endothelial cell adhesion and migration are crucial to various biological processes, including vascular development. The identification of factors that modulate vascular development through these cell functions has emerged as a prominent focus in cardiovascular research. Crip2 is known to play a crucial role in cardiac development, yet its involvement in vascular development and the underlying mechanism remains elusive. In this study, we revealed that Crip2 is expressed predominantly in the vascular system, particularly in the posterior cardinal vein and caudal vein plexus intersegmental vein. Upon Crip2 loss, the posterior cardinal vein plexus and caudal vein plexus are hypoplastic, and endothelial cells exhibit aberrant aggregation. In human umbilical vein endothelial cells (HUVECs), CRIP2 interacts with the cytoskeleton proteins KRT8 and VIM. The absence of CRIP2 negatively regulates their expression, thereby fine-tuning cytoskeleton formation, resulting in a hyperadhesive phenotype. Moreover, CRIP2 deficiency perturbs the VEGFA/CDC42 signaling pathway, which in turn diminishes the migrating capacity of HUVECs. Furthermore, the loss of CRIP2 impairs cell proliferation by affecting its interaction with SRF through PDE10A/cAMP and PDGF/JAK/STAT/SRF signaling. Collectively, our findings delineate a crucial role for CRIP2 in controlling the migration, adhesion and proliferation of endothelial cells, thereby contributing to vascular development in zebrafish. These insights may provide a deeper understanding of the etiology of cardiovascular disorders.
Collapse
Affiliation(s)
- Shuaiqi Yang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xiangmin Zhang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Xianpeng Li
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hongyan Li
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Ocean University of China, Room 301, Darwin Building, 5 Yushan Road, Qingdao, 266003, China.
| |
Collapse
|
3
|
Wu J, Chen L, Wen P. CRIP1 inhibits cutaneous melanoma progression through TFAM-mediated mitochondrial biogenesis. Sci Rep 2025; 15:4298. [PMID: 39905216 PMCID: PMC11794568 DOI: 10.1038/s41598-025-88373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025] Open
Abstract
Metastasis is the leading cause of death in patients with cutaneous melanoma. CRIP1 (cysteine-rich protein 1) has been reported to be associated with malignant progression of several cancers. However, the biological function and underlying mechanisms of CRIP1 in melanoma progression are largely unknown. Bioinformatic prediction of CRIP1 expression in melanoma and its association with clinical parameters and prognosis of patients. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blots (WB) were used to detect stable overexpression and knockdown of CRIP1 in melanoma cells. The function of CRIP1 in cutaneous melanoma cells was determined by in vitro functional assays. WB, immunofluorescence, OCR detection, mitochondrial DNA assay, and cytosolic ATP assay were used to determine the relationship between CRIP1 and mitochondrial biogenesis, relationship between TFAM. The expression level of CRIP1 in melanoma tissues is lower than that in normal tissues and suggests a poor prognosis for melanoma patients. Functionally, CRIP1 inhibits the proliferation, migration, and invasion of melanoma cells in vitro. Mechanistic studies revealed that CRIP1 inhibited mitochondrial biogenesis in melanoma cells, which included suppression of relative mitochondrial content, mitochondrial DNA copy number, ATP production, respiratory capacity, and expression levels of oxidative phosphorylation-related proteins. Further studies revealed that CRIP1 inhibits mitochondrial biogenesis and malignant progression in melanoma cells by suppressing the protein levels of TFAM. Our results suggest that CRIP1 inhibits the proliferation and invasive ability of cutaneous melanoma cells by suppressing TFAM-mediated mitochondrial biogenesis. Therefore, CRIP1 may be a potential therapeutic target for melanoma.
Collapse
Affiliation(s)
- Jianqiang Wu
- Department of Dermatology, the Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China.
| | - Lixia Chen
- Department of Pathology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Peijun Wen
- Department of Dermatology, the Affiliated Panyu Central Hospital, Guangzhou Medical University, Guangzhou, 511400, China
| |
Collapse
|
4
|
Myers BL, Brayer KJ, Paez-Beltran LE, Villicana E, Keith MS, Suzuki H, Newville J, Anderson RH, Lo Y, Mertz CM, Kollipara RK, Borromeo MD, Lu QR, Bachoo RM, Johnson JE, Vue TY. Transcription factors ASCL1 and OLIG2 drive glioblastoma initiation and co-regulate tumor cell types and migration. Nat Commun 2024; 15:10363. [PMID: 39609428 PMCID: PMC11605073 DOI: 10.1038/s41467-024-54750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex genetic alterations. The basic-helix-loop-helix (bHLH) transcription factors ASCL1 and OLIG2 are dynamically co-expressed in GBMs; however, their combinatorial roles in regulating the plasticity and heterogeneity of GBM cells are unclear. Here, we show that induction of somatic mutations in subventricular zone (SVZ) progenitor cells leads to the dysregulation of ASCL1 and OLIG2, which then function redundantly and are required for brain tumor formation in a mouse model of GBM. Subsequently, the binding of ASCL1 and OLIG2 to each other's loci and to downstream target genes then determines the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in specifying highly migratory neural stem cell (NSC)/astrocyte-like tumor cell types, which are marked by upregulation of ribosomal protein, oxidative phosphorylation, cancer metastasis, and therapeutic resistance genes.
Collapse
Affiliation(s)
- Bianca L Myers
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kathryn J Brayer
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Luis E Paez-Beltran
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Estrella Villicana
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew S Keith
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Hideaki Suzuki
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rebekka H Anderson
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yunee Lo
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Conner M Mertz
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, EHCB, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tou Yia Vue
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
5
|
Chen R, Jin Y, Lian R, Yang J, Liao Z, Jin Y, Deng Z, Feng S, Feng Z, Wei Y, Zhang Z, Zhao L. CRIP1 regulates osteogenic differentiation of bone marrow stromal cells and pre-osteoblasts via the Wnt signaling pathway. Biochem Biophys Res Commun 2024; 727:150277. [PMID: 38936225 DOI: 10.1016/j.bbrc.2024.150277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
With the aging of the global demographic, the prevention and treatment of osteoporosis are becoming crucial issues. The gradual loss of self-renewal and osteogenic differentiation capabilities in bone marrow stromal cells (BMSCs) is one of the key factors contributing to osteoporosis. To explore the regulatory mechanisms of BMSCs differentiation, we collected bone marrow cells of femoral heads from patients undergoing total hip arthroplasty for single-cell RNA sequencing analysis. Single-cell RNA sequencing revealed significantly reduced CRIP1 (Cysteine-Rich Intestinal Protein 1) expression and osteogenic capacity in the BMSCs of osteoporosis patients compared to non-osteoporosis group. CRIP1 is a gene that encodes a member of the LIM/double zinc finger protein family, which is involved in the regulation of various cellular processes including cell growth, development, and differentiation. CRIP1 knockdown resulted in decreased alkaline phosphatase activity, mineralization and expression of osteogenic markers, indicating impaired osteogenic differentiation. Conversely, CRIP1 overexpression, both in vitro and in vivo, enhanced osteogenic differentiation and rescued bone mass reduction in ovariectomy-induced osteoporosis mice model. The study further established CRIP1's modulation of osteogenesis through the Wnt signaling pathway, suggesting that targeting CRIP1 could offer a novel approach for osteoporosis treatment by promoting bone formation and preventing bone loss.
Collapse
Affiliation(s)
- Ruge Chen
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yangchen Jin
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Ru Lian
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Jie Yang
- Department of Chinese Medicine, Chinese People's Liberation Army Air Force Special Medical Center, Beijing, 100142, China
| | - Zheting Liao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yu Jin
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhonghao Deng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Shuhao Feng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zihang Feng
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Yiran Wei
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhongmin Zhang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Liang Zhao
- Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
6
|
Li Q, Huang X, Zhao Y. Prediction of Prognosis and Immunotherapy Response with a Novel Natural Killer Cell Marker Genes Signature in Osteosarcoma. Cancer Biother Radiopharm 2024; 39:502-516. [PMID: 37889617 DOI: 10.1089/cbr.2023.0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
Background: Natural killer (NK) cells are characterized by their antitumor efficacy without previous sensitization, which have attracted attention in tumor immunotherapy. The heterogeneity of osteosarcoma (OS) has hindered therapeutic application of NK cell-based immunotherapy. The authors aimed to construct a novel NK cell-based signature to identify certain OS patients more responsive to immunotherapy. Materials and Methods: A total of eight publicly available datasets derived from patients with OS were enrolled in this study. Single-cell RNA sequencing data obtained from the Gene Expression Omnibus (GEO) database were analyzed to screen NK cell marker genes. Least Absolute Shrinkage and Selection Operator (LASSO) Cox regression analysis was used to construct an NK cell-based prognostic signature in the TARGET-OS dataset. The differences in immune cell infiltration, immune system-related metagenes, and immunotherapy response were evaluated among risk subgroups. Furthermore, this prognostic signature was experimentally validated by reverse transcription-quantitative real-time PCR (RT-qPCR). Results: With differentially expressed NK cell marker genes screened out, a five-gene NK cell-based prognostic signature was constructed. The prognostic predictive accuracy of the signature was validated through internal clinical subgroups and external GEO datasets. Low-risk OS patients contained higher abundances of infiltrated immune cells, especially CD8 T cells and naive CD4 T cells, indicating that T cell exhaustion states were present in the high-risk OS patients. As indicated from correlation analysis, immune system-related metagenes displayed a negative correlation with risk scores, suggesting the existence of immunosuppressive microenvironment in OS. In addition, based on responses to immune checkpoint inhibitor therapy in two immunotherapy datasets, the signature helped predict the response of OS patients to anti-programmed cell death protein 1 (PD-1) or anti-programmed cell death ligand 1 (PD-L1) therapy. RT-qPCR results demonstrated the roughly consistent relationship of these five gene expressions with predicting outcomes. Conclusions: The NK cell-based signature is likely to be available for the survival prediction and the evaluation of immunotherapy response of OS patients, which may shed light on subsequent immunotherapy choices for OS patients. In addition, the authors revealed a potential link between immunosuppressive microenvironment and OS.
Collapse
Affiliation(s)
- Qinwen Li
- Department of Orthopedics, The First College of Clinical Medical Science, China Three Gorges University, Yichang Central People's Hospital, Yichang, China
| | - Xiaoyan Huang
- Department of Geriatrics, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| | - Youfang Zhao
- Department of Geriatrics, The Third Clinical Medical College of China Three Gorges University, Gezhouba Central Hospital of Sinopharm, Yichang, China
| |
Collapse
|
7
|
Huang X, Li Q, Zheng X, Jiang C. TTYH3 Promotes Cervical Cancer Progression by Activating the Wnt/ β-Catenin Signaling Pathway. Cancer Invest 2024; 42:726-739. [PMID: 39189652 DOI: 10.1080/07357907.2024.2395014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 07/18/2024] [Accepted: 08/18/2024] [Indexed: 08/28/2024]
Abstract
The role of tweety homolog 3 (TTYH3) has been studied in several cancers, including hepatocellular carcinoma, cholangiocarcinoma, and gastric cancer. The results showed that TTYH3 is highly expression in cervical cancer tissues and cells and high TTYH3 expression correlates with poor prognosis in patients with cervical cancer. TTYH3 markedly reduced the apoptosis rate and promoted proliferation, migration, and invasion. Silencing of TTYH3 has been shown to have an inhibitory effect on cervical cancer progression. Moreover, TTYH3 enhanced EMT and activated Wnt/β-catenin signaling. Furthermore, TTYH3 knockdown inhibited the tumor growth in vivo. In conclusion, TTYH3 promoted cervical cancer progression by activating the Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Xiuyan Huang
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| | - Qing Li
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| | - Xiaoxia Zheng
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| | - Chen Jiang
- Department of Gynaecology, Jinan Maternity and Child Care Hospital, Jinan, Shandong, P.R. China
| |
Collapse
|
8
|
Liu K, Han H, Xiong K, Zhai S, Yang X, Yu X, Chen B, Liu M, Dong Q, Meng H, Gu Y. Single-cell landscape of intratumoral heterogeneity and tumor microenvironment remolding in pre-nodal metastases of breast cancer. J Transl Med 2024; 22:804. [PMID: 39210391 PMCID: PMC11363495 DOI: 10.1186/s12967-024-05625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The metastasis of cancer cells is influenced by both their intrinsic characteristics and the tumor microenvironment (TME). However, the molecular mechanisms underlying pre-nodal metastases of breast cancer remain unclear. METHODS We integrated a total of 216,963 cells from 54 samples across 6 single-cell datasets to profile the cellular landscape differences between primary tumors and pre-nodal metastases. RESULTS We revealed three distinct metastatic epithelial cell subtypes (Epi1, Epi2 and Epi3), which exhibited different metastatic mechanisms. Specifically, the marker gene KCNK15 of the Epi1 subtype exhibited increased gene expression along the cell differentiation trajectory and was specifically regulated by the transcription factor ASCL1. In the Epi3 subtype, we highlighted NR2F1 as a regulator targeting the marker gene MUCL1. Additionally, we found that the Epi2 and Epi3 subtypes shared some regulons, such as ZEB1 and NR2C1. Similarly, we identified specific subtypes of stromal and immune cells in the TME, and discovered that vascular cancer-associated fibroblasts might promote capillary formation through CXCL9+ macrophages in pre-nodal metastases. All three subtypes of metastatic epithelial cells were associated with poor prognosis. CONCLUSIONS In summary, this study dissects the intratumoral heterogeneity and remodeling of the TME in pre-nodal metastases of breast cancer, providing novel insights into the mechanisms underlying breast cancer metastasis.
Collapse
Affiliation(s)
- Kaidong Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Huiming Han
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kai Xiong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Songmei Zhai
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xiuqi Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xinmiao Yu
- Department of Human Anatomy, Harbin Medical University, Harbin, China
| | - Bo Chen
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingyue Liu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Qi Dong
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Yunyan Gu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Wang H, Zhang L, Hu C, Li H, Jiang M. Wnt signaling and tumors (Review). Mol Clin Oncol 2024; 21:45. [PMID: 38798312 PMCID: PMC11117032 DOI: 10.3892/mco.2024.2743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Wnt signaling is a highly conserved evolutionary pathway that plays a key role in regulation of embryonic development, as well as tissue homeostasis and regeneration. Abnormalities in Wnt signaling are associated with tumorigenesis and development, leading to poor prognosis in patients with cancer. However, the pharmacological effects and mechanisms underlying Wnt signaling and its inhibition in cancer treatment remain unclear. In addition, potential side effects of inhibiting this process are not well understood. Therefore, the present review outlines the role of Wnt signaling in tumorigenesis, development, metastasis, cancer stem cells, radiotherapy resistance and tumor immunity. The present review further identifies inhibitors that target Wnt signaling to provide a potential novel direction for cancer treatment. This may facilitate early application of safe and effective drugs targeting Wnt signaling in clinical settings. An in-depth understanding of the mechanisms underlying inhibition of Wnt signaling may improve the prognosis of patients with cancer.
Collapse
Affiliation(s)
- Huaishi Wang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Lihai Zhang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Chao Hu
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| | - Mingyan Jiang
- Department of Pulmonary and Critical Care Medicine, Xiangtan Central Hospital, Xiangtan, Hunan 411100, P.R. China
| |
Collapse
|
10
|
Lu Y, Chen D, Wang B, Chai W, Yan M, Chen Y, Zhan Y, Yang R, Zhou E, Dai S, Li Y, Dong R, Zheng B. Single-cell landscape of undifferentiated pleomorphic sarcoma. Oncogene 2024; 43:1353-1368. [PMID: 38459120 DOI: 10.1038/s41388-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is a highly aggressive malignant soft tissue tumor with a poor prognosis; however, the identity and heterogeneity of tumor populations remain elusive. Here, eight major cell clusters were identified through the RNA sequencing of 79,569 individual cells of UPS. UPS originates from mesenchymal stem cells (MSCs) and features undifferentiated subclusters. UPS subclusters were predicted to exist in two bulk RNA datasets, and had a prognostic value in The Cancer Genome Atlas (TCGA) dataset. The functional heterogeneity of malignant UPS cells and the immune microenvironment were characterized. Additionally, the fused cells were innovatively detected by expressing both monocyte/macrophage markers and other subcluster-associated genes. Based on the ligand-receptor interaction analysis, cellular interactions with epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) were abundant. Furthermore, 73% of patients with UPS (48/66) showed positive EGFR expression, which was associated with a poor prognosis. EGFR blockade with cetuximab inhibited tumor growth in a patient-derived xenograft model. Our transcriptomic studies delineate the landscape of UPS intratumor heterogeneity and serve as a foundational resource for further discovery and therapeutic exploration.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Deqian Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Bingnan Wang
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjun Chai
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Mingxia Yan
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Yong Chen
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Enqing Zhou
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Shuyang Dai
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China.
| | - Biqiang Zheng
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Xue W, Yang L, Chen C, Ashrafizadeh M, Tian Y, Sun R. Wnt/β-catenin-driven EMT regulation in human cancers. Cell Mol Life Sci 2024; 81:79. [PMID: 38334836 PMCID: PMC10857981 DOI: 10.1007/s00018-023-05099-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/09/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Metastasis accounts for 90% of cancer-related deaths among the patients. The transformation of epithelial cells into mesenchymal cells with molecular alterations can occur during epithelial-mesenchymal transition (EMT). The EMT mechanism accelerates the cancer metastasis and drug resistance ability in human cancers. Among the different regulators of EMT, Wnt/β-catenin axis has been emerged as a versatile modulator. Wnt is in active form in physiological condition due to the function of GSK-3β that destructs β-catenin, while ligand-receptor interaction impairs GSK-3β function to increase β-catenin stability and promote its nuclear transfer. Regarding the oncogenic function of Wnt/β-catenin, its upregulation occurs in human cancers and it can accelerate EMT-mediated metastasis and drug resistance. The stimulation of Wnt by binding Wnt ligands into Frizzled receptors can enhance β-catenin accumulation in cytoplasm that stimulates EMT and related genes upon nuclear translocation. Wnt/β-catenin/EMT axis has been implicated in augmenting metastasis of both solid and hematological tumors. The Wnt/EMT-mediated cancer metastasis promotes the malignant behavior of tumor cells, causing therapy resistance. The Wnt/β-catenin/EMT axis can be modulated by upstream mediators in which non-coding RNAs are main regulators. Moreover, pharmacological intervention, mainly using phytochemicals, suppresses Wnt/EMT axis in metastasis suppression.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Lin Yang
- Department of Hepatobiliary Surgery, Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Chengxin Chen
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, People's Republic of China
| | - Milad Ashrafizadeh
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, USA.
| | - Ranran Sun
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Ding T, Zhang Y, Ren Z, Cong Y, Long J, Peng M, Faleti OD, Yang Y, Li X, Lyu X. EBV-Associated Hub Genes as Potential Biomarkers for Predicting the Prognosis of Nasopharyngeal Carcinoma. Viruses 2023; 15:1915. [PMID: 37766321 PMCID: PMC10537168 DOI: 10.3390/v15091915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
This study aimed to develop a model using Epstein-Barr virus (EBV)-associated hub genes in order to predict the prognosis of nasopharyngeal carcinoma (NPC). Differential expression analysis, univariate regression analysis, and machine learning were performed in three microarray datasets (GSE2371, GSE12452, and GSE102349) collected from the GEO database. Three hundred and sixty-six EBV-DEGs were identified, 25 of which were found to be significantly associated with NPC prognosis. These 25 genes were used to classify NPC into two subtypes, and six genes (C16orf54, CD27, CD53, CRIP1, RARRES3, and TBC1D10C) were found to be hub genes in NPC related to immune infiltration and cell cycle regulation. It was shown that these genes could be used to predict the prognosis of NPC, with functions related to tumor proliferation and immune infiltration, making them potential therapeutic targets. The findings of this study could aid in the development of screening and prognostic methods for NPC based on EBV-related features.
Collapse
Affiliation(s)
- Tengteng Ding
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China; (T.D.); (Y.Z.); (Y.C.); (M.P.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
| | - Yuanbin Zhang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China; (T.D.); (Y.Z.); (Y.C.); (M.P.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
| | - Zhixuan Ren
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai 200040, China;
| | - Ying Cong
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China; (T.D.); (Y.Z.); (Y.C.); (M.P.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
| | - Jingyi Long
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Manli Peng
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China; (T.D.); (Y.Z.); (Y.C.); (M.P.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
| | - Oluwasijibomi Damola Faleti
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| | - Yinggui Yang
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China; (T.D.); (Y.Z.); (Y.C.); (M.P.)
- Department of Urology, Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China
| | - Xin Li
- Shenzhen Key Laboratory of Viral Oncology, The Clinical Innovation & Research Centre (CIRC), Shenzhen Hospital of Southern Medical University, Shenzhen 518100, China; (T.D.); (Y.Z.); (Y.C.); (M.P.)
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
| | - Xiaoming Lyu
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou 510630, China; (J.L.); (O.D.F.)
- Department of Laboratory Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou 510630, China
| |
Collapse
|
13
|
Wu Z, Qu B, Yuan M, Liu J, Zhou C, Sun M, Guo Z, Zhang Y, Song Y, Wang Z. CRIP1 Reshapes the Gastric Cancer Microenvironment to Facilitate Development of Lymphatic Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303246. [PMID: 37409440 PMCID: PMC10502640 DOI: 10.1002/advs.202303246] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 07/07/2023]
Abstract
Lymphangiogenesis in tumors provides an auxiliary route for cancer cell invasion to drainage lymph nodes, facilitating the development of lymphatic metastasis (LM). However, the mechanisms governing tumor lymphangiogenesis and lymphatic permeability in gastric cancer (GC) remain largely unknown. Here, the unprecedented role and mechanism of cysteine-rich intestinal protein-1 (CRIP1) in mediating the development of GC LM is uncovered. A series of assays are performed to identify downstream targets of CRIP1, and rescue experiments are performed to confirm the effects of this regulatory axis on LM. CRIP1 overexpression facilitates LM in GC by promoting lymphangiogenesis and lymphatic vessel permeability. CRIP1 promotes phosphorylation of cAMP responsive element binding protein 1(CREB1), which then mediates vascular endothelial growth factor C (VEGFC) expression necessary for CRIP1-induced lymphangiogenesis and transcriptionally promotes C-C motif chemokine ligand 5 (CCL5) expression. CCL5 recruits macrophages to promote tumor necrosis factor alpha (TNF-α) secretion, eventually enhancing lymphatic permeability. The study highlights CRIP1 regulates the tumor microenvironment to promote lymphangiogenesis and LM in GC. Considering the current limited understanding of LM development in GC, these pathways provide potential targets for future therapeutics.
Collapse
Affiliation(s)
- Zhonghua Wu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Bicheng Qu
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Minxian Yuan
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Jingjing Liu
- Institute of Health SciencesChina Medical UniversityShenyangLiaoning110122China
| | - Cen Zhou
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Mingwei Sun
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Zhexu Guo
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Yaqing Zhang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| | - Yongxi Song
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
- Institute of Health SciencesChina Medical UniversityShenyangLiaoning110122China
| | - Zhenning Wang
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityKey Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors China Medical UniversityMinistry of Education155 North Nanjing Street, Heping DistrictShenyang110001China
| |
Collapse
|
14
|
Paul EN, Carpenter TJ, Fitch S, Sheridan R, Lau KH, Arora R, Teixeira JM. Cysteine-rich intestinal protein 1 is a novel surface marker for human myometrial stem/progenitor cells. Commun Biol 2023; 6:686. [PMID: 37400623 DOI: 10.1038/s42003-023-05061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better markers. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers. CRIP1 expression was found highly upregulated by both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.
Collapse
Affiliation(s)
- Emmanuel N Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Tyler J Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, 48824, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, 49503, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, 48824, USA
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
15
|
Lei S, Du X, Tan K, He X, Zhu Y, Zhao S, Yang Z, Dou G. CRP‑1 promotes the malignant behavior of hepatocellular carcinoma cells via activating epithelial‑mesenchymal transition and Wnt/β‑catenin signaling. Exp Ther Med 2023; 26:314. [PMID: 37273753 PMCID: PMC10236095 DOI: 10.3892/etm.2023.12013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/18/2023] [Indexed: 06/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. It has been reported that cysteine rich protein 1 (CRP-1) is dysregulated in several types of human cancer; however, its role in HCC is poorly understood. Therefore, the current study aimed to investigate the role of CRP-1 in HCC. Western blotting and reverse transcription-quantitative PCR results showed that CRP-1 was upregulated in HCC cell lines. Furthermore, for in vitro experiments, CRP-1 was knocked down and overexpressed in the HCC cell lines Hep 3B2.1-7 and BEL-7405, respectively. c-Myc and proliferating cell nuclear antigen upregulation, and cleaved caspase 3 and poly(ADP-ribose) polymerase downregulation suggested that CRP-1 silencing could inhibit the proliferation and colony-forming ability of HCC cells, and induce apoptosis. In addition, CRP-1 overexpression promoted the malignant behavior of HCC cells and induced epithelial-mesenchymal transition (EMT), as verified by E-cadherin downregulation, and N-cadherin and vimentin upregulation. Additionally, CRP-1 overexpression promoted the nuclear translocation of β-catenin, and activated the expression of cyclin D1 and matrix metalloproteinase-7. Furthermore, inhibition of Wnt/β-catenin signaling, following cell treatment with XAV-939, an inhibitor of the Wnt/β-catenin signaling pathway, abrogated the effects of CRP-1 on enhancing the proliferation and migration of HCC cells. These findings indicated that the regulatory effect of CRP-1 on HCC cells could be mediated by the Wnt/β-catenin signaling pathway. Overall, CRP-1 could promote the proliferation and migration of HCC cell lines, partially via promoting EMT and activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shixiong Lei
- Department of Interventional Medicine, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xilin Du
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Kai Tan
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaojun He
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yejing Zhu
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Shoujie Zhao
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Zhenyu Yang
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Gang Dou
- Department of General Surgery, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
16
|
Guo D, Yao W, Du X, Dong J, Zhang X, Shen W, Zhu S. NEK2 promotes esophageal squamous cell carcinoma cell proliferation, migration and invasion through the Wnt/β-catenin signaling pathway. Discov Oncol 2023; 14:80. [PMID: 37233832 DOI: 10.1007/s12672-023-00692-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
OBJECTIVES The NEK2 (never in mitosis gene A-related kinase 2), a serine/threonine kinase involved in chromosome instability and tumorigenesis. Hence, this study aimed to explore the molecular function of NEK2 in esophageal squamous cell carcinoma (ESCC). METHODS By available transcriptome datasets (GSE53625 cohort, GSE38129 cohort, and GSE21293 cohort), we analyzed the differentially expressed genes in invading and non-invading ESCC. Subsequently, we evaluated the association between NEK2 expression level and clinical outcomes through Kaplan-Meier analysis method. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB) analyses were performed to determine the expression levels of NEK2 mRNA and protein, respectively. We knocked down the NEK2 expression in ESCC cells (ECA109 and TE1), and evaluated the NEK2 biology function associated with ESCC cell proliferation, migration, invasion, and colony formation abilities. Finally, the downstream pathway of NEK2 was analyzed through Gene Set Enrichment Analysis (GSEA) and validated the regulatory mechanism of NEK2 on the potential pathway through WB. RESULTS We found that NEK2 was highly expressed in ESCC cells compared with human esophageal epithelial cells (HEEC) (P < 0.0001), and high NEK2 expression was remarkably associated with poor survival (P = 0.019). Knockdown of NEK2 showed the significant inhibitory effect for tumorigenesis, and suppressed the ESCC cells proliferation, migration, invasion, and formation of colonies abilities. Additionally, GSEA revealed that Wnt/β-catenin pathway was a downstream pathway of NEK2. WB results further validated the regulatory mechanism of NEK2 for Wnt/β-catenin signaling. CONCLUSIONS Our results indicated that NEK2 promotes ESCC cell proliferation, migration and invasion by activating the Wnt/β-catenin pathway. NEK2 could be a promising target for ESCC.
Collapse
Affiliation(s)
- Dong Guo
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Weinan Yao
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xingyu Du
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jing Dong
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Xueyuan Zhang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Wenbin Shen
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Shuchai Zhu
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| |
Collapse
|
17
|
Deng X, Zeng Y, Qiu X, Zhong M, Xiong X, Luo M, Zhang J, Chen X. CRIP1 supports the growth and migration of AML-M5 subtype cells by activating Wnt/β-catenin pathway. Leuk Res 2023; 130:107312. [PMID: 37224580 DOI: 10.1016/j.leukres.2023.107312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous hematopoietic disorder. To effectively eradicate AML, it is urgent to develop new therapeutic approaches and identify novel molecular targets. In silico analysis indicated that the expression of cysteine-rich intestinal protein 1 (CRIP1) was significantly elevated in AML cells and correlated with worse overall survival of the AML patients. However, its specific roles in AML remain elusive. Here we demonstrated that CRIP1 acted as a key oncogene to support AML cell survival and migration. Using a loss-of-function analysis, we found that CRIP1 silencing in U937 and THP1 cells by lentivirus-mediated shRNAs resulted in a decrease in cell growth, migration and colony formation, and an increase in chemosensitivity to Ara-C. CRIP1 silencing induced cell apoptosis and G1/S transition arrest. Mechanically, CRIP1 silencing caused inactivation of Wnt/β-catenin pathway through upregulating axin1 protein. The Wnt/β-catenin agonist SKL2001 markedly rescued the cell growth and migration defect induced by CRIP1 silencing. Our findings reveals that CRIP1 may contribute to AML-M5 pathogenesis and represent a novel target for AML-M5 treatment.
Collapse
Affiliation(s)
- Xiaoling Deng
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Molecular Medicine, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Yanmei Zeng
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Molecular Medicine, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Xiaofen Qiu
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Molecular Medicine, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Mingxing Zhong
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Xiujuan Xiong
- Department of Pathology, Basic Medical College of Nanchang University, Nanchang, Jiangxi 330031, China
| | - Mansheng Luo
- Clinical laboratory, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Jingdong Zhang
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China
| | - Xiaoli Chen
- Jiangxi Health Commission Key Laboratory of Leukemia, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China; Ganzhou Key Laboratory of Molecular Medicine, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi 341000, China.
| |
Collapse
|
18
|
Paul EN, Carpenter TJ, Fitch S, Sheridan R, Lau KH, Arora R, Teixeira JM. Cysteine-Rich Intestinal Protein 1 is a Novel Surface Marker for Myometrial Stem/Progenitor Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529273. [PMID: 36993447 PMCID: PMC10054937 DOI: 10.1101/2023.02.20.529273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Myometrial stem/progenitor cells (MyoSPCs) have been proposed as the cells of origin for uterine fibroids, which are benign tumors that develop in the myometrium of most reproductive age women, but the identity of the MyoSPC has not been well established. We previously identified SUSD2 as a possible MyoSPC marker, but the relatively poor enrichment in stem cell characteristics of SUSD2+ over SUSD2- cells compelled us to find better discerning markers for more rigorous downstream analyses. We combined bulk RNA-seq of SUSD2+/- cells with single cell RNA-seq to identify markers capable of further enriching for MyoSPCs. We observed seven distinct cell clusters within the myometrium, with the vascular myocyte cluster most highly enriched for MyoSPC characteristics and markers, including SUSD2. CRIP1 expression was found highly upregulated in both techniques and was used as a marker to sort CRIP1+/PECAM1- cells that were both enriched for colony forming potential and able to differentiate into mesenchymal lineages, suggesting that CRIP1+/PECAM1- cells could be used to better study the etiology of uterine fibroids.
Collapse
Affiliation(s)
- Emmanuel N. Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| | - Tyler J. Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| | - Sarah Fitch
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - Rachael Sheridan
- Flow Cytometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kin H. Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ripla Arora
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI 48824, USA
| | - Jose M. Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 48824, USA
| |
Collapse
|
19
|
Wang J, Zhou Y, Zhang D, Zhao W, Lu Y, Liu C, Lin W, Zhang Y, Chen K, Wang H, Zhao L. CRIP1 suppresses BBOX1-mediated carnitine metabolism to promote stemness in hepatocellular carcinoma. EMBO J 2022; 41:e110218. [PMID: 35775648 DOI: 10.15252/embj.2021110218] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 11/09/2022] Open
Abstract
Carnitine metabolism is thought to be negatively correlated with the progression of hepatocellular carcinoma (HCC) and the specific molecular mechanism is yet to be fully elucidated. Here, we report that little characterized cysteine-rich protein 1 (CRIP1) is upregulated in HCC and associated with poor prognosis. Moreover, CRIP1 promoted HCC cancer stem-like properties by downregulating carnitine energy metabolism. Mechanistically, CRIP1 interacted with BBOX1 and the E3 ligase STUB1, promoting BBOX1 ubiquitination and proteasomal degradation, and leading to the downregulation of carnitine. BBOX1 ubiquitination at lysine 240 is required for CRIP1-mediated control of carnitine metabolism and cancer stem-like properties. Further, our data showed that acetylcarnitine downregulation in CRIP1-overexpressing cells decreased beta-catenin acetylation and promoted nuclear accumulation of beta-catenin, thus facilitating cancer stem-like properties. Clinically, patients with higher CRIP1 protein levels had lower BBOX1 levels but higher nuclear beta-catenin levels in HCC tissues. Together, our findings identify CRIP1 as novel upstream control factor for carnitine metabolism and cancer stem-like properties, suggesting targeting of the CRIP1/BBOX1/β-catenin axis as a promising strategy for HCC treatment.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yan Zhou
- Department of Medical Oncology, Affiliated Tumour Hospital of Guangzhou Medical University, Guangzhou, China
| | - Donghui Zhang
- Department of Pathology, Affiliated Tumour Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiyi Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yishi Lu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chaoqun Liu
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wandie Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yujie Zhang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Kunling Chen
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hui Wang
- Department of Medical Oncology, Affiliated Tumour Hospital of Guangzhou Medical University, Guangzhou, China
| | - Liang Zhao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology & Guangdong Province Key Laboratory of Molecular Tumor Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
20
|
Comprehensive Analysis of CRIP1 in Patients with Ovarian Cancer, including ceRNA Network, Immune-Infiltration Pattern, and Clinical Benefit. DISEASE MARKERS 2022; 2022:2687867. [PMID: 35140819 PMCID: PMC8820892 DOI: 10.1155/2022/2687867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 11/18/2022]
Abstract
Background. With the development of sequencing technology, an increasing number of biomarkers have been identified in ovarian cancer (OC). However, there have been few comprehensive analyses of CRIP1 in patients with OC. Methods. Logistic regression analysis was conducted to analyze the correlations between clinical characteristics and CRIP1 expression. Kaplan-Meier survival analysis was used to explore the difference in survival in each clinical subgroup. In addition, univariate and multivariate Cox regression analyses were further used to confirm the independent prognostic values of CRIP1. We further constructed ceRNA network based on the difference analysis. Subsequently, we used the ssGSEA algorithm to excavate the correlation between CRIP1 and tumor-infiltrating immune cells. Moreover, the potential biological functions of CRIP1 were investigated by gene function annotation. Finally, we knocked down CRIP1 gene for preliminary biological function verification in A2780 and SKOV-3 cell lines. Results. The overexpression of CRIP1 was confirmed in The Cancer Genome Atlas (TCGA) cohort, immunohistochemistry, and OC cell lines. CRIP1 overexpression was correlated with the FIGO stage according to a logistic regression analysis that used the median of CRIP1 expression as a categorization of the dependent variable. Survival analysis revealed that CRIP1 was associated with a poor prognosis in most clinical subgroups and acts as an independent prognostic marker in OC patients. In immuno-bioinformatics analysis, CRIP1 is associated to majority of immune cells. This is noteworthy given that we identified that the ceRNA network based on CRIP1 may regulate progression in OC. In addition, gene enrichment analysis suggested CRIP1 may be involved in the JAK-STAT signaling pathway, etc. Finally, we found that knockdown CRIP1 could inhibit the proliferation of OC cells. Conclusion. We provided robust evidences that CRIP1 is an indicator of poor prognosis and a potential target for immunotherapy in patients with OC.
Collapse
|
21
|
Hou S, Zhang X, Yang J. Long non-coding RNA ABHD11-AS1 facilitates the progression of cervical cancer by competitively binding to miR-330-5p and upregulating MARK2. Exp Cell Res 2021; 410:112929. [PMID: 34793775 DOI: 10.1016/j.yexcr.2021.112929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/11/2021] [Accepted: 11/13/2021] [Indexed: 11/20/2022]
Abstract
Cervical cancer (CC) is among the most prevalent gynecological malignancies. Participation of long non-coding RNA (lncRNA) in modulating biological behaviors of CC cells has been confirmed. However, the function of lncRNA ABHD11 antisense RNA 1 (ABHD11-AS1) in CC is still unclear. RT-qPCR and Western blot were performed for measuring RNA and protein levels. Functional assays were done to evaluate ABHD11-AS1 influences on cell proliferation, apoptosis, invasion and migration. After the verification of ABHD11-AS1 distribution in CC cells, mechanism assays were conducted to study the interaction of relative RNAs. ABHD11-AS1 expression was abnormally high in CC cells. In vitro experiments showed ABHD11-AS1 downregulation restrained CC cell malignant phenotypes. In vivo experiments proved ABHD11-AS1 knockdown impeded tumor growth. Moreover, miR-330-5p was corroborated to bind with ABHD11-AS1 in CC cells and microtubule affinity regulating kinase 2 (MARK2) was confirmed to be targeted by miR-330-5p. MiR-330-5p inhibition or MARK2 overexpression could countervail the suppressive effect of ABHD11-AS1 knockdown on CC cell malignant behaviors. We found that ABHD11-AS1 facilitated CC tumorigenesis through competitively sequestering miR-330-5p to upregulate MARK2, indicating ABHD11-AS1 as a potential biomarker in CC.
Collapse
Affiliation(s)
- Shunyu Hou
- Department of Gynecology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, 215001, Jiangsu, China
| | - Xiaoqian Zhang
- Department of Gynecology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, 215001, Jiangsu, China
| | - Jian Yang
- Department of Gynecology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, 215001, Jiangsu, China.
| |
Collapse
|
22
|
He HY, Hu L. Cysteine-rich intestinal protein 1 enhances the progression of hepatocellular carcinoma via Ras signaling. Kaohsiung J Med Sci 2021; 38:49-58. [PMID: 34585826 DOI: 10.1002/kjm2.12445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 06/14/2021] [Accepted: 08/08/2021] [Indexed: 11/08/2022] Open
Abstract
The present study aimed to explore the expression and clinical significance of cysteine-rich intestinal protein 1 (CRIP1) mRNA in the serum of patients with hepatocellular carcinoma (HCC). Reverse transcription polymerase chain reaction (RT-PCR) was performed to explore the level of CRIP1 mRNA in the tissues and serum of patients with HCC. Our data showed that the mRNA level of CRIP1 was significantly elevated in the serum and tissues of HCC patients. Moreover, serum CRIP1 mRNA was significantly elevated in HCC patients with larger tumor sizes and higher tumor node metastasis (TNM) stages. Receiver operating characteristic analysis showed that compared with a single marker, the combined detection of alpha-fetoprotein, carcinoembryonic antigen, and CRIP1 had the highest accuracy, sensitivity, and specificity. Further study showed that the overexpression of CRIP1 enhanced the proliferation and migration of HepG2 cells, but the inhibition of CRIP1 decreased the proliferation and migration of HepG2 cells. Microarray assays and KyotoEncyclopedia of Genes and Genomes (KEGG) pathway analysis showed that overexpression of CRIP1 induced the activation of Ras signaling. Co-immunoprecipitation (Co-IP) assays indicated that CRIP1 could interact with Ras. To further evaluate whether CRIP1 interacts with Ras, a specific siRNA targeting Ras was selected. We found that Ras knockdown reduced the activation of Ras/AKT signaling even in HepG2 cells transfected with CRIP1. Moreover, elevated expression of CRIP1 increased the proliferation of HepG2 cells, but such effects could be abolished by silencing Ras. In summary, elevated CRIP1 levels enhanced the progression of CRIP1 via Ras signaling.
Collapse
Affiliation(s)
- Hong-Yu He
- Department of Ultrasound, Tai'an Medical District, 960 Hospital of Chinese PLA, Tai'an, China
| | - Li Hu
- Physical Examination Center, Tai'an Medical District, 960 Hospital of PLA, Tai'an, China
| |
Collapse
|
23
|
Cysteine-Rich Intestinal Protein 1 Served as an Epithelial Ovarian Cancer Marker via Promoting Wnt/ β-Catenin-Mediated EMT and Tumour Metastasis. DISEASE MARKERS 2021; 2021:3566749. [PMID: 34413913 PMCID: PMC8369172 DOI: 10.1155/2021/3566749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022]
Abstract
Objective To explore the expression, functions, and the possible mechanisms of cysteine-rich intestinal protein 1 (CRIP1) in epithelial ovarian cancer. Methods Using open microarray datasets from The Cancer Genome Atlas (TCGA), we identified the tumorigenic genes in ovarian cancer. Then, we detected CRIP1 expression in 26 pairs of epithelial ovarian cancer tissue samples by immunohistochemistry (IHC) and performed a correlation analysis between CRIP1 and the clinicopathological features. In addition, epithelial ovarian cancer cell lines A2780 and OVCAR3 were used to examine CRIP1 expression by western blot and qRT-PCR. Various cell function experiments related to tumorigenesis were performed including the CCK8 assay, EdU, Annexin V-FITC/PI apoptosis assay, wound healing, and Transwell assay. In addition, the expression of epithelial-mesenchymal transition (EMT) markers was detected by western blot to illustrate the relationship between CRIP1 and EMT. Furthermore, KEGG pathway enrichment analysis and western blot were conducted to reveal the signaling pathways in which CRIP1 is involved in ovarian cancer pathogenesis. Results CRIP1 was identified as an oncogene from the TCGA database. The IHC score demonstrated that the CRIP1 protein was expressed at a higher level in tumours than in tumour-adjacent tissues and was associated with a higher pathological stage, grade, and positive lymphatic metastasis. In cell models, CRIP1 was overexpressed in serous epithelial ovarian cancer. Cell function experiments showed that the knockdown of CRIP1 did not significantly affect cell proliferation or apoptosis but could exert an inhibitory effect on cell migration and invasion, and also induce changes in EMT markers. Furthermore, KEGG pathway enrichment analysis and western blot showed that CRIP1 could induce ovarian cancer cell metastasis through activation of the Wnt/β-catenin pathway. Conclusion This study is the first to demonstrate that CRIP1 acts as an oncogene and may promote tumour metastasis by regulating the EMT-related Wnt/β-catenin signaling pathway, suggesting that CRIP1 may be an important biomarker for ovarian cancer metastasis and progression.
Collapse
|
24
|
Pan X, Liu JH. Identification of four key biomarkers and small molecule drugs in nasopharyngeal carcinoma by weighted gene co-expression network analysis. Bioengineered 2021; 12:3647-3661. [PMID: 34261404 PMCID: PMC8806459 DOI: 10.1080/21655979.2021.1949844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a heterogeneous carcinoma whose underlying molecular mechanisms involved in tumor initiation, progression, and migration are largely unclear. The aim of the present study was to identify key biomarkers and small-molecule drugs for screening, diagnosing, and treating NPC via gene expression profile analysis. Raw microarray data was used to identify 430 differentially expressed genes (DEGs) in the Gene Expression Omnibus (GEO) database. The key modules associated with histological grade and tumor stage were identified using weighted gene co-expression network analysis. qRT-PCR was used to verify the differential expression of hub genes. Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and the connectivity map database were used to identify potential mechanisms and screen small-molecule drugs targeting hub genes. Functional enrichment analysis showed that genes in the green module were enriched in the regulation of cell cycle, p53 signaling pathway, and cell part morphogenesis. Four DEG-related hub genes (CRIP1, KITLG, MARK1, and PGAP1) in the green module, which were considered potential diagnostic biomarkers, were taken as the final hub genes. The expression levels of these four hub genes were verified via qRT-PCR, and the results were consistent with findings from the GEO analysis. Screening was also conducted to identify small-molecule drugs with potential therapeutic effects against NPC. In conclusion, four potential prognostic biomarkers and several candidate small-molecule drugs, which may provide new insights for NPC therapy, were identified.
Collapse
Affiliation(s)
- Xi Pan
- Department of Oncology, Xiangya Third Hospital, Central South University, Changsha, China
| | - Jian-Hao Liu
- School of Pharmaceutical Sciences of Central South University, Changsha, 410078, China
| |
Collapse
|
25
|
Yang Z, Mattingly BC, Hall DH, Ackley BD, Buechner M. Terminal web and vesicle trafficking proteins mediate nematode single-cell tubulogenesis. J Cell Biol 2020; 219:e202003152. [PMID: 32860501 PMCID: PMC7594493 DOI: 10.1083/jcb.202003152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/15/2020] [Accepted: 08/03/2020] [Indexed: 11/22/2022] Open
Abstract
Single-celled tubules represent a complicated structure that forms during development, requiring extension of a narrow cytoplasm surrounding a lumen exerting osmotic pressure that can burst the luminal membrane. Genetic studies on the excretory canal cell of Caenorhabditis elegans have revealed many proteins that regulate the cytoskeleton, vesicular transport, and physiology of the narrow canals. Here, we show that βH-spectrin regulates the placement of intermediate filament proteins forming a terminal web around the lumen, and that the terminal web in turn retains a highly conserved protein (EXC-9/CRIP1) that regulates apical endosomal trafficking. EXC-1/IRG, the binding partner of EXC-9, is also localized to the apical membrane and affects apical actin placement and RAB-8-mediated vesicular transport. The results suggest that an intermediate filament protein acts in a novel pathway to direct the traffic of vesicles to locations of lengthening apical surface during single-celled tubule development.
Collapse
Affiliation(s)
- Zhe Yang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | | | - David H. Hall
- Center for C. elegans Anatomy, Albert Einstein College of Medicine, Bronx, NY
| | - Brian D. Ackley
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Matthew Buechner
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| |
Collapse
|
26
|
Zhang WL, Wang SS, Jiang YP, Liu Y, Yu XH, Wu JB, Wang K, Pang X, Liao P, Liang XH, Tang YL. Fatty acid synthase contributes to epithelial-mesenchymal transition and invasion of salivary adenoid cystic carcinoma through PRRX1/Wnt/β-catenin pathway. J Cell Mol Med 2020; 24:11465-11476. [PMID: 32820613 PMCID: PMC7576276 DOI: 10.1111/jcmm.15760] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023] Open
Abstract
Fatty acid synthase (FASN) has been shown to be selectively up‐regulated in cancer cells to drive the development of cancer. However, the role and associated mechanism of FASN in regulating the malignant progression of salivary adenoid cystic carcinoma (SACC) still remains unclear. In this study, we demonstrated that FASN inhibition attenuated invasion, metastasis and EMT of SACC cells as well as the expression ofPRRX1, ZEB1, Twist, Slug and Snail, among which the level of PRRX1 changed the most obviously. Overexpression of PRRX1 restored migration and invasion in FASN knockdown cells, indicating that PRRX1 is an important downstream target of FASN signalling. Levels of cyclin D1 and c‐Myc, targets of Wnt/β‐catenin pathway, were significantly decreased by FASN silencing and restored by PRRX1 overexpression. In addition, FASN expression was positively associated with metastasis and poor prognosis of SACC patients as well as with the expression of PRRX1, cyclin D1 and c‐Myc in SACC tissues. Our findings revealed that FASN in SACC progression may induce EMT in a PRRX1/Wnt/β‐catenin dependent manner.
Collapse
Affiliation(s)
- Wei-Long Zhang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Sha-Sha Wang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Ping Jiang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China.,Department of Implant, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan Liu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xiang-Hua Yu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Jing-Biao Wu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ke Wang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin Pang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Peng Liao
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Xin-Hua Liang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| | - Ya-Ling Tang
- Department of Oral Pathology, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology (Sichuan University), Chengdu Sichuan, China
| |
Collapse
|
27
|
Wang B, Li X, Liu L, Wang M. β-Catenin: oncogenic role and therapeutic target in cervical cancer. Biol Res 2020; 53:33. [PMID: 32758292 PMCID: PMC7405349 DOI: 10.1186/s40659-020-00301-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/28/2020] [Indexed: 12/23/2022] Open
Abstract
Cervical cancer is a common and fatal malignancy of the female reproductive system. Human papillomavirus (HPV) is the primary causal agent for cervical cancer, but HPV infection alone is insufficient to cause the disease. Actually, most HPV infections are sub-clinical and cleared spontaneously by the host immune system; very few persist and eventually develop into cervical cancer. Therefore, other host or environmental alterations could also contribute to the malignant phenotype. One of the candidate co-factors is the β-catenin protein, a pivotal component of the Wnt/β-catenin signaling pathway. β-Catenin mainly implicates two major cellular activities: cell–cell adhesion and signal transduction. Recent studies have indicated that an imbalance in the structural and signaling properties of β-catenin leads to various cancers, such as cervical cancer. In this review, we will systematically summarize the role of β-catenin in cervical cancer and provide new insights into therapeutic strategies.
Collapse
Affiliation(s)
- Bingqi Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Lei Liu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
28
|
Lan C, Huan DW, Nie XC, Niu JM, Sun JH, Huang WJ, Li ZH, Xu HT. Association of C8orf4 expression with its methylation status, aberrant β-catenin expression, and the development of cervical squamous cell carcinoma. Medicine (Baltimore) 2019; 98:e16715. [PMID: 31374065 PMCID: PMC6708959 DOI: 10.1097/md.0000000000016715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 05/23/2019] [Accepted: 07/11/2019] [Indexed: 12/24/2022] Open
Abstract
Chromosome 8 open reading frame 4 (C8orf4) is an activator of Wnt signaling pathway, and participates in the tumorigenesis and progression of many tumors. The expression levels of C8orf4 and β-catenin were assessed via immunohistochemical staining in 100 cervical squamous cell carcinoma (CSCC) tissues, 50 high-grade squamous intraepithelial lesions (HSILs), 50 low-grade squamous intraepithelial lesions (LSILs), and 50 normal cervical tissues. Bisulfite sequencing polymerase chain reaction analysis was used to examine the methylation status of the C8orf4 locus in CSCC and normal cervical tissues. The expression rates of C8orf4 and β-catenin were significantly higher in CSCCs or HSILs than in LSILs or normal cervical tissues (P < .05). C8orf4 expression was positively correlated with the poor differentiation of CSCCs (P = .009), and with aberrant expression of β-catenin in CSCCs (P = .002) and squamous intraepithelial lesions (P < .001). The methylation rate of C8orf4 in CSCCs was significantly lower than that in normal cervical tissues (P = .001). The Cancer Genome Atlas genomics data also confirmed that the mRNA expression of C8orf4 was positively associated with the copy number alteration of C8orf4 (correlation coefficient = 0.213, P < .001), and negatively correlated with the methylation level of C8orf4 (correlation coefficient = -0.408, P < .001). In conclusion, the expressions of C8orf4 and β-catenin were synergistically increased in CSCCs and HSILs and higher than those in LSILs and normal cervical tissues. The methylation level of C8orf4 is decreased in CSCCs and is responsible for the increased expression of C8orf4.
Collapse
Affiliation(s)
| | - Da-Wei Huan
- Department of Pathology, Shenyang Women and Children's Hospital
| | | | | | | | - Wen-Jing Huang
- Department of Pathology, the First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Zhi-Han Li
- Department of Pathology, the First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| | - Hong-Tao Xu
- Department of Pathology, the First Hospital and College of Basic Medical Sciences of China Medical University, Shenyang, China
| |
Collapse
|
29
|
Gilmour J, O'Connor L, Middleton CP, Keane P, Gillemans N, Cazier JB, Philipsen S, Bonifer C. Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors. Epigenetics Chromatin 2019; 12:33. [PMID: 31164147 PMCID: PMC6547542 DOI: 10.1186/s13072-019-0282-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/25/2019] [Indexed: 01/13/2023] Open
Abstract
Background Both tissue-specific and ubiquitously expressed transcription factors, such as Sp-family members, are required for correct development. However, the molecular details of how ubiquitous factors are involved in programming tissue-specific chromatin and thus participate in developmental processes are still unclear. We previously showed that embryonic stem cells lacking Sp1 DNA-binding activity (Sp1ΔDBD/ΔDBD cells) are able to differentiate into early blood progenitors despite the inability of Sp1 to bind chromatin without its DNA-binding domain. However, gene expression during differentiation becomes progressively deregulated, and terminal differentiation is severely compromised. Results Here, we studied the cooperation of Sp1 with its closest paralogue Sp3 in hematopoietic development and demonstrate that Sp1 and Sp3 binding sites largely overlap. The complete absence of either Sp1 or Sp3 or the presence of the Sp1 DNA-binding mutant has only a minor effect on the pattern of distal accessible chromatin sites and their transcription factor binding motif content, suggesting that these mutations do not affect tissue-specific chromatin programming. Sp3 cooperates with Sp1ΔDBD/ΔDBD to enable hematopoiesis, but is unable to do so in the complete absence of Sp1. Using single-cell gene expression analysis, we show that the lack of Sp1 DNA binding leads to a distortion of cell fate decision timing, indicating that stable chromatin binding of Sp1 is required to maintain robust differentiation trajectories. Conclusions Our findings highlight the essential contribution of ubiquitous factors such as Sp1 to blood cell development. In contrast to tissue-specific transcription factors which are required to direct specific cell fates, loss of Sp1 leads to a widespread deregulation in timing and coordination of differentiation trajectories during hematopoietic specification. Electronic supplementary material The online version of this article (10.1186/s13072-019-0282-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jane Gilmour
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Leigh O'Connor
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Christopher P Middleton
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.,Centre for Computational Biology, University of Birmingham, Birmingham, UK
| | - Peter Keane
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Nynke Gillemans
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
30
|
Jiang J, Li Y, Jiang Z. Effects of LDOC1 on colorectal cancer cells via downregulation of the Wnt/β-catenin signaling pathway. Oncol Rep 2019; 41:3281-3291. [PMID: 31002361 PMCID: PMC6488979 DOI: 10.3892/or.2019.7126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/03/2019] [Indexed: 01/20/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumor types of the digestive tract. Its incidence and mortality rates are among the highest of all gastrointestinal tumor types. The expression of leucine zipper downregulated in cancer 1 (LDOC1) is decreased in numerous cancer types. In the present study, the aim was to investigate the role of LDOC1 and determine the potential molecular mechanisms of its action in CRC. The expression of LDOC1 in CRC tissues and adjacent normal tissues was detected by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry. LDOC1 expression in four CRC cell lines, compared with normal colorectal tissue, was determined by reverse transcription- polymerase chain reaction (RT-PCR), and two cell lines with relatively low expression were screened. Human LDOC1 cDNA was inserted into a lentiviral vector, and transfected into HCT-116 and Caco2 cell lines. The transfection efficiency was identified by RT-PCR and western blot analysis. Cell proliferation was detected by Cell Counting Kit-8 and colony formation assays. Cell cycle and apoptosis were detected by flow cytometry assay. Migration and invasion were assessed using Transwell and Matrigel assays, respectively. Additionally, whether LDOC1 regulates the Wnt/β-catenin pathway was investigated by western blot analysis, and the expression and localization of β-catenin in CRC cells were demonstrated by cellular immunofluorescence. LDOC1 expression was downregulated in CRC tissues and cells. LDOC1 overexpression inhibited cell proliferation, migration and invasion, but promoted cells apoptosis. Furthermore, LDOC1 downregulated the Wnt/β-catenin pathway in CRC. In conclusion, LDOC1 is a tumor suppressor in CRC and it inhibits cell proliferation and promotes cell apoptosis. Additionally, it inhibits CRC cell metastasis by downregulating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Jiayi Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - You Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zheng Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
31
|
The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep 2019; 39:BSR20181377. [PMID: 30833362 PMCID: PMC6418402 DOI: 10.1042/bsr20181377] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 02/18/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) with early metastasis of the primary tumor results in poor prognosis and poor therapeutic outcomes. MicroRNAs (miRNAs) are small, noncoding RNA molecules that play a substantial role in regulating gene expression post-transcriptionally and influence the development and progression of tumors. Numerous studies have discovered that miRNAs play significant roles in the invasion and metastasis of CC by affecting specific pathways, including Notch, Wnt/β-catenin, and phosphoinositide-3 kinase (PI3K)-Akt pathways. miRNAs also effectively modulate the process of epithelial–mesenchymal transition. Many studies provide new insights into the role of miRNAs and the pathogenesis of metastatic CC. In this review, we will offer an overview and update of our present understanding of the potential roles of miRNAs in metastatic CC.
Collapse
|