1
|
Zhou Y, Suo W, Zhang X, Liang J, Zhao W, Wang Y, Li H, Ni Q. Targeting mitochondrial quality control for diabetic cardiomyopathy: Therapeutic potential of hypoglycemic drugs. Biomed Pharmacother 2023; 168:115669. [PMID: 37820568 DOI: 10.1016/j.biopha.2023.115669] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023] Open
Abstract
Diabetic cardiomyopathy is a chronic cardiovascular complication caused by diabetes that is characterized by changes in myocardial structure and function, ultimately leading to heart failure and even death. Mitochondria serve as the provider of energy to cardiomyocytes, and mitochondrial dysfunction plays a central role in the development of diabetic cardiomyopathy. In response to a series of pathological changes caused by mitochondrial dysfunction, the mitochondrial quality control system is activated. The mitochondrial quality control system (including mitochondrial biogenesis, fusion and fission, and mitophagy) is core to maintaining the normal structure of mitochondria and performing their normal physiological functions. However, mitochondrial quality control is abnormal in diabetic cardiomyopathy, resulting in insufficient mitochondrial fusion and excessive fission within the cardiomyocyte, and fragmented mitochondria are not phagocytosed in a timely manner, accumulating within the cardiomyocyte resulting in cardiomyocyte injury. Currently, there is no specific therapy or prevention for diabetic cardiomyopathy, and glycemic control remains the mainstay. In this review, we first elucidate the pathogenesis of diabetic cardiomyopathy and explore the link between pathological mitochondrial quality control and the development of diabetic cardiomyopathy. Then, we summarize how clinically used hypoglycemic agents (including sodium-glucose cotransport protein 2 inhibitions, glucagon-like peptide-1 receptor agonists, dipeptidyl peptidase-4 inhibitors, thiazolidinediones, metformin, and α-glucosidase inhibitors) exert cardioprotective effects to treat and prevent diabetic cardiomyopathy by targeting the mitochondrial quality control system. In addition, the mechanisms of complementary alternative therapies, such as active ingredients of traditional Chinese medicine, exercise, and lifestyle, targeting mitochondrial quality control for the treatment of diabetic cardiomyopathy are also added, which lays the foundation for the excavation of new diabetic cardioprotective drugs.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Jiaojiao Liang
- Zhengzhou Shuqing Medical College, Zhengzhou 450064, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Yue Wang
- Capital Medical University, Beijing 100069, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
2
|
Qin J, Guo S, Yang J, Qazi IH, Pan B, Lv T, Zang S, Fang Y, Zhou G. Melatonin Promotes in vitro Development of Vitrified-Warmed Mouse GV Oocytes, Potentially by Modulating Phosphorylation of Drp1. Front Vet Sci 2021; 8:752001. [PMID: 34631868 PMCID: PMC8497800 DOI: 10.3389/fvets.2021.752001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/30/2021] [Indexed: 12/03/2022] Open
Abstract
Previous studies have shown that melatonin can mitigate cryopreservation-induced mitochondrial dysfunction in oocytes; however, the underlying molecular mechanism remains unclear. The objective of the present study was to investigate whether melatonin can improve the mitochondrial function during in vitro maturation of vitrified-warmed mouse germinal vesicle (GV) oocytes by modulating phosphorylation of dynamin related protein 1 (Drp1). Vitrification/warming procedures resulted in the following: (1) After cryopreservation of mouse GV oocytes, the phosphorylation level of Drp1 at Ser616 (p-Drp1 Ser616) in metaphase II (MII) oocytes was increased (P < 0.05). Furthermore, the rates of in vitro maturation, cleavage and blastocyst formation after parthenogenetic activation were decreased (P < 0.05). (2) In MII oocytes, the expression levels of translocase of the mitochondrial outer membrane 20 (TOMM20), mitochondrial membrane potential (MMP), adenosine triphosphate (ATP) content, and mRNA levels of mitochondrial biogenesis-related genes (Sirt1, Pgc-1α, Tfam) were all decreased (P < 0.05), and (3) Reactive oxygen species (ROS) level, early apoptosis level, Cytochrome C release and mRNA levels of pro-apoptotic related genes (Bax, Caspase9, Caspase3) in MII oocytes were all increased (P < 0.05). The results of this study further revealed that negative impacts of GV oocyte cryopreservation were mitigated by supplementation of warming and in vitro maturation media with 10−7mol /L melatonin or 2 x 10−5mol/L Mdivi-1 (Drp1 inhibitor). Therefore, we concluded that 10−7mol/L melatonin improved mitochondrial function, reduced oxidative stress and inhibited apoptosis by regulating phosphorylation of Drp1, thereby enhancing in vitro development of vitrified-warmed mouse GV oocytes.
Collapse
Affiliation(s)
- Jianpeng Qin
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shichao Guo
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Jinyu Yang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Izhar Hyder Qazi
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand, Pakistan
| | - Bo Pan
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Tianyi Lv
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shengqin Zang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yi Fang
- Department of Grassland Resources and Animal Husbandry, Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agoecology, Chinese Academy of Sciences, Changchun, China
| | - Guangbin Zhou
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Sampaio‐Pinto V, Janssen J, Chirico N, Serra M, Alves PM, Doevendans PA, Voets IK, Sluijter JPG, van Laake LW, van Mil A. A Roadmap to Cardiac Tissue-Engineered Construct Preservation: Insights from Cells, Tissues, and Organs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008517. [PMID: 34048090 PMCID: PMC11468174 DOI: 10.1002/adma.202008517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Worldwide, over 26 million patients suffer from heart failure (HF). One strategy aspiring to prevent or even to reverse HF is based on the transplantation of cardiac tissue-engineered (cTE) constructs. These patient-specific constructs aim to closely resemble the native myocardium and, upon implantation on the diseased tissue, support and restore cardiac function, thereby preventing the development of HF. However, cTE constructs off-the-shelf availability in the clinical arena critically depends on the development of efficient preservation methodologies. Short- and long-term preservation of cTE constructs would enable transportation and direct availability. Herein, currently available methods, from normothermic- to hypothermic- to cryopreservation, for the preservation of cardiomyocytes, whole-heart, and regenerative materials are reviewed. A theoretical foundation and recommendations for future research on developing cTE construct specific preservation methods are provided. Current research suggests that vitrification can be a promising procedure to ensure long-term cryopreservation of cTE constructs, despite the need of high doses of cytotoxic cryoprotective agents. Instead, short-term cTE construct preservation can be achieved at normothermic or hypothermic temperatures by administration of protective additives. With further tuning of these promising methods, it is anticipated that cTE construct therapy can be brought one step closer to the patient.
Collapse
Affiliation(s)
- Vasco Sampaio‐Pinto
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Jasmijn Janssen
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Nino Chirico
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Margarida Serra
- IBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Paula M. Alves
- IBETInstituto de Biologia Experimental e TecnológicaApartado 12Oeiras2781‐901Portugal
- Instituto de Tecnologia Química e Biológica António XavierUniversidade Nova de LisboaAv. da RepúblicaOeiras2780‐157Portugal
| | - Pieter A. Doevendans
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Netherlands Heart InstituteP.O. Box 19258Utrecht3501 DGThe Netherlands
| | - Ilja K. Voets
- Laboratory of Self‐Organizing Soft MatterDepartment of Chemical Engineering and Chemistry & Institute of Complex Molecular Systems (ICMS)Eindhoven University of Technology (TUE)Groene Loper 3Eindhoven5612 AEThe Netherlands
| | - Joost P. G. Sluijter
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Linda W. van Laake
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| | - Alain van Mil
- Department of CardiologyExperimental Cardiology LaboratoryUniversity Medical Center UtrechtUtrecht UniversityHeidelberglaan 100Utrecht3584 CXThe Netherlands
- Regenerative Medicine CenterUniversity Medical Center UtrechtUppsalalaan 8Utrecht3584 CTThe Netherlands
| |
Collapse
|
4
|
Ideishi A, Suematsu Y, Tashiro K, Morita H, Kuwano T, Tomita S, Nakai K, Miura SI. Combination of Linagliptin and Empagliflozin Preserves Cardiac Systolic Function in an Ischemia-Reperfusion Injury Mice With Diabetes Mellitus. Cardiol Res 2021; 12:91-97. [PMID: 33738012 PMCID: PMC7935637 DOI: 10.14740/cr1194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/10/2020] [Indexed: 01/11/2023] Open
Abstract
Background Sodium-glucose co-transporter 2 inhibitor (SGLT2i) and dipeptidyl peptidase 4 inhibitor (DPP4i) are oral hypoglycemic agents. Although SGLT2i has been shown having the beneficial effects on heart failure in basic and clinical studies, the combined effects of SGLT2i and DPP4i have not been established well. We investigated the effects of SGLT2i and DPP4i against diabetes mice model of myocardial ischemia-reperfusion injury. Methods Streptozotocin-induced diabetic C57BL/6J mice were divided into control (vehicle), empagliflozin (30 mg/kg/day), linagliptin (3 mg/kg/day) and combination (30 mg/kg/day and 3 mg/kg/day, respectively) groups. After 7 days of drug administration, 30 min of myocardial ischemia was performed. We investigated body weight, heart weight, blood glucose, and cardiac functions by pressure-volume Millar catheter followed by 28 days of additional drug administration. Results Blood glucose levels, body weight, and heart weight were not significantly different between the groups. In Millar catheter analysis, left ventricular volume at the peak left ventricular ejection rate which is one of the cardiac systolic parameters in combination group was significantly preserved than that in control (P = 0.036). The cardiac index in the combination group tended to be preserved compared to that in the control (P = 0.06). The pathological fibrotic area in the left ventricle in the combination group also tended to be smaller (P = 0.08). Conclusions Combination therapy with linagliptin and empagliflozin preserved cardiac systolic function on the diabetes mice model of myocardial ischemia-reperfusion injury independent of blood glucose levels.
Collapse
Affiliation(s)
- Akihito Ideishi
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan.,Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.,These authors were equally contributed as first authors
| | - Yasunori Suematsu
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan.,These authors were equally contributed as first authors
| | - Kohei Tashiro
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Hidetaka Morita
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Takashi Kuwano
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Sayo Tomita
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Kanji Nakai
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Shin-Ichiro Miura
- Department of Cardiology, Fukuoka University School of Medicine, 7-45-1, Nanakuma, Jonan-ku, Fukuoka, Japan.,Department of Cardiology, Fukuoka University Nishijin Hospital, Fukuoka, Japan
| |
Collapse
|