1
|
Ma W, Wang L, Pan Y, Wang M, Wang J, Feng M, Wang J, Zhang H, Zhang R, Jiao Z, Cui Y, Yu S. Beclin1 regulates yak endometrial inflammation and TLR4/NF-κB signaling pathway through autophagy/non-autophagy function. Int Immunopharmacol 2025; 147:113940. [PMID: 39764999 DOI: 10.1016/j.intimp.2024.113940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/15/2024] [Accepted: 12/22/2024] [Indexed: 01/29/2025]
Abstract
Beclin1 is an autophagy related factor, and it is capable of mediating non-autophagy functions, too. Yak endometritis represents a significant obstetric ailment that impedes the normal breeding process. The current understanding of the beclin1 effect on endometrial inflammation in yak remains limited. Accordingly, this study initially examined the expression profile of beclin1 in yak endometritis in vitro and vivo. Subsequently, the beclin1 was targeted inhibit through small interfering RNA (siRNA), with the objective of elucidating the regulatory function of beclin1 in yak endometritis. The findings reveal that expression of beclin1 in inflammatory tissues of yak endometrium is markedly elevate in comparison to control group, and predominant localization in the cytoplasm of the endometrium and uterine glands. 1 µg/mL Lipopolysaccharide (LPS) was demonstrated to induce yak endometrial epithelial cells (YEECs) inflammation and increase the expression of beclin1. YEECs are disposed with 1 μg/mL LPS, resulting in a gradual increase of p62 expression from 0 h to 6 h, and significant decrease at 12 h, at 9 h to 12 h the expression of LC3 significant increase. These findings indicate that LPS impairs autophagy during the initial stages of inflammation, complete autophagy is occurred in cells during the subsequent phase. Initial stages of inflammation, inhibit beclin1 result significantly reduced expression of inflammatory factors (TNF-α and IL-1β) and TLR4/NF-κB signaling pathway (p65, IκBα phosphorylation, p65 nuclear translocation) compared to the control group. When complete autophagy occurred, inhibit beclin1 inhibit autophagy, result in a significantly higher expression of inflammatory factors (TNF-α and IL-1β) and TLR4/NF-κB signaling pathway than the control group. In conclusion, this study demonstrates for the beclin1 exerts both autophagic and non-autophagic functions during the inflammatory process in YEECs, making it become a potential target for the cure and diagnosis of various yak endometritis.
Collapse
Affiliation(s)
- Wenbin Ma
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Libin Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Yangyang Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Meng Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Jinglei Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Min Feng
- College of Animal Science and Technology, Ningxia University, Yinchuan, China
| | - Junqian Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Hui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Rui Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Zhengxing Jiao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China.
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Innovation Centre for Livestock Embryo Engineering and Technology, Lanzhou, China.
| |
Collapse
|
2
|
Leal E, Angotzi AR, Gregório SF, Ortiz-Delgado JB, Rotllant J, Fuentes J, Tafalla C, Cerdá-Reverter JM. Role of the melanocortin system in zebrafish skin physiology. FISH & SHELLFISH IMMUNOLOGY 2022; 130:591-601. [PMID: 36150411 DOI: 10.1016/j.fsi.2022.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The agouti-signaling protein (ASIP) acts as both a competitive antagonist and inverse agonist of melanocortin receptors which regulate dorsal-ventral pigmentation patterns in fish. However, the potential role of ASIP in the regulation of additional physiological pathways in the skin is unknown. The skin plays a crucial role in the immune function, acting as a physical limitation against infestation and also as a chemical barrier due to its ability to synthesize and secrete mucus and many immune effector proteins. In this study, the putative role of ASIP in regulating the immune system of skin has been explored using a transgenic zebrafish model overexpressing the asip1 gene (ASIPzf). Initially, the structural changes in skin induced by asip1 overexpression were studied, revealing that the ventral skin of ASIPzf was thinner than that of wild type (WT) animals. A moderate hypertrophy of mucous cells was also found in ASIPzf. Histochemical studies showed that transgenic animals appear to compensate for the lower number of cell layers by modifying the mucus composition and increasing lectin affinity and mucin content in order to maintain or improve protection against microorganism adhesion. ASIPzf also exhibit higher protein concentration under crowding conditions suggesting an increased mucus production under stressful conditions. Exposure to bacterial lipopolysaccharide (LPS) showed that ASIPzf exhibit a faster pro-inflammatory response and increased mucin expression yet severe skin injures and a slight increase in mortality was observed. Electrophysiological measurements show that the ASIP1 genotype exhibits reduced epithelial resistance, an indicator of reduced tissue integrity and barrier function. Overall, not only are ASIP1 animals more prone to infiltration and subsequent infections due to reduced skin epithelial integrity, but also display an increased inflammatory response that can lead to increased skin sensitivity to external infections.
Collapse
Affiliation(s)
- E Leal
- Department of Fish Physiology and Biotechnology, Institute of Aquiculture de Torre de la Sal, IATS-CSIC, 12595, Castellon, Spain.
| | - A R Angotzi
- Department of Fish Physiology and Biotechnology, Institute of Aquiculture de Torre de la Sal, IATS-CSIC, 12595, Castellon, Spain
| | - S F Gregório
- Centre of Marine Sciences (CCMar), Universidade do Algarve Campus de Gambelas, 8005-139, Faro, Portugal
| | - J B Ortiz-Delgado
- Instituto de Ciencias Marinas de Andalucía-ICMAN, CSIC Campus Universitario Río San Pedro, 11510, Puerto Real, Cádiz, Spain
| | - J Rotllant
- Instituto de Investigaciones Marinas (IIM), CSIC, 36208, Vigo, Spain
| | - J Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve Campus de Gambelas, 8005-139, Faro, Portugal
| | - C Tafalla
- Animal Health Research Center (CISA-INIA-CSIC), Valdeolmos, 28130, Madrid, Spain
| | - J M Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Institute of Aquiculture de Torre de la Sal, IATS-CSIC, 12595, Castellon, Spain.
| |
Collapse
|
3
|
Račková L, Csekes E. Redox aspects of cytotoxicity and anti-neuroinflammatory profile of chloroquine and hydroxychloroquine in serum-starved BV-2 microglia. Toxicol Appl Pharmacol 2022; 447:116084. [PMID: 35618033 DOI: 10.1016/j.taap.2022.116084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Chloroquine (CQ) and hydroxychloroquine (HCQ) have long been used worldwide to treat and prevent human malarias. However, these 4-aminoquinolines have also shown promising potential in treating chronic illnesses with an inflammatory component, including neurological diseases. Given the current demand for serum avoidance during pharmacological testing and modeling of some pathologies, we compared cytotoxicities of CQ and HCQ in both serum-deprived and -fed murine BV-2 microglia. Furthermore, we assessed the anti-neuroinflammatory potential of both compounds in serum-deprived cells. Under both conditions, CQ showed higher cytotoxicity than HCQ. However, the comparable MTT-assay-derived data measured under different serum conditions were associated with disparate cytotoxic mechanisms of CQ and HCQ. In particular, under serum starvation, CQ mildly enhanced secondary ROS, mitochondrial hyperpolarization, and decreased phagocytosis. However, CQ promoted G1 phase cell cycle arrest and mitochondrial depolarization in serum-fed cells. Under both conditions, CQ fostered early apoptosis. Additionally, we confirmed that both compounds could exert anti-inflammatory effects in microglia through interference with MAPK signaling under nutrient-deprivation-related stress. Nevertheless, unlike HCQ, CQ is more likely to exaggerate intracellular prooxidant processes in activated starved microglia, which are inefficiently buffered by Nrf2/HO-1 signaling pathway activation. These outcomes also show HCQ as a promising anti-neuroinflammatory drug devoid of CQ-mediated cytotoxicity.
Collapse
Affiliation(s)
- Lucia Račková
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic.
| | - Erika Csekes
- Centre of Experimental Medicine, Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic
| |
Collapse
|
4
|
Li A, Zhao F, Zhao Y, Liu H, Wang Z. ATF4-mediated GDF15 suppresses LPS-induced inflammation and MUC5AC in human nasal epithelial cells through the PI3K/Akt pathway. Life Sci 2021; 275:119356. [PMID: 33737080 DOI: 10.1016/j.lfs.2021.119356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/06/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022]
Abstract
AIMS Growth and differentiation factor 15 (GDF15) is a stress-related factor, which implicated in various diseases. This study aimed to investigate the role of GDF15 in LPS-mediated inflammation and to explore the potential underlying molecular mechanisms in human nasal epithelial cells (HNEpCs). MAIN METHODS HNEpCs were treated with LPS. GDF15 loss-of-function and gain-of-function experiments were performed. The expression of GDF15 by quantitative real-time PCR (RT-qPCR). The mRNA levels and secretion of inflammatory cytokines and MUC5AC were assessed by RT-qPCR and ELISA kits. LY294002 (PI3K inhibitor) and 740Y-P (PI3K agonist) were utilized to interfere with PI3k/Akt pathway. The relationship between GDF15 and ATF4 was identified by chromatin immunoprecipitation (ChIP) and luciferase reporter assay. KEY FINDINGS We observed that LPS triggered GDF15 expression. GDF15 ablation reduced the mRNA levels and secretion of inflammatory cytokines. GDF15 silencing led to the reduction of the MUC5AC mRNA level, protein level and secretion in response to LPS. Enhanced expression of GDF15 showed the opposite results. Furthermore, we found that GDF15 deficiency inhibited activation of the PI3K/Akt pathway, LY294002 treatment further enhanced the role of GDF15 suppression in inflammation and MUC5AC expression, while 740Y-P administration partly reversed the biological activities of GDF15 silencing. ATF4 could bind to the promoter of GDF15 and positively regulate GDF15 expression. Depression of ATF4 diminished the secretion of inflammatory cytokines and MUC5AC via regulation of GDF15. SIGNIFICANCE Our data suggest that GDF15 is regulated by ATF4 and suppresses LPS-induced inflammation and MUC5AC in human nasal epithelial cells through the PI3K/Akt pathway.
Collapse
Affiliation(s)
- An Li
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, PR China
| | - Fangfang Zhao
- Department of Medical Imaging, Chang'an Hospital, Xi'an 710016, Shaanxi, PR China
| | - Yuxiang Zhao
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, PR China
| | - Hui Liu
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, PR China
| | - Zhou Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, Shaanxi, PR China.
| |
Collapse
|
5
|
Wu Y, Jin Y, Sun T, Zhu P, Li J, Zhang Q, Wang X, Jiang J, Chen G, Zhao X. p62/SQSTM1 accumulation due to degradation inhibition and transcriptional activation plays a critical role in silica nanoparticle-induced airway inflammation via NF-κB activation. J Nanobiotechnology 2020; 18:77. [PMID: 32429946 PMCID: PMC7236097 DOI: 10.1186/s12951-020-00634-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Most nanoparticles (NPs) reportedly block autophagic flux, thereby upregulating p62/SQSTM1 through degradation inhibition. p62 also acts as a multifunctional scaffold protein with multiple domains, and is involved in various cellular processes. However, the autophagy substrate-independent role of p62 and its regulation at the transcriptional level upon NPs exposure remain unclear. RESULTS In this work, we exposed BEAS-2b cells and mice to silica nanoparticles (SiNPs), and found that SiNPs increased p62 protein levels in vivo and vitro. Then, we further explored the role and mechanism of SiNPs-stimulated p62 in vitro, and found that p62 degradation was inhibited due to autophagic flux blockade. Mechanistically, SiNPs blocked autophagic flux through impairment of lysosomal capacity rather than defective autophagosome fusion with lysosomes. Moreover, SiNPs stimulated translocation of NF-E2-related factor 2 (Nrf2) to the nucleus from the cytoplasm, which upregulated p62 transcriptional activation through direct binding of Nrf2 to the p62 promoter. Nrf2 siRNA dramatically reduced both the mRNA and protein levels of p62. These two mechanisms led to p62 protein accumulation, thus increasing interleukin (IL)-1 and IL-6 expression. SiNPs activated nuclear factor kappa B (NF-κB), and this effect could be alleviated by p62 knockdown. CONCLUSION SiNPs caused accumulation of p62 through both pre- and post-translational mechanisms, resulting in airway inflammation. These findings improve our understanding of SiNP-induced pulmonary damage and the molecular targets available to mitigate it.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Yang Jin
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Tianyu Sun
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Piaoyu Zhu
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Jinlong Li
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Qinglin Zhang
- Departments of Gastroenterology, Affiliated to Wuxi People's Hospital, Nanjing Medical University, Wuxi, 214023, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Junkang Jiang
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China
| | - Gang Chen
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China.
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, School of Public Health, Nangtong University, Nantong, 226019, China.
| |
Collapse
|
6
|
Autophagy protects against redox-active trace metal-induced cell death in rabbit synovial fibroblasts through Toll-like receptor 4 activation. Exp Cell Res 2019; 374:19-28. [DOI: 10.1016/j.yexcr.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/22/2018] [Accepted: 11/03/2018] [Indexed: 12/18/2022]
|