1
|
Chen M, Wu Z, Zou Y, Peng C, Hao Y, Zhu Z, Shi X, Su B, Ou L, Lai Y, Jia J, Xun M, Li H, Zhu W, Feng Z, Yao M. Phellodendron chinense C.K.Schneid: An in vitro study on its anti-Helicobacter pylori effect. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118396. [PMID: 38823658 DOI: 10.1016/j.jep.2024.118396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Phellodendron chinense C.K.Schneid(P. chinense Schneid) is known in TCM as Huang Bo, is traditionally used to support gastrointestinal function and alleviate stomach-related ailments, including gastric ulcer bleeding and symptoms of gastroesophageal reflux disease. Helicobacter pylori (H. pylori) is classified by the WHO as a Group 1 carcinogen. However, the specific activity and mechanism of action of P. chinense Schneid against H. pylori infection remain unclear. It has been noted that Huangjiu processing may alter the bitter and cold properties of P. chinense Schneid, but its effect on antimicrobial activity requires further investigation. Additionally, it remains uncertain whether berberine is the sole antimicrobial active component of P. chinense Schneid. AIM OF STUDY This study aims to elucidate the anti-H. pylori infection activity of P. chinense Schneid, along with its mechanism of action and key antimicrobial active components. MATERIALS AND METHODS Phytochemical analysis was carried out by UPLC-MS/MS. HPLC was employed to quantify the berberine content of the extracts. Antimicrobial activity was assessed using the micro broth dilution method. Morphology was observed using SEM. The impact on urease activity was analyzed through in vitro urease enzyme kinetics. RT-qPCR was employed to detect the expression of virulence genes, including adhesin, flagellum, urease, and cytotoxin-related genes. The adhesion effect was evaluated by immunofluorescence staining and agar culture. RESULTS P. chinense Schneid exhibited strong antimicrobial activity against both antibiotic-sensitive and resistant H. pylori strains, with MIC ranging from 40 to 160 μg/mL. Combination with amoxicillin, metronidazole, levofloxacin, and clarithromycin did not result in antagonistic effects. P. chinense Schneid induced alterations in bacterial morphology and structure, downregulated the expression of various virulence genes, and inhibited urease enzyme activity. In co-infection systems, P. chinense Schneid significantly attenuated H. pylori adhesion and urease relative content, thereby mitigating cellular damage caused by infection. Huangjiu processing enhanced the anti-H. pylori activity of P. chinense Schneid. Besides berberine, P. chinense Schneid contained seven other components with anti-H. pylori activity, with palmatine exhibiting the strongest activity, followed by jatrorrhizine. CONCLUSIONS This study sheds light on the potential therapeutic mechanisms of P. chinense Schneid against H. pylori infection, demonstrating its capacity to disrupt bacterial structure, inhibit urease activity, suppress virulence gene transcription, inhibit adhesion, and protect host cells. The anti-H. pylori activity of P. chinense Schneid was potentiated by Huangjiu processing, and additional components beyond berberine were identified as possessing strong anti-H. pylori activity. Notably, jatrorrhizine, a core component of P. chinense Schneid, exhibited significant anti-H. pylori activity, marking a groundbreaking discovery.
Collapse
Affiliation(s)
- Meiyun Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ziyao Wu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Yuanjing Zou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Chang Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yajie Hao
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Zhixiang Zhu
- School of Medicine and Pharmacy (Qingdao), Ocean University of China, Qingdao, 266003, China.
| | - Xiaoyan Shi
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Bingmei Su
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Ling Ou
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yuqian Lai
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| | - Junwei Jia
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Mingjin Xun
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Hui Li
- Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Weixing Zhu
- Qingyuan Hospital of Traditional Chinese Medicine, Qingyuan, 511500, China.
| | - Zhong Feng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China; International Pharmaceutical Engineering Lab of Shandong Province, Feixian, 273400, China; Lunan Pharmaceutical Group Co., Ltd, Linyi, 276000, Shandong, China.
| | - Meicun Yao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Feng JH, Chen K, Shen SY, Luo YF, Liu XH, Chen X, Gao W, Tong YR. The composition, pharmacological effects, related mechanisms and drug delivery of alkaloids from Corydalis yanhusuo. Biomed Pharmacother 2023; 167:115511. [PMID: 37729733 DOI: 10.1016/j.biopha.2023.115511] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023] Open
Abstract
Corydalis yanhusuo W. T. Wang, also known as yanhusuo, yuanhu, yanhu and xuanhu, is one of the herb components of many Chinese Traditional Medicine prescriptions such as Jin Ling Zi San and Yuanhu-Zhitong priscription. C. yanhusuo was traditionally used to relieve pain and motivate blood and Qi circulation. Now there has been growing interest in pharmacological effects of alkaloids, the main bioactive components of C. yanhusuo. Eighty-four alkaloids isolated from C. yanhusuo are its important bioactive components and can be characterized into protoberberine alkaloids, aporphine alkaloids, opiate alkaloids and others and proper extraction or co-administration methods modulate their contents and efficacy. Alkaloids from C. yanhusuo have various pharmacological effects on the nervous system, cardiovascular system, cancer and others through multiple molecular mechanisms such as modulating neurotransmitters, ion channels, gut microbiota, HPA axis and signaling pathways and are potential treatments for many diseases. Plenty of novel drug delivery methods such as autologous red blood cells, self-microemulsifying drug delivery systems, nanoparticles and others have also been investigated to better exert the effects of alkaloids from C. yanhusuo. This review summarized the alkaloid components of C. yanhusuo, their pharmacological effects and mechanisms, and methods of drug delivery to lay a foundation for future investigations.
Collapse
Affiliation(s)
- Jia-Hua Feng
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Kang Chen
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Si-Yu Shen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yun-Feng Luo
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xi-Hong Liu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Xin Chen
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Yu-Ru Tong
- School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Marques C, Fernandes MH, Lima SAC. Elucidating Berberine's Therapeutic and Photosensitizer Potential through Nanomedicine Tools. Pharmaceutics 2023; 15:2282. [PMID: 37765251 PMCID: PMC10535601 DOI: 10.3390/pharmaceutics15092282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Berberine, an isoquinoline alkaloid extracted from plants of the Berberidaceae family, has been gaining interest due to anti-inflammatory and antioxidant activities, as well as neuro and cardiovascular protective effects in animal models. Recently, photodynamic therapy demonstrated successful application in many fields of medicine. This innovative, non-invasive treatment modality requires a photosensitizer, light, and oxygen. In particular, the photosensitizer can selectively accumulate in diseased tissues without damaging healthy cells. Berberine's physicochemical properties allow its use as a photosensitising agent for photodynamic therapy, enabling reactive oxygen species production and thus potentiating treatment efficacy. However, berberine exhibits poor aqueous solubility, low oral bioavailability, poor cellular permeability, and poor gastrointestinal absorption that hamper its therapeutic and photodynamic efficacy. Nanotechnology has been used to minimize berberine's limitations with the design of drug delivery systems. Different nanoparticulate delivery systems for berberine have been used, as lipid-, inorganic- and polymeric-based nanoparticles. These berberine nanocarriers improve its therapeutic properties and photodynamic potential. More specifically, they extend its half-life, increase solubility, and allow a high permeation and targeted delivery. This review describes different nano strategies designed for berberine delivery as well as berberine's potential as a photosensitizer for photodynamic therapy. To benefit from berberine's overall potential, nanotechnology has been applied for berberine-mediated photodynamic therapy.
Collapse
Affiliation(s)
- Célia Marques
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal
| | - Maria Helena Fernandes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, LAQV, REQUIMTE, U. Porto, 4200-393 Porto, Portugal
| | - Sofia A. Costa Lima
- IUCS-CESPU, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal;
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
4
|
Wu W, Wang Y, Xie J, Fan S. Empagliflozin: a potential anticancer drug. Discov Oncol 2023; 14:127. [PMID: 37436535 DOI: 10.1007/s12672-023-00719-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/06/2023] [Indexed: 07/13/2023] Open
Abstract
Empagliflozin, a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is a highly effective and well-tolerated antidiabetic drug. In addition to hypoglycemic effects, empagliflozin has many other effects, such as being hypotensive and cardioprotective. It also has anti-inflammatory and antioxidative stress effects in diabetic nephropathy. Several studies have shown that empagliflozin has anticancer effects. SGLT2 is expressed in a variety of cancer cell lines. The SGLT2 inhibitor empagliflozin has significant inhibitory effects on certain types of tumor cells, such as inhibition of proliferation, migration and induction of apoptosis. In conclusion, empagliflozin has promising applications in cancer therapy as a drug for the treatment of diabetes and heart failure. This article provides a brief review of the anticancer effects of empagliflozin.
Collapse
Affiliation(s)
- Wenwen Wu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China
| | - Yanyan Wang
- Department of Ultrasonic Medicine, The First People's Hospital of Xuzhou, Xuzhou Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Jun Xie
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| | - Shaohua Fan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu, 221116, China.
| |
Collapse
|
5
|
Dong Z, Yang J, Tian M, Wang X, Qin X, Huang Q, Wang J. Mechanism of Bile‐Processed Coptidis Rhizoma to Treat Nonalcoholic Fatty Liver Disease in Type 2 Diabetes Mellitus Based on UPLC‐Q‐TOF/MS and Network Pharmacology. ChemistrySelect 2023. [DOI: 10.1002/slct.202204236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Zhaowei Dong
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jingjing Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Maoying Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaoyan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Qinwan Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Pharmacy Chengdu University of Traditional Chinese Medicine Chengdu China
| | - Jin Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources Chengdu University of Traditional Chinese Medicine Chengdu China
- College of Ethnic Medicine Chengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
6
|
Identification of Photocatalytic Alkaloids from Coptidis Rhizome by an Offline HPLC/CC/SCD Approach. Molecules 2022; 27:molecules27196179. [PMID: 36234715 PMCID: PMC9570981 DOI: 10.3390/molecules27196179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
Natural products continue to be a valuable source of active metabolites; however, researchers of natural products are mostly focused on the biological effects, and their chemical utility has been less explored. Furthermore, low throughput is a bottleneck for classical natural product research. In this work, a new offline HPLC/CC/SCD (high performance liquid chromatography followed by co-crystallization and single crystal diffraction) workflow was developed that greatly expedites the discovery of active compounds from crude natural product extracts. The photoactive total alkaloids of the herbal medicine Coptidis rhizome were firstly separated by HPLC, and the individual peaks were collected. A suitable coformer was screened by adding it to the individual peak solution and observing the precipitation, which was then redissolved and used for co-crystallization. Seven new co-crystals were obtained, and all the single crystals were subjected to X-ray diffraction analysis. The molecular structures of seven alkaloids from milligrams of crude extract were resolved within three days. NDS greatly decreases the required crystallization amounts of alkaloids to the nanoscale and enables rapid stoichiometric inclusion of all the major alkaloids with full occupancy, typically without disorder, affording well-refined structures. It is noteworthy that anomalous scattering by the coformer sulfur atoms enables reliable assignment of absolute configuration of stereogenic centers. Moreover, the identified alkaloids were firstly found to be photocatalysts for the green synthesis of benzimidazoles. This study demonstrates a new and green phytochemical workflow that can greatly accelerate natural product discovery from complex samples.
Collapse
|
7
|
Wang S, Wu Y, Liu M, Zhao Q, Jian L. DHW-208, A Novel Phosphatidylinositol 3-Kinase (PI3K) Inhibitor, Has Anti-Hepatocellular Carcinoma Activity Through Promoting Apoptosis and Inhibiting Angiogenesis. Front Oncol 2022; 12:955729. [PMID: 35903690 PMCID: PMC9315107 DOI: 10.3389/fonc.2022.955729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide with high prevalence and lethality. Due to insidious onset and lack of early symptoms, most HCC patients are diagnosed at advanced stages without adequate methods but systemic therapies. PI3K/AKT/mTOR signaling pathway plays a crucial role in the progression and development of HCC. Aberrant activation of PI3K/AKT/mTOR pathway is involved in diverse biological processes, including cell proliferation, apoptosis, migration, invasion and angiogenesis. Therefore, the development of PI3K-targeted inhibitors is of great significance for the treatment of HCC. DHW-208 is a novel 4-aminoquinazoline derivative pan-PI3K inhibitor. This study aimed to assess the therapeutic efficacy of DHW-208 in HCC and investigate its underlying mechanism. DHW-208 could inhibit the proliferation, migration, invasion and angiogenesis of HCC through the PI3K/AKT/mTOR signaling pathway in vitro. Consistent with the in vitro results, in vivo studies demonstrated that DHW-208 elicits an antitumor effect by inhibiting the PI3K/AKT/mTOR-signaling pathway with a high degree of safety in HCC. Therefore, DHW-208 is a candidate compound to be developed as a small molecule PI3K inhibitor for the treatment of HCC, and our study provides a certain theoretical basis for the treatment of HCC and the development of PI3K inhibitors.
Collapse
Affiliation(s)
- Shu Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuting Wu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Mingyue Liu
- Department of Clinical Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Qingchun Zhao
- Department of Pharmacy, China Medical University, Shenyang, China
- *Correspondence: Qingchun Zhao, ; Lingyan Jian,
| | - Lingyan Jian
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Qingchun Zhao, ; Lingyan Jian,
| |
Collapse
|
8
|
Cheng L, Wang T, Gao Z, Wu W, Cao Y, Wang L, Zhang Q. Study on the Protective Effect of Schizandrin B against Acetaminophen-Induced Cytotoxicity in Human Hepatocyte. Biol Pharm Bull 2022; 45:596-604. [DOI: 10.1248/bpb.b21-00965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ling Cheng
- Medical Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Tingting Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine
| | - Zhiling Gao
- Medical Intensive Care Unit, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Wenkai Wu
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Yezhi Cao
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Linghu Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Qi Zhang
- Institute of Surgery, Anhui Academy of Chinese Medicine
| |
Collapse
|
9
|
Zhang B, Gao S, Bao Z, Pan C, Tian Q, Tang Q. MicroRNA-656-3p inhibits colorectal cancer cell migration, invasion, and chemo-resistance by targeting sphingosine-1-phosphate phosphatase 1. Bioengineered 2022; 13:3810-3826. [PMID: 35081855 PMCID: PMC8973708 DOI: 10.1080/21655979.2022.2031420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer presents high rates of recurrence and metastasis, and the occurrence and progression and mechanism of its invasion and metastasis are not fully understood. The expression of miR-656-3p in patient samples and 10 cell lines were measured. Bioinformatic databases were used to predict miRNAs. Protein expressions were examined using Western blot. Transwell assay was used to measure cell migration and invasion. Transplanted tumor model in nude mice was established. Removal of the miR-656-3p by specific knocking-down of this gene promoted the chemo-resistance of colorectal cancer cells. Critically, we identified sphingosine-1-phosphate phosphatase 1 (SGPP1) as a downsteam target of the miR-656-3p, which we first obtained from 199 potential target genes from Targetscan, 200 genes from miRDB and 200 genes from DIANA, respectively. Then, we identified the interaction between SGPP1 and the miR-656-3p on 3’ UTR of SGPP1 gene. Knockdown of SGPP1 greatly suppressed the tumor growth in vivo and epithelial mesenchymal transition process. miR-656-3p could regulate cell proliferation and chemoresistance in the colorectal cancer that associate to downstream target with SGPP1. Along with its downstream molecule, we would like to predict that the SGPP1 associated miR-656-3p could be used to develop early for early diagnostics for CRC oncogenesis.
Collapse
Affiliation(s)
- Baoming Zhang
- Gastrointestinal Department, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China
| | - Shanting Gao
- Gastrointestinal Department, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China
| | - Zengtao Bao
- Gastrointestinal Department, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China
| | - Cheng Pan
- Gastrointestinal Department, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China
| | - Qingshui Tian
- Gastrointestinal Department, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China
| | - Qiang Tang
- Gastrointestinal Department, The First People's Hospital of Lianyungang, Lianyungang City, Jiangsu Province, China
| |
Collapse
|
10
|
He L, Zhong Z, Chen M, Liang Q, Wang Y, Tan W. Current Advances in Coptidis Rhizoma for Gastrointestinal and Other Cancers. Front Pharmacol 2022; 12:775084. [PMID: 35046810 PMCID: PMC8762280 DOI: 10.3389/fphar.2021.775084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a serious disease with an increasing number of reported cases and high mortality worldwide. Gastrointestinal cancer defines a group of cancers in the digestive system, e.g., liver cancer, colorectal cancer, and gastric cancer. Coptidis Rhizoma (C. Rhizoma; Huanglian, in Chinese) is a classical Chinese medicinal botanical drug for the treatment of gastrointestinal disorders and has been shown to have a wide variety of pharmacological activity, including antifungal, antivirus, anticancer, antidiabetic, hypoglycemic, and cardioprotective effects. Recent studies on C. Rhizoma present significant progress on its anticancer effects and the corresponding mechanisms as well as its clinical applications. Herein, keywords related to C. Rhizoma, cancer, gastrointestinal cancer, and omics were searched in PubMed and the Web of Science databases, and more than three hundred recent publications were reviewed and discussed. C. Rhizoma extract along with its main components, berberine, palmatine, coptisine, magnoflorine, jatrorrhizine, epiberberine, oxyepiberberine, oxyberberine, dihydroberberine, columbamine, limonin, and derivatives, are reviewed. We describe novel and classic anticancer mechanisms from various perspectives of pharmacology, pharmaceutical chemistry, and pharmaceutics. Researchers have transformed the chemical structures and drug delivery systems of these components to obtain better efficacy and bioavailability of C. Rhizoma. Furthermore, C. Rhizoma in combination with other drugs and their clinical application are also summarized. Taken together, C. Rhizoma has broad prospects as a potential adjuvant candidate against cancers, making it reasonable to conduct additional preclinical studies and clinical trials in gastrointestinal cancer in the future.
Collapse
Affiliation(s)
- Luying He
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Man Chen
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Qilian Liang
- Oncology Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| | - Wen Tan
- School of Pharmacy, Lanzhou University, Lanzhou, China
- *Correspondence: Zhangfeng Zhong, ; Yitao Wang, ; Wen Tan,
| |
Collapse
|
11
|
Xu W, Wang B, Gao Y, Cai Y, Zhang J, Wu Z, Wei J, Guo C, Yuan C. Alkaloids exhibit a meaningful function as anticancer agents by restraining cellular signaling pathways. Mini Rev Med Chem 2021; 22:968-983. [PMID: 34620048 DOI: 10.2174/1389557521666211007114935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/07/2021] [Accepted: 06/29/2021] [Indexed: 11/22/2022]
Abstract
Alkaloids are nitrogen-containing organic compounds widely found in natural products, which play an essential role in clinical treatment. Cellular signaling pathways in tumors are a series of enzymatic reaction pathways that convert extracellular signals into intracellular signals to produce biological effects. The ordered function of cell signaling pathways is essential for tumor cell proliferation, differentiation, and programmed death. This review describes the antitumor progression mediated by various alkaloids after inhibiting classical signaling pathways; related studies are systematically retrieved and collected through PubMed. We selected the four currently most popular pathways for discussion and introduced the molecular mechanisms mediated by alkaloids in different signaling pathways, including the NF-kB signaling pathway, PI3K/AKT signaling pathway, MAPK signaling pathway, and P53 signaling pathway. The research progress of alkaloids related to tumor signal transduction pathways and the realization of alkaloids as cancer prevention drugs by targeting signal pathways remains.
Collapse
Affiliation(s)
- Wen Xu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Bei Wang
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Yuxuan Cai
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Jiali Zhang
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Zhiyin Wu
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Jiameng Wei
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Chong Guo
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang 443002. China
| |
Collapse
|
12
|
Wang Y, Wang X, Huang X, Zhang J, Hu J, Qi Y, Xiang B, Wang Q. Integrated Genomic and Transcriptomic Analysis reveals key genes for predicting dual-phenotype Hepatocellular Carcinoma Prognosis. J Cancer 2021; 12:2993-3010. [PMID: 33854600 PMCID: PMC8040886 DOI: 10.7150/jca.56005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/20/2021] [Indexed: 12/24/2022] Open
Abstract
Dual-phenotype hepatocellular carcinoma (DPHCC) expresses both hepatocyte and cholangiocyte markers, and is characterized by high recurrence and low survival rates. The underlying molecular mechanisms of DPHCC pathogenesis are unclear. We performed whole exome sequencing and RNA sequencing of three subtypes of HCC (10 DPHCC, 10 CK19-positive HCC, and 14 CK19-negative HCC), followed by integrated bioinformatics analysis, including somatic mutation analysis, mutation signal analysis, differential gene expression analysis, and pathway enrichment analysis. Cox proportional hazard regression analyses were applied for exploring survival related characteristics. We found that mutated genes in DPHCC patients were associated with carcinogenesis and immunity, and the up-regulated genes were mainly enriched in transcription-related and cancer-related pathways, and the down-regulated genes were mainly enriched in immune-related pathways. CXCL9 was selected as the hub gene, which is associated with immune cells and survival prognosis. Our results showed that low CXCL9 expression was significantly associated with poor prognosis, and its expression was significantly reduced in DPHCC samples. In conclusion, we explored the molecular mechanisms governing DPHCC development and progression and identified CXCL9, which influences the immune microenvironment and prognosis of DPHCC and might be new clinically significant biomarkers for predicting prognosis.
Collapse
Affiliation(s)
- Yaobang Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Department of Clinical Laboratory. First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xi Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Xiaoliang Huang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jie Zhang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Junwen Hu
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Yapeng Qi
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Bangde Xiang
- Department of Hepatobiliary Surgery, Guangxi Medical University Cancer Hospital, Guangxi Zhuang Autonomous Region, China
| | - Qiuyan Wang
- Guangxi Key Laboratory for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
13
|
Niu HT, Liu Y, Wang YZ, Tian Y, Yang M, Jiang HS. Columbamine-Mediated PTEN/AKT Signal Pathway Regulates the Progression of Glioma. Cancer Manag Res 2021; 13:489-497. [PMID: 33500662 PMCID: PMC7826076 DOI: 10.2147/cmar.s286866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/03/2020] [Indexed: 12/28/2022] Open
Abstract
Purpose At present, comprehensive therapy has been widely used in the treatment of glioma, but the curative effect is not good, and the survival rate of patients is low. Therefore, it is crucial to explore further the regulatory mechanism of the occurrence and development of glioma and find potential therapeutic targets. We aimed to investigate the columbamine (a tetrahydroisoquinoline alkaloid derived from the rhizome of Chinese herbal medicine Rhizoma Coptidis) on glioma progression. Methods MTT, clone formation assay, wound healing assay, and transwell assay were performed to detect the cell viability, proliferation, migration, and invasion ability. Flow cytometry, TUNEL, and Western blot were used to identify the apoptosis level in glioma cells. PTEN inhibitor (SF1670) and AKT activator (SC79) were used to explore the mechanism of columbamine on glioma cell progression. Results Columbamine inhibits proliferation, migration, invasion, and induces apoptosis in glioma cell lines (SHG44 and U251). Columbamine prevents phosphorylation of AKT and promotes the expression of PTEN. Blocking PTEN level or inducing phosphorylation of AKT attenuates columbamine function on SHG44 cells proliferation, metastasis, and apoptosis. Conclusion In this research, we find that columbamine could inhibit proliferation and metastasis of glioma cell lines, and promote apoptosis of glioma cell lines via regulating PTEN/AKT signal pathway. It provides a new theoretical basis for the development of anti-glioma drugs.
Collapse
Affiliation(s)
- Hai-Tao Niu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, People's Republic of China
| | - Yang Liu
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, People's Republic of China
| | - Yan-Zhou Wang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, People's Republic of China
| | - Yong Tian
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, People's Republic of China
| | - Ming Yang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, People's Republic of China
| | - Hong-Sheng Jiang
- Department of Neurosurgery, Cangzhou Central Hospital, Cangzhou, Hebei 061000, People's Republic of China
| |
Collapse
|
14
|
Anticancer activities of TCM and their active components against tumor metastasis. Biomed Pharmacother 2020; 133:111044. [PMID: 33378952 DOI: 10.1016/j.biopha.2020.111044] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional Chinese Medicine (TCM) has the characteristics of multiple targets, slight side effects and good therapeutic effects. Good anti-tumor effects are shown by Traditional Chinese Medicine prescription, Chinese patent medicine, single Traditional Chinese Medicine and Traditional Chinese medicine monomer compound. Clinically, TCM prolonged the survival time of patients and improved the life quality of patients, due to less side effects. Cancer metastasis is a complex process involving numerous steps, multiple genes and their products. During the process of tumor metastasis, firstly, cancer cell increases its proliferative capacity by reducing autophagy and apoptosis, and then the cancer cell capacity is stimulated by increasing the ability of tumors to absorb nutrients from the outside through angiogenesis. Both of the two steps can increase tumor migration and invasion. Finally, the purpose of tumor metastasis is achieved. By inhibiting autophagy and apoptosis of tumor cells, angiogenesis and EMT outside the tumor can inhibit the invasion and migration of cancer, and consequently achieve the purpose of inhibiting tumor metastasis. This review explores the research achievements of Traditional Chinese Medicine on breast cancer, lung cancer, hepatic carcinoma, colorectal cancer, gastric cancer and other cancer metastasis in the past five years, summarizes the development direction of TCM on cancer metastasis research in the past five years and makes a prospect for the future.
Collapse
|
15
|
Yan W, Cheng L, Zhang D. Ultrasound-Targeted Microbubble Destruction Mediated si-CyclinD1 Inhibits the Development of Hepatocellular Carcinoma via Suppression of PI3K/AKT Signaling Pathway. Cancer Manag Res 2020; 12:10829-10839. [PMID: 33149688 PMCID: PMC7605614 DOI: 10.2147/cmar.s263590] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/01/2020] [Indexed: 12/14/2022] Open
Abstract
Background and Aim In our study, we aimed to investigate the effect of ultrasound-targeted microbubble destruction (UTMD)mediated si-CyclinD1 (CCND1) on the growth of hepatocellular carcinoma (HCC) cells. Patients and Methods Bioinformatics analysis was performed to detect the difference of CCND1 expression of HCC and normal liver tissues. After treatment with UTMDmediated si-CCND1, the growth and apoptosis of HepG2 cells were detected by flow cytometry, MTT, EdU staining, colony formation assay, Hoechst 33,258 staining and Western blot analysis. The growth of HepG2 cells in vivo was also studied via xenograft tumor in nude mice. Results CCND1 was highly expressed in HCC tissues and HCC cell lines. UTMDmediated si-CCND1 could inhibit the growth of HepG2 cells and promote apoptosis via suppression of the PI3K/AKT signaling pathway. UTMDmediated si-CCND1 could also suppress the growth of HepG2 cells in vivo. Conclusion Our study provided evidence that UTMDmediated si-CCND1 could inhibit the growth of HepG2 cells and promote apoptosis via suppression of the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wei Yan
- Department of Electrical Diagnosis, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun 130021, People's Republic of China
| | - Li Cheng
- Department of Electrical Diagnosis, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun 130021, People's Republic of China
| | - Dongmei Zhang
- Department of Electrical Diagnosis, Changchun University of Traditional Chinese Medicine Affiliated Hospital, Changchun 130021, People's Republic of China
| |
Collapse
|
16
|
Zhou H, Fu LX, Li L, Chen YY, Zhu HQ, Zhou JL, Lv MX, Gan RZ, Zhang XX, Liang G. The epigallocatechin gallate derivative Y6 reduces the cardiotoxicity and enhances the efficacy of daunorubicin against human hepatocellular carcinoma by inhibiting carbonyl reductase 1 expression. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113118. [PMID: 32621953 DOI: 10.1016/j.jep.2020.113118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 05/04/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Green tea is the most ancient and popular beverage worldwide and its main constituent epigallocatechin-3-gallate (EGCG) has a potential role in the management of cancer through the modulation of cell signaling pathways. However, EGCG is frangible to oxidation and exhibits low lipid solubility and bioavailability, and we synthesized a derivative of EGCG in an attempt to overcome these limitations. AIM OF THE STUDY The anthracycline antibiotic daunorubicin (DNR) is a potent anticancer agent. However, its severe cardiotoxic limits its clinical efficacy. Human carbonyl reductase 1 (CBR1) is one of the most effective human reductases for producing hydroxyl metabolites and thus may be involved in increasing the cardiotoxicity and decreasing the antineoplastic effect of anthracycline antibiotics. Accordingly, in this study, we investigated the co-therapeutic effect of Y6, a novel and potent adjuvant obtained by optimization of the structure of EGCG. MATERIAL AND METHODS The cellular concentrations of DNR and its metabolite DNRol were measured by HPLC to determine the effects of EGCG and Y6 on the inhibition of DNRol formation. The cytotoxic effects of EGCG and Y6 were tested by MTT assay in order to identify non-toxic concentrations of them. To understand their antitumor and cardioprotective mechanisms, hypoxia-inducible factor-1α (HIF-1α) and CBR1 protein expression was measured via Western blotting and immunohistochemical staining while gene expression was analyzed using RT-PCR. Moreover, PI3K/AKT and MEK/ERK signaling pathways were analyzed via Western blotting. HepG2 xenograft model was used to detect the effects of EGCG and Y6 on the antitumor activity and cardiotoxicity of DNR in vivo. Finally, to obtain further insight into the interactions of Y6 and EGCG with HIF-1α and CBR1, we performed a molecular modeling. RESULTS Y6(10 μg/ml or 55 mg/kg) decreased the expression of HIF-1α and CBR1 at both the mRNA and protein levels during combined drug therapy in vitro as well as in vivo, thereby inhibiting formation of the metabolite DNRol from DNR, with the mechanisms being related to PI3K/AKT and MEK/ERK signaling inhibition. In a human carcinoma xenograft model established with subcutaneous HepG2 cells, Y6(55 mg/kg) enhanced the antitumor effect and reduced the cardiotoxicity of DNR more effectively than EGCG(40 mg/kg). CONCLUSIONS Y6 has the ability to inhibit CBR1 expression through the coordinate inhibition of PI3K/AKT and MEK/ERK signaling, then synergistically enhances the antitumor effect and reduces the cardiotoxicity of DNR.
Collapse
MESH Headings
- Alcohol Oxidoreductases/antagonists & inhibitors
- Alcohol Oxidoreductases/genetics
- Alcohol Oxidoreductases/metabolism
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Antibiotics, Antineoplastic/toxicity
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/toxicity
- Arrhythmias, Cardiac/chemically induced
- Arrhythmias, Cardiac/physiopathology
- Arrhythmias, Cardiac/prevention & control
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/enzymology
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/pathology
- Cardiotoxicity
- Catechin/analogs & derivatives
- Catechin/pharmacology
- Cell Proliferation/drug effects
- Daunorubicin/pharmacology
- Daunorubicin/toxicity
- Drug Synergism
- Enzyme Inhibitors/pharmacology
- Female
- Gene Expression Regulation, Neoplastic
- Heart Rate/drug effects
- Hep G2 Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/enzymology
- Liver Neoplasms/genetics
- Liver Neoplasms/pathology
- Male
- Mice, Inbred BALB C
- Mice, Nude
- Signal Transduction
- Tumor Burden/drug effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Huan Zhou
- Department of Pharmacy, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China; Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Li-Xiang Fu
- Department of Pharmacy, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, China
| | - Li Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Yan-Yan Chen
- Department of Pharmacy, The Second People's Hospital of Qinzhou, Qinzhou, China
| | - Hong-Qing Zhu
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Jin-Ling Zhou
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Mei-Xian Lv
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Ri-Zhi Gan
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Xuan-Xuan Zhang
- Pharmaceutical College, Guangxi Medical University, Nanning, China
| | - Gang Liang
- Pharmaceutical College, Guangxi Medical University, Nanning, China.
| |
Collapse
|
17
|
Simultaneous Qualitative and Quantitative Evaluation of the Coptidis Rhizoma and Euodiae Fructus Herbal Pair by Using UHPLC-ESI-QTOF-MS and UHPLC-DAD. Molecules 2020; 25:molecules25204782. [PMID: 33081031 PMCID: PMC7587604 DOI: 10.3390/molecules25204782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022] Open
Abstract
The herbal pair of Coptidis Rhizoma (CR) and Euodiae Fructus (EF) is a classical traditional Chinese medicine formula used for treating gastro-intestinal disorders. In this study, we established a systematic method for chemical profiling and quantification analysis of the major constituents in the CR-EF herbal pair. A method of ultra high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) for qualitative analysis was developed. Sixty-five compounds, including alkaloids, phenolics, and limonoids, were identified or tentatively assigned by comparison with reference standards or literature data. The UHPLC fingerprints of 19 batches of the CR-EF herbal pair samples were obtained and the reference fingerprint chromatograms were established. Furthermore, nine compounds among 24 common peaks of fingerprints were considered as marker components, which either had high contents or significant bioactivities, were applied to quality control of the CR-EF herbal pair by quantitative analysis. This UHPLC-DAD analysis method was validated by precision, linearity, repeatability, stability, recovery, and so on. The method was simple and sensitive, and thus reliable for quantitative and chemical fingerprint analysis for the quality evaluation and control of the CR-EF herbal pair and related traditional Chinese medicines.
Collapse
|
18
|
Yang T, Wei L, Ma X, Ke H. Columbamine suppresses proliferation and invasion of melanoma cell A375 via HSP90-mediated STAT3 activation. J Recept Signal Transduct Res 2020; 41:99-104. [PMID: 32669028 DOI: 10.1080/10799893.2020.1794003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE The goal of this study is to explore the effects of columbamine in melanoma cells and the signaling pathway involved. METHODS Human melanoma cell line A375 cells were used in this study. Cell proliferative ability was detected by MTT assay and clone formation assay. Cell migration and invasion were measured by wound healing assay and transwell assay, respectively. Protein expression was examined by Western blotting. RESULTS Columbamine reduced cell proliferative ability and the number of clone spots in A375 cells. Western blotting results demonstrated that expression of cleaved caspase 3, an activated cell death protease, was upregulated by 20 and 50 µM of columbamine. Wound healing results showed that the scratch width was wider in cell treated with 20 and 50 µM of columbamine than that in cell treated with 0 and 10 µM of columbamine. Phosphorylation of STAT3 and expression of HSP90 was also repressed by columbamine in a concentration-dependent manner. Overexpression of HSP90 attenuated the inhibition of cell proliferation, migration and invasion induced by columbamine. CONCLUSION Columbamine inhibited melanoma cell proliferation, migration, and invasion in A375 cells through inactivation of STAT3, which is mediated by HSP90.
Collapse
Affiliation(s)
- Tao Yang
- Department of Dermatovenerology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, China
| | - Liuliu Wei
- Department of Gastroenterology, Ganzhou People's Hospital, Ganzhou City, China
| | - Xiang Ma
- Department of Laboratory, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology Laboratory, Wuhan City, China
| | - Huan Ke
- Department of Dermatology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology Laboratory, Wuhan City, China
| |
Collapse
|
19
|
Identification of FOS as a Candidate Risk Gene for Liver Cancer by Integrated Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6784138. [PMID: 32280695 PMCID: PMC7125454 DOI: 10.1155/2020/6784138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/20/2020] [Indexed: 01/08/2023]
Abstract
Liver cancer is a lethal disease that is associated with poor prognosis. In order to identify the functionally important genes associated with liver cancer that may reveal novel therapeutic avenues, we performed integrated analysis to profile miRNA and mRNA expression levels for liver tumors compared to normal samples in The Cancer Genome Atlas (TCGA) database. We identified 405 differentially expressed genes and 233 differentially expressed miRNAs in tumor samples compared with controls. In addition, we also performed the pathway analysis and found that mitogen-activated protein kinases (MAPKs) and G-protein coupled receptor (GPCR) pathway were two of the top significant pathway nodes dysregulated in liver cancer. Furthermore, by examining these signaling networks, we discovered that FOS (Fos proto-oncogene, AP-1 transcription factor subunit), LAMC2 (laminin subunit gamma 2), and CALML3 (calmodulin like 3) were the most significant gene nodes with high degrees involved in liver cancer. The expression and disease prediction accuracy of FOS, LAMC2, CALML3, and their interacting miRNAs were further performed using a HCC cohort. Finally, we investigated the prognostic significance of FOS in another HCC cohort. Patients with higher FOS expression displayed significantly shorter time to recurrence (TTR) and overall survival (OS) compared with patients with lower expression. Collectively, our study demonstrates that FOS is a potential prognostic marker for liver cancer that may reveal a novel therapeutic avenue in this lethal disease.
Collapse
|
20
|
Zhang C, Shao S, Zhang Y, Wang L, Liu J, Fang F, Li P, Wang B. LncRNA PCAT1 promotes metastasis of endometrial carcinoma through epigenetical downregulation of E-cadherin associated with methyltransferase EZH2. Life Sci 2020; 243:117295. [PMID: 31927050 DOI: 10.1016/j.lfs.2020.117295] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/26/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Abstract
More than 140 thousands of women suffer from endometrial carcinoma in the worldwide, and over 40 thousand of the patients die before and after in surgery and chemoradiotherapy because of its metastasis. However, its molecular mechanism is much less known compared to other cancers. In this study, we demonstrated that long non-coding RNA PCAT1 is dramatically increased in the tissues and plasma from endometrial carcinoma (EC) (n = 100, all p < 0.001) controlled by its paracancerous tissue, and cell lines including RL-952, HEC-1-B, KLE, Ishikawa, and AN3CA compared to the cells from normal endometrium (all p < 0.001). When lncRNA PCAT1 was knocked-down, the KLE and AN3CA cells exhibited slow capability on proliferation and colony formation in vitro. With the silence of lncRNA PCAT1, the cells were markedly inhibited on migration and invasion in vitro (all p < 0.001), which were confirmed on the EC patient subjects. When expressions of lncRNA PCAT1 were interfered in the cells, expressions of E-cadherin but not N-cadherin and Vimentin were significantly promoted with a strong up-regulation accompanied by nearly completed recoveries on migration and invasion (all p < 0.001). In order to analyze the association of lncRNA PCAT1 and E-cadherin, we silenced the expressions of both genes and unveiled that EC migration and invasion were significantly congested (all p < 0.001). Importantly, we found that the E-cadherin down-regulation caused by lncRNA PCAT1 associates with histone methyltransferase EZH2. When over-expression of EZH2 was applied in the PCAT1 silenced cells, the expression of E-cadherin experienced significant decrease in the cell lines. Reversely, when expression of EZH2 was annulled in the PCAT1 silenced cells, the expression of E-cadherin was significantly boosted in the cells (all p < 0.001). Furthermore, the interaction of lncRNA PCAT1 and EZH2 were approved with immunoprecipitation. Our data demonstrated that the methyltransferase EZH2 related up-regulation of lncRNA PCAT1 along with down-regulation of E-cadherin could be essential in oncogenesis of endometrial carcinoma in both EC cells and patient subjects. These compact data suggest that combination of lncRNA PCAT1, EZH2 and E-cadherin could provide valued information for efficient EC diagnostics, which would propose a potential target for EC treatment with EZH2i on methyltransferation.
Collapse
Affiliation(s)
- Chunhua Zhang
- Department of Gynaecology, Huaian Maternal and Child Health Hospital, Huaian, Jiangsu 223300, China
| | - Shasha Shao
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, China
| | - Yujian Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221000, China
| | - Liyang Wang
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianzhong Liu
- Department of Gynecology, Huaian Second People's Hospital, Huaian, Jiangsu 223300, China
| | - Fang Fang
- Department of Gynaecology, Huaian Maternal and Child Health Hospital, Huaian, Jiangsu 223300, China
| | - Peiquan Li
- Department of Gynecology and Oncology, Renji Hospital, Shanghai Jiaotong University, Shanghai, Shanghai 200000, China
| | - Bo Wang
- Obstetrics and Gynecology Department, Huaian First Affiliated Hospital, Nanjing Medical University, Huaian, 223300 Jiangsu, China.
| |
Collapse
|
21
|
Haiaty S, Rashidi MR, Akbarzadeh M, Maroufi NF, Yousefi B, Nouri M. Targeting vasculogenic mimicry by phytochemicals: A potential opportunity for cancer therapy. IUBMB Life 2020; 72:825-841. [PMID: 32026601 DOI: 10.1002/iub.2233] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 01/06/2020] [Indexed: 12/18/2022]
Abstract
Vasculogenic mimicry (VM) is regarded as a process where very aggressive cancer cells generate vascular-like patterns without the presence of endothelial cells. It is considered as the main mark of malignant cancer and has pivotal role in cancer metastasis and progression in various types of cancers. On the other hand, resistance to the antiangiogenesis therapies leads to the cancer recurrence. Therefore, development of novel chemotherapies and their combinations is urgently needed for abolition of VM structures and also for better tumor therapy. Hence, identifying compounds that target VM structures might be superior therapeutic factors for cancers treatment and controlling the recurrence and metastasis. In recent times, naturally occurring compounds, especially phytochemicals have obtained great attention due to their safe properties. Phytochemicals are also capable of targeting VM structure and also their main signaling pathways. Consequently, in this review article, we illustrated key signaling pathways in VM, and the phytochemicals that affect these structures including curcumin, genistein, lycorine, luteolin, columbamine, triptolide, Paris polyphylla, dehydroeffusol, jatrorrhizine hydrochloride, grape seed proanthocyanidins, resveratrol, isoxanthohumol, dehydrocurvularine, galiellalactone, oxacyclododecindione, brucine, honokiol, ginsenoside Rg3, and norcantharidin. The recognition of these phytochemicals and their safety profile may lead to new therapeutic agents' development for VM elimination in different types of tumors.
Collapse
Affiliation(s)
- Sanya Haiaty
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad-Reza Rashidi
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Akbarzadeh
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Nazila F Maroufi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Nouri
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Zhong B, Shi D, Wu F, Wang S, Hu H, Cheng C, Qing X, Huang X, Luo X, Zhang Z, Shao Z. Dynasore suppresses cell proliferation, migration, and invasion and enhances the antitumor capacity of cisplatin via STAT3 pathway in osteosarcoma. Cell Death Dis 2019; 10:687. [PMID: 31534119 PMCID: PMC6751204 DOI: 10.1038/s41419-019-1917-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 12/17/2022]
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor. The prognosis of metastatic and recurrent OS patients still remains unsatisfactory. Cisplatin reveals undeniable anti-tumor effect while induces severe side effects that threatening patients’ health. Dynasore, a cell-permeable small molecule that inhibits dynamin activity, has been widely studied in endocytosis and phagocytosis. However, the anti-tumor effect of dynasore on OS has not yet been ascertained. In the present study, we suggested that dynasore inhibited cell proliferation, migration, invasion, and induced G0/G1 arrest of OS cells. Besides, dynasore repressed tumorigenesis of OS in xenograft mouse model. In addition, we demonstrated that dynasore improved the anti-tumor effect of cisplatin in vitro and in vivo without inducing nephrotoxicity and hepatotoxicity. Mechanistically, dynasore repressed the expression of CCND1, CDK4, p-Rb, and MMP-2. Furthermore, we found that dynasore exerts anti-tumor effects in OS partially via inhibiting STAT3 signaling pathway but not ERK-MAPK, PI3K-Akt or SAPK/JNK pathways. P38 MAPK pathway served as a negative regulatory mechanism in dynasore induced anti-OS effects. Taken together, our study indicated that dynasore does suppress cell proliferation, migration, and invasion via STAT3 signaling pathway, and enhances the antitumor capacity of cisplatin in OS. Our results suggest that dynasore is a novel candidate drug to inhibit the tumor growth of OS and enhance the anti-tumor effects of cisplatin.
Collapse
Affiliation(s)
- Binlong Zhong
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Deyao Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Fashuai Wu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Shangyu Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Cheng Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Xiangcheng Qing
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Xin Huang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China
| | - Xueying Luo
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan Mental Health Centre, Wuhan Hospital for Psychotherapy, Wuhan, China
| | - Zhicai Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 JieFang Avenue, Wuhan, 430022, China.
| |
Collapse
|