1
|
Ana González-Cela-Casamayor M, Rodrigo MJ, Brugnera M, Munuera I, Martínez-Rincón T, Prats-Lluís C, Villacampa P, García-Feijoo J, Pablo LE, Bravo-Osuna I, Garcia-Martin E, Herrero-Vanrell R. Ketorolac, melatonin and latanoprost tri-loaded PLGA microspheres for neuroprotection in glaucoma. Drug Deliv 2025; 32:2484277. [PMID: 40211987 PMCID: PMC11995771 DOI: 10.1080/10717544.2025.2484277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 04/16/2025] Open
Abstract
Glaucoma is a multifactorial neurodegenerative disease that affects the retina and optic nerve. The aim of this work was to reach different therapeutics targets by co-encapsulating three neuroprotective substances with hypotensive (latanoprost), antioxidant (melatonin) and anti-inflammatory (ketorolac) activity in biodegradable poly (lactic-co-glycolic acid) (PLGA) microspheres (MSs) capable of releasing the drugs for months after intravitreal injection, avoiding the need for repeated administrations. Multi-loaded PLGA MSs were prepared using the oil-in-water emulsion solvent extraction-evaporation technique and physicochemically characterized. PLGA 85:15 was the polymer ratio selected for the selected formulation. Tri-loaded MSs including vitamin E as additive showed good tolerance in retinal pigment epithelium cells after 24 h exposure (>90% cell viability). The final formulation (KMLVE) resulted in 33.58 ± 5.44 µm particle size and drug content (µg/mg MSs) of 39.70 ± 5.89, 67.28 ± 4.17 and 7.51 ± 0.58 for melatonin, ketorolac and latanoprost respectively. KMLVE were able to release in a sustained manner the three drugs over 70 days. KMLVE were injected at 2 and 12 weeks in Long-Evans rats (n = 20) after the induction of chronic glaucoma. Ophthalmological tests were performed and compared to not treated glaucomatous (n = 45) and healthy (n = 17) animals. Treated glaucomatous rats reached the lowest intraocular pressure, enhanced functionality of bipolar and retinal ganglion cells and showed greater neuroretinal thickness by optical coherence tomography (p < 0.05) compared to not treated glaucomatous rats at 24 weeks follow-up. According to the results, the tri-loaded microspheres can be considered as promising controlled-release system for the treatment of glaucoma.
Collapse
Affiliation(s)
- Miriam Ana González-Cela-Casamayor
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - María J. Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Marco Brugnera
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- School of Pharmacy, University Institute for Industrial Pharmacy (IUFI), Complutense University of Madrid, Madrid, Spain
| | - Inés Munuera
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Teresa Martínez-Rincón
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Catalina Prats-Lluís
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), l’Hospitalet de Llobregat, Spain
| | - Pilar Villacampa
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute (IDIBELL), l’Hospitalet de Llobregat, Spain
| | - Julián García-Feijoo
- Department of Ophthalmology, San Carlos Clinical Hospital, Health Research Institute of the San Carlos Clinical Hospital (IdISSC), Madrid, Spain
| | - Luis E. Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Irene Bravo-Osuna
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- School of Pharmacy, University Institute for Industrial Pharmacy (IUFI), Complutense University of Madrid, Madrid, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, Zaragoza, Spain
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Rocío Herrero-Vanrell
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Health Research Institute, San Carlos Clinical Hospital (IdISSC), Madrid, Spain
- School of Pharmacy, University Institute for Industrial Pharmacy (IUFI), Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
2
|
Martinez SM, Inda A, Ríos MN, Bessone CDV, Bruera Bossio A, Guido ME, Luna Pinto JD, Allemandi DA, Quinteros DA. Neuroprotective Effect of Melatonin Loaded in Human Serum Albumin Nanoparticles Applied Subconjunctivally in a Retinal Degeneration Animal Model. Pharmaceutics 2025; 17:85. [PMID: 39861733 PMCID: PMC11769568 DOI: 10.3390/pharmaceutics17010085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/28/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Neurodegenerative ocular diseases, such as age-related macular degeneration (AMD) and glaucoma, represent growing public health concerns. Oxidative stress plays a key role in their development, damaging retinal cells and accelerating disease progression. Melatonin (Mel) is a potent antioxidant with neuroprotective properties; however, it faces limitations such as low solubility. This study proposes the use of human serum albumin nanoparticles (Np-HSA) to enhance the delivery of Mel to the posterior segment of the eye and evaluates its neuroprotective and anti-apoptotic effects on the retina. METHODS A model of retinal degeneration was induced in New Zealand albino rabbits using cytotoxic and oxidative agents. Np-HSA-Mel nanoparticles were administered subconjunctivally, and cellular viability and retinal functionality were assessed using flow cytometry and pupillary light reflex (PLR). Histological and immunohistochemical studies, including the TUNEL assay, were performed to analyse cell survival and apoptotic index. RESULTS Np-HSA-Mel significantly preserved pupillary function and cell viability, demonstrating lower apoptosis compared to Mel solution and Np-HSA alone. Histologically, eyes treated with Np-HSA-Mel exhibited fewer structural alterations and greater cellular organisation. The TUNEL assay confirmed a significant reduction in the apoptotic index of retinal ganglion cells (RGCs) treated with Np-HSA-Mel. CONCLUSIONS Np-HSA-Mel effectively overcame ocular barriers, achieving greater neuroprotective efficacy at the retinal level. These findings highlight the synergistic potential of albumin and Mel in treating neurodegenerative ocular diseases, opening new perspectives for future therapies.
Collapse
Affiliation(s)
- Sofia Mickaela Martinez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (S.M.M.); (A.I.); (C.d.V.B.); (A.B.B.); (D.A.A.)
| | - Ayelen Inda
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (S.M.M.); (A.I.); (C.d.V.B.); (A.B.B.); (D.A.A.)
| | - Maximiliano Nicolás Ríos
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (M.N.R.); (M.E.G.)
| | - Carolina del Valle Bessone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (S.M.M.); (A.I.); (C.d.V.B.); (A.B.B.); (D.A.A.)
- Escuela de Ciencias de la Salud, Universidad Nacional de Villa Mercedes, Villa Mercedes 5730, Argentina
| | - Abril Bruera Bossio
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (S.M.M.); (A.I.); (C.d.V.B.); (A.B.B.); (D.A.A.)
| | - Mario Eduardo Guido
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (M.N.R.); (M.E.G.)
| | - José Domingo Luna Pinto
- Área de Cirugía Vítreo y Retina, Centro Privado de Ojos Romagosa S.A. y Fundación VER, Córdoba 5000, Argentina;
| | - Daniel Alberto Allemandi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (S.M.M.); (A.I.); (C.d.V.B.); (A.B.B.); (D.A.A.)
| | - Daniela Alejandra Quinteros
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba 5000, Argentina; (S.M.M.); (A.I.); (C.d.V.B.); (A.B.B.); (D.A.A.)
| |
Collapse
|
3
|
Gao S, Cheng Q, Hu Y, Fan X, Liang C, Niu C, Kang Q, Wei T. Melatonin antagonizes oxidative stress-induced apoptosis in retinal ganglion cells through activating the thioredoxin-1 pathway. Mol Cell Biochem 2024; 479:3393-3404. [PMID: 38353878 DOI: 10.1007/s11010-024-04924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 01/05/2024] [Indexed: 03/28/2024]
Abstract
This study aimed to explore the role of melatonin in oxidative stress-induced injury on retinal ganglion cells and the underlying mechanisms. The immortalized RGC-5 cells were treated with H2O2 to induce oxidative injury. Cell viability was measured by Cell Counting Kit-8, and apoptosis was determined by flow cytometry and western blot assays. Reactive oxygen species (ROS), lactate dehydrogenase (LDH), and malondialdehyde (MDA) levels were examined to evaluate oxidative stress levels. In addition, Thioredoxin-1 (Trx1) was silenced in RGC-5 cells using small interfering RNA followed by signaling pathway examination to explore the underlying mechanisms of melatonin in alleviating oxidative injury. Melatonin pre-treatment significantly alleviated H2O2-induced apoptosis in RGC-5 cells. Melatonin also markedly reversed the upregulation of cleaved-caspase 3, cleaved-caspase 9, and Bax expression and downregulation of Bcl-2 expression induced by H2O2. Further analyses presented that melatonin significantly attenuated the increase of ROS, LDH, and MDA levels in RGC-5 cells after H2O2 treatment. Melatonin also abolished the downregulated expression of Superoxide dismutase type 1, Trx1, and Thioredoxin reductase 1, and the reduced activity of thioredoxin reductase in RGC-5 cells after H2O2 treatment. Notably, Trx1 knockdown significantly mitigated the protective effect of melatonin in alleviating H2O2-induced apoptosis and oxidative stress, while administration of compound C, a common inhibitor of c-Jun N-terminal kinase (JNK) signaling, partially reversed the effect of Trx1 silencing, thereby ameliorating the apoptosis and oxidative injury induced by H2O2 in RGC-5 cells. Melatonin could significantly alleviate oxidative stress-induced injury of retinal ganglion cells via modulating Trx1-mediated JNK signaling pathway.
Collapse
Affiliation(s)
- Shan Gao
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Qiaochu Cheng
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Yaguang Hu
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Xiaojuan Fan
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Chen Liang
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Chen Niu
- Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Qianyan Kang
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China
| | - Ting Wei
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, No.277 Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Zhang J, Zhou H, Cai Y, Yoshida S, Li Y, Zhou Y. Melatonin: Unveiling the functions and implications in ocular health. Pharmacol Res 2024; 205:107253. [PMID: 38862072 DOI: 10.1016/j.phrs.2024.107253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Melatonin, a versatile hormone produced by the pineal gland, has garnered considerable scientific interest due to its diverse functions. In the eye, melatonin regulates a variety of key processes like inhibiting angiogenesis by reducing vascular endothelial growth factor levels and protecting the blood-retinal barrier (BRB) integrity by enhancing tight junction proteins and pericyte coverage. Melatonin also maintains cell health by modulating autophagy via the Sirt1/mTOR pathways, reduces inflammation, promotes antioxidant enzyme activity, and regulates intraocular pressure fluctuations. Additionally, melatonin protects retinal ganglion cells by modulating aging and inflammatory pathways. Understanding melatonin's multifaceted functions in ocular health could expand the knowledge of ocular pathogenesis, and shed new light on therapeutic approaches in ocular diseases. In this review, we summarize the current evidence of ocular functions and therapeutic potential of melatonin and describe its roles in angiogenesis, BRB integrity maintenance, and modulation of various eye diseases, which leads to a conclusion that melatonin holds promising treatment potential for a wide range of ocular health conditions.
Collapse
Affiliation(s)
- Ji Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Haixiang Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Yuting Cai
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yun Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan 410011, China.
| |
Collapse
|
5
|
Inda A, Martinez S, Bessone C, Rios M, Guido M, Herrero-Vanrell R, Luna JD, Allemandi D, Ravetti S, Quinteros D. Evidence of the protective role of Carvacrol in a retinal degeneration animal model. Exp Eye Res 2024; 244:109938. [PMID: 38789020 DOI: 10.1016/j.exer.2024.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Neurodegenerative pathologies affecting the posterior segment of the eye, are characterized by being devastating and responsible for the majority of visual dysfunctions worldwide. These diseases are primarily degenerative, progressing chronically, and can inflict gradual harm to the optic nerve, retinal ganglion cells (RGC), photoreceptors, and other retinal cells. This retinal damage leads to a progressive loss of vision, marking these conditions as a significant health concern worldwide. The intravitreal administration of the phytochemical Carvacrol (CAR) is expected to demonstrate a neuroprotective and antiapoptotic effect on retinal cells, with a specific focus on RGC. This effect will be observed in a retinal degeneration model (RDM) in rabbits induced by cytotoxic and oxidative agents, namely glutamate (GLUT) and L-buthionine-S, R-sulfoximine (BSO). An in vivo study was conducted using New Zealand rabbits in which retinal damage was created to evaluate the effectiveness of CAR. The effectiveness of CAR on the functionality of retinal neuronal cells in RDM was evaluated using pupillary light reflection (PLR). Furthermore, the phytotherapeutic's influence on cell viability was determined through flow cytometry analysis. Finally, the neuroprotective and antiapoptotic capabilities of CAR were specifically scrutinized in RGC through histological studies, quantifying cell survival, and employing immunohistochemical assays to detect the apoptotic index (%) using the TUNEL technique. Our results demonstrated that CAR promoted the recovery of the pupillary contraction profile over time, maintaining the functionality of retinal cells as healthy controls. Additionally, it showed increased cell viability under oxidative and cytotoxic conditions given by GLUT-BSO agents. Finally, we found that CAR protects the survival of RGC and decreases the percentage of apoptotic cells when compared to RDM. CAR demonstrated to have positive effects on the functionality of photoreceptive nerve cells by restoring pupillary contraction. Likewise, it was shown to have neuroprotective and antiapoptotic effects when evaluated in a general and specific way on retinal nerve cells.
Collapse
Affiliation(s)
- Ayelen Inda
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina; Centro de Investigación y Transferencia (CIT VM), 5900, Villa María, Córdoba, Argentina
| | - Sofía Martinez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Carolina Bessone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina; Departamento de Ciencias Básicas, Escuela Ciencias de la Salud, Universidad Nacional de Villa Mercedes (UNVIME), 5730, Villa Mercedes, San Luis, Argentina
| | - Maximiliano Rios
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina
| | - Mario Guido
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. 5000 Córdoba, Argentina
| | - Rocío Herrero-Vanrell
- Grupo de Investigación en Innovación, Terapia y Desarrollo Farmacéutico en Oftalmología (UCM 920415), Departamento de Farmacia y Tecnología de Alimentos, Facultad de Farmacia. Universidad Complutense, 28040, Madrid, Spain
| | - Jose Domingo Luna
- Área de Cirugía Vítreo y Retina, Centro Privado de Ojos Romagosa S.A. y Fundación VER, 5000, Córdoba, Argentina
| | - Daniel Allemandi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
| | - Soledad Ravetti
- Centro de Investigación y Transferencia (CIT VM), 5900, Villa María, Córdoba, Argentina; Instituto Académico Pedagógico de Ciencias Humanas, Universidad Nacional de Villa María, 5900, Villa María, Córdoba, Argentina
| | - Daniela Quinteros
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET y Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
| |
Collapse
|
6
|
Ferrero R, Pantaleone S, Gho CI, Hoti G, Trotta F, Brunella V, Corno M. Unveiling the synergy: a combined experimental and theoretical study of β-cyclodextrin with melatonin. J Mater Chem B 2024; 12:4004-4017. [PMID: 38568714 DOI: 10.1039/d3tb02795c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Melatonin (MT) is a vital hormone controlling biorhythms, and optimizing its release in the human body is crucial. To address MT's unfavorable pharmacokinetics, we explored the inclusion complexes of MT with β-cyclodextrin (β-CD). Nano spray drying was applied to efficiently synthesize these complexes in three molar ratios (MT : β-CD = 1 : 1, 2 : 1, and 1 : 2), reducing reagent use and expediting inclusion. The complex powders were characterized through thermal analyses (TGA and DSC), Fourier transform infrared spectroscopy (FTIR), and in vitro MT release measurements via high-performance liquid chromatography (HPLC). In parallel, computational studies were conducted, examining the stability of MT : β-CD complexes by means of unbiased semi-empirical conformational searches refined by DFT, which produced a distribution of MT : β-CD binding enthalpies. Computational findings highlighted that these complexes are stabilized by specific hydrogen bonds and non-specific dispersive forces, with stronger binding in the 1 : 1 complex, which was corroborated by in vitro release data. Furthermore, the alignment between simulated and experimental FTIR spectra demonstrated the quality of both the structural model and computational methodology, which was crucial to enhance our comprehension of optimizing MT's release for therapeutic applications.
Collapse
Affiliation(s)
- Riccardo Ferrero
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Stefano Pantaleone
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Cecilia Irene Gho
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Gjylije Hoti
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Francesco Trotta
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Valentina Brunella
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| | - Marta Corno
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy.
| |
Collapse
|
7
|
Romeo A, Kazsoki A, Musumeci T, Zelkó R. A Clinical, Pharmacological, and Formulation Evaluation of Melatonin in the Treatment of Ocular Disorders-A Systematic Review. Int J Mol Sci 2024; 25:3999. [PMID: 38612812 PMCID: PMC11011996 DOI: 10.3390/ijms25073999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024] Open
Abstract
Melatonin's cytoprotective properties may have therapeutic implications in treating ocular diseases like glaucoma and age-related macular degeneration. Literature data suggest that melatonin could potentially protect ocular tissues by decreasing the production of free radicals and pro-inflammatory mediators. This study aims to summarize the screened articles on melatonin's clinical, pharmacological, and formulation evaluation in treating ocular disorders. The identification of relevant studies on the topic in focus was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA 2020) guidelines. The studies were searched in the following databases and web search engines: Pubmed, Scopus, Science Direct, Web of Science, Reaxys, Google Scholar, Google Patents, Espacenet, and Patentscope. The search time interval was 2013-2023, with the following keywords: melatonin AND ocular OR ophthalmic AND formulation OR insert AND disease. Our key conclusion was that using melatonin-loaded nano-delivery systems enabled the improved permeation of the molecule into intraocular tissues and assured controlled release profiles. Although preclinical studies have demonstrated the efficacy of developed formulations, a considerable gap has been observed in the clinical translation of the results. To overcome this failure, revising the preclinical experimental phase might be useful by selecting endpoints close to clinical ones.
Collapse
Affiliation(s)
- Alessia Romeo
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (A.R.); (T.M.)
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7–9, 1092 Budapest, Hungary;
| | - Teresa Musumeci
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy; (A.R.); (T.M.)
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7–9, 1092 Budapest, Hungary;
| |
Collapse
|
8
|
Rusciano D, Russo C. The Therapeutic Trip of Melatonin Eye Drops: From the Ocular Surface to the Retina. Pharmaceuticals (Basel) 2024; 17:441. [PMID: 38675402 PMCID: PMC11054783 DOI: 10.3390/ph17040441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Melatonin is a ubiquitous molecule found in living organisms, ranging from bacteria to plants and mammals. It possesses various properties, partly due to its robust antioxidant nature and partly owed to its specific interaction with melatonin receptors present in almost all tissues. Melatonin regulates different physiological functions and contributes to the homeostasis of the entire organism. In the human eye, a small amount of melatonin is also present, produced by cells in the anterior segment and the posterior pole, including the retina. In the eye, melatonin may provide antioxidant protection along with regulating physiological functions of ocular tissues, including intraocular pressure (IOP). Therefore, it is conceivable that the exogenous topical administration of sufficiently high amounts of melatonin to the eye could be beneficial in several instances: for the treatment of eye pathologies like glaucoma, due to the IOP-lowering and neuroprotection effects of melatonin; for the prevention of other dysfunctions, such as dry eye and refractive defects (cataract and myopia) mainly due to its antioxidant properties; for diabetic retinopathy due to its metabolic influence and neuroprotective effects; for macular degeneration due to the antioxidant and neuroprotective properties; and for uveitis, mostly owing to anti-inflammatory and immunomodulatory properties. This paper reviews the scientific evidence supporting the use of melatonin in different ocular districts. Moreover, it provides data suggesting that the topical administration of melatonin as eye drops is a real possibility, utilizing nanotechnological formulations that could improve its solubility and permeation through the eye. This way, its distribution and concentration in different ocular tissues may support its pleiotropic therapeutic effects.
Collapse
Affiliation(s)
- Dario Rusciano
- Fidia Research Centre, c/o University of Catania, Via Santa Sofia 89, 95123 Catania, Italy
| | - Cristina Russo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 89, 95123 Catania, Italy;
| |
Collapse
|
9
|
Milanowski J, Kozerawski K, Falęcka W, Dudek D, Lisewska B, Lisewski P, Nuszkiewicz J, Wesołowski R, Wojtasik J, Mila-Kierzenkowska C, Szewczyk-Golec K. Changes in the Secretion of Melatonin and Selected Adipokines during the Progression of Parkinson's Disease-Preliminary Studies. Metabolites 2023; 13:metabo13050668. [PMID: 37233709 DOI: 10.3390/metabo13050668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/16/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023] Open
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases affecting elderly people. Considering the gap in the literature on melatonin and adipokine levels in PD patients at various stages of the disease, we conducted a study to investigate the levels of selected parameters in PD patients at the disease's early (ES) and advanced (AS) stages. Melatonin, leptin, adiponectin, and resistin concentrations were measured in the blood serum of 20 PD patients without dyskinesia (ES), 24 PD patients with dyskinesia (AS), and 20 healthy volunteers as a control group (CG). The data were analyzed using ANOVA. Melatonin was significantly lower in ES (p < 0.05) and higher in AS patients (p < 0.05) compared to CG. The level of leptin was increased both in ES (p < 0.001) and AS (p < 0.001) versus CG, while resistin was increased only in patients with dyskinesia (p < 0.05). Higher melatonin (p < 0.001) and resistin (p < 0.05) and lower leptin (p < 0.05) levels were found in AS versus ES. The main findings of the study include the changes in inflammatory markers' levels during PD and a surprising increase in melatonin level in dyskinesia patients. Further research is necessary, which will be aimed at modulating the secretion of melatonin and adipokines as a treatment target for PD.
Collapse
Affiliation(s)
- Jan Milanowski
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Kamil Kozerawski
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Weronika Falęcka
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Dominik Dudek
- Students Research Club of Medical Biology, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | | | | | - Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Roland Wesołowski
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Jakub Wojtasik
- Centre for Statistical Analysis, Nicolaus Copernicus University in Toruń, Chopina 12/18 St., 87-100 Toruń, Poland
| | - Celestyna Mila-Kierzenkowska
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-092 Bydgoszcz, Poland
| |
Collapse
|
10
|
Melatonin protects against NMDA-induced retinal ganglion cell injury by regulating the microglia-TNFα-RGC p38 MAPK pathway. Int Immunopharmacol 2023; 118:109976. [PMID: 37098655 DOI: 10.1016/j.intimp.2023.109976] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Glaucoma, one of the most common ocular neurodegenerative diseases worldwide, is characterized by retinal ganglion cell (RGC) loss. There is a large body of literature that describes the neuroprotective role of melatonin against neurodegenerative diseases by regulating neuroinflammation, although the exact mechanism through which melatonin acts on RGC is still uncertain. This study assessed the protective effects of melatonin using a NMDA-induced RGC injury model, and studied the possible mechanisms involved in this process. Melatonin promoted RGC survival, improved retinal function, and inhibited the apoptosis and necrosis of retinal cells. To understand the mechanism of the neuroprotective effects of melatonin on RGC, microglia and inflammation-related pathways were assessed after melatonin administration and microglia ablation. Melatonin promoted RGC survival by suppressing microglia-derived proinflammatory cytokines, in particular TNFα, which in turn inhibited the activation of p38 MAPK pathway. Inhibiting TNFα or manipulating p38 MAPK pathway protected damaged RGC. Our results suggest that melatonin protects against NMDA-induced RGC injury by inhibiting the microglial TNFα-RGC p38 MAPK pathway. It should be considered a candidate neuroprotective therapy against retinal neurodegenerative diseases.
Collapse
|
11
|
Development of melatonin-loaded, human-serum-albumin nanoparticles formulations using different methods of preparation for ophthalmic administration. Int J Pharm 2022; 628:122308. [DOI: 10.1016/j.ijpharm.2022.122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 10/31/2022]
|
12
|
Munmun F, Mohiuddin OA, Hoang VT, Burow ME, Bunnell BA, Sola VM, Carpentieri AR, Witt-Enderby PA. The role of MEK1/2 and MEK5 in melatonin-mediated actions on osteoblastogenesis, osteoclastogenesis, bone microarchitecture, biomechanics, and bone formation. J Pineal Res 2022; 73:e12814. [PMID: 35674448 DOI: 10.1111/jpi.12814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Melatonin, the primary hormone involved in circadian entrainment, plays a significant role in bone physiology. This study aimed to assess the role of MEK1/2 and MEK5 in melatonin-mediated actions in mouse and human mesenchymal stem cells (MSCs) and on bone using small-molecule inhibitors and CRISPR/Cas9 knockout approaches. Consistent with in vitro studies performed in mMSCs and hMSCs, nightly (25 mg/kg, i.p., 45 days) injections with PD184352 (MEK1/2 inhibitor) or Bix02189 (MEK5 inhibitor) or SC-1-151 (MEK1/2/5 inhibitor) demonstrated that MEK1/2 and MEK5 were the primary drivers underlying melatonin's actions on bone density, microarchitecture (i.e., trabecular number, separation, and connectivity density), and bone mechanical properties (i.e., ultimate stress) through increases in osteogenic (RUNX2, BMP-2, FRA-1, OPG) expression and decreases in PPARγ. Furthermore, CRISPR/Cas9 knockout of MEK1 or MEK5 in mMSCs seeded on PLGA scaffolds and placed into critical-size calvarial defects in Balb(c) mice (male and female) revealed that treatment with melatonin (15 mg/L; p.o., nightly, 90 days) mediates sex-specific actions of MEK1 and MEK5 in new bone formation. This study is the first to demonstrate a role for MEK1/2 and MEK5 in modulating melatonin-mediated actions on bone formation in vivo and in a sex-specific manner.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Omair A Mohiuddin
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Van T Hoang
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Matthew E Burow
- Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Veronica M Sola
- Department of Oral Biology, Faculty of Odontology, National University of Cordoba, Cordoba, Argentina
| | - Agata R Carpentieri
- Faculty of Odontology, National University of Cordoba and National Council for Scientific and Technical Research (CONICET); Institute for Health Sciences Research (INICSA), Cordoba, Argentina
| | - Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
13
|
Lledó VE, Alkozi HA, Sánchez-Naves J, Fernandez-Torres MA, Guzman-Aranguez A. Melatonin counteracts oxidative damage in lens by regulation of Nrf2 and NLRP3 inflammasome activity. Exp Eye Res 2021; 215:108912. [PMID: 34965405 DOI: 10.1016/j.exer.2021.108912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/19/2021] [Accepted: 12/22/2021] [Indexed: 11/04/2022]
Abstract
Oxidative stress, generated because of an imbalance between reactive oxygen species (ROS) generation and elimination, is associated with lens damage and cataract progression. ROS generation is known to activate NLRP3 (nucleotide-binding oligomerization domain-like receptor family, pyrin domain-cointaining 3) inflammasome, and is believed to be an important link between oxidative stress and inflammation, that is also related to cataract development. Potential oxidative hazard to the lens by white light-emitting diode (LED) light, a source of illumination commonly used nowadays, has been suggested, although available information is limited. In this work, we evaluated the cytotoxicity induced by hydrogen peroxide (an oxidative stressor agent) and white LED light in lens epithelial cells as well as melatonin ability to counteract the effects induced by them. Melatonin is a neurohormone secreted by different ocular structures that could be useful to alleviate oxidative damage induced by different oxidative stressors in lens. Particularly, the modulation of Nrf2 (nuclear erythroid 2-related factor)/Keap 1 (Kelch-like ECH-associated protein 1), an essential oxidative stress regulator, and NLRP3 activity by melatonin was evaluated in lens epithelial cells. ROS levels rose after white LED light exposure and cell viability was reduced after challenge with oxidative stressor agents. Melatonin prevented cell death triggered by hydrogen peroxide and white LED light, precluded ROS generation induced by white LED light and promoted antioxidant lens capacity through upregulation of Nrf2 protein levels and SOD activity. NLRP3, caspase-1 and IL1-β expression significantly increased in human lens cells exposed to H2O2 or irradiated with white LED light. Activation of NLRP3 inflammasome triggered by oxidative stressors was also abrogated by melatonin. Attenuation of inflammatory and cytotoxic effects induced by oxidative stressors provided by melatonin in lens indicate the interest of this molecule as a potential therapeutic agent for cataract prevention/management.
Collapse
Affiliation(s)
- Victoria Eugenia Lledó
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Sánchez-Naves
- Department of Ophthalmology, OPHTHALMEDIC and I.P.O. Institute of Ophthalmology, Balearic Island, Spain
| | - Miguel Angel Fernandez-Torres
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain
| | - Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
14
|
Sánchez-Quirós J, Rodríguez-Quet O, Rego-Lorca D, Carrasco-Lopez-Brea M, Santos-Bueso E. Bilateral solar maculopathy in a patient with bipolar disorder. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2021; 96:611-614. [PMID: 34756285 DOI: 10.1016/j.oftale.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/22/2020] [Indexed: 06/13/2023]
Abstract
A case of solar maculopathy is described in a 36-year-old man with a history of bipolar disorder. The patient reported directly looking at the sun for several hours in the setting of a bipolar disorder decompensation. The visual acuity was 0.3 in both eyes (BE). Intraocular pressure and anterior segment were normal. In the fundus exam, a peri-macular halo with loss of the foveolar reflex was observed in BE. The macular optical coherence tomography revealed a disruption of the ellipsoid line and the retinal pigment epithelium. Bilateral central defects were seen in the Humphrey 24-2 visual field. After 6 months of follow-up, the visual clinical picture remains stable with the same degree of visual acuity. Solar maculopathy is a disorder due to the phototoxic effects of radiation, which cause a decrease in visual acuity by disrupting the retinal photoreceptor layer.
Collapse
Affiliation(s)
- J Sánchez-Quirós
- Servicio de Oftalmología, Hospital Clinico San Carlos, Madrid, Spain.
| | - O Rodríguez-Quet
- Servicio de Oftalmología, Hospital Clinico San Carlos, Madrid, Spain
| | - D Rego-Lorca
- Servicio de Oftalmología, Hospital Clinico San Carlos, Madrid, Spain
| | | | - E Santos-Bueso
- Servicio de Oftalmología, Hospital Clinico San Carlos, Madrid, Spain
| |
Collapse
|
15
|
Dada T, Bhai N, Midha N, Shakrawal J, Kumar M, Chaurasia P, Gupta S, Angmo D, Yadav R, Dada R, Sihota R. Effect of Mindfulness Meditation on Intraocular Pressure and Trabecular Meshwork Gene Expression: A Randomized Controlled Trial. Am J Ophthalmol 2021; 223:308-321. [PMID: 33393484 DOI: 10.1016/j.ajo.2020.10.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/09/2023]
Abstract
PURPOSE To evaluate the effect of mindfulness meditation (MM) on intraocular pressure (IOP) and trabecular meshwork (TM) gene expression in patients with medically uncontrolled primary open angle glaucoma (POAG). DESIGN Parallel arm, single-masked, randomized controlled trial. METHODS Sixty POAG patients with IOP ≥21 mm Hg taking maximal topical medication and scheduled for trabeculectomy were included in this study at a tertiary eye care center in India. Thirty patients (Group 1) underwent 3 weeks of 45-minute daily MM sessions in addition to medical therapy while Group 2 continued medical therapy only. Primary outcome was change in IOP (ΔIOP) after 3 weeks of MM. Secondary outcomes were probability of success, percentage of reduction in IOP, effect on diurnal variations of IOP, changes in quality of life (QoL), and changes in gene expression patterns in TM. RESULTS At 3 weeks, a significant decrease in IOP was seen in Group 1 (20.16 ± 3.3 to 15.05 ± 2.4mm Hg; P = .001), compared to Group 2 (21.2 ± 5.6 to 20.0 ± 5.8mm Hg; P = .38). ΔIOP was significantly higher in Group 1 than in Group 2 (5.0 ± 1.80 vs. 0.20 ± 3.03mm Hg; P = .001). Analysis of gene expression revealed significant upregulation of nitric oxide synthetase (NOS1 and NOS3) and neuroprotective genes with downregulation of proinflammatory genes in Group 1 in comparison to Group 2 (P = .001). CONCLUSIONS MM was associated with significant decrease in IOP and changes in TM gene expression, indicating its direct impact on ocular tissues.
Collapse
|
16
|
Anti-Warburg Effect of Melatonin: A Proposed Mechanism to Explain its Inhibition of Multiple Diseases. Int J Mol Sci 2021; 22:ijms22020764. [PMID: 33466614 PMCID: PMC7828708 DOI: 10.3390/ijms22020764] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glucose is an essential nutrient for every cell but its metabolic fate depends on cellular phenotype. Normally, the product of cytosolic glycolysis, pyruvate, is transported into mitochondria and irreversibly converted to acetyl coenzyme A by pyruvate dehydrogenase complex (PDC). In some pathological cells, however, pyruvate transport into the mitochondria is blocked due to the inhibition of PDC by pyruvate dehydrogenase kinase. This altered metabolism is referred to as aerobic glycolysis (Warburg effect) and is common in solid tumors and in other pathological cells. Switching from mitochondrial oxidative phosphorylation to aerobic glycolysis provides diseased cells with advantages because of the rapid production of ATP and the activation of pentose phosphate pathway (PPP) which provides nucleotides required for elevated cellular metabolism. Molecules, called glycolytics, inhibit aerobic glycolysis and convert cells to a healthier phenotype. Glycolytics often function by inhibiting hypoxia-inducible factor-1α leading to PDC disinhibition allowing for intramitochondrial conversion of pyruvate into acetyl coenzyme A. Melatonin is a glycolytic which converts diseased cells to the healthier phenotype. Herein we propose that melatonin's function as a glycolytic explains its actions in inhibiting a variety of diseases. Thus, the common denominator is melatonin's action in switching the metabolic phenotype of cells.
Collapse
|
17
|
Sánchez-Quirós J, Rodríguez-Quet O, Rego-Lorca D, Carrasco-Lopez-Brea M, Santos-Bueso E. Bilateral solar maculopathy in a patient with bipolar disorder. ARCHIVOS DE LA SOCIEDAD ESPANOLA DE OFTALMOLOGIA 2020; 96:S0365-6691(20)30434-2. [PMID: 33372002 DOI: 10.1016/j.oftal.2020.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
A case of solar maculopathy is described in a 36-year-old man with a history of bipolar disorder. The patient reported directly looking at the sun for several hours in the setting of a bipolar disorder decompensation. The visual acuity was 0.3 in both eyes (BE). Intraocular pressure and anterior segment were normal. In the fundus exam, a peri-macular halo with loss of the foveolar reflex was observed in BE. The macular optical coherence tomography revealed a disruption of the ellipsoid line and the retinal pigment epithelium. Bilateral central defects were seen in the Humphrey 24-2 visual field. After 6 months of follow-up, the visual clinical picture remains stable with the same degree of visual acuity. Solar maculopathy is a disorder due to the phototoxic effects of radiation, which cause a decrease in visual acuity by disrupting the retinal photoreceptor layer.
Collapse
Affiliation(s)
- J Sánchez-Quirós
- Servicio de Oftalmología, Hospital Clinico San Carlos, Madrid, España.
| | - O Rodríguez-Quet
- Servicio de Oftalmología, Hospital Clinico San Carlos, Madrid, España
| | - D Rego-Lorca
- Servicio de Oftalmología, Hospital Clinico San Carlos, Madrid, España
| | | | - E Santos-Bueso
- Servicio de Oftalmología, Hospital Clinico San Carlos, Madrid, España
| |
Collapse
|
18
|
A Topical Formulation of Melatoninergic Compounds Exerts Strong Hypotensive and Neuroprotective Effects in a Rat Model of Hypertensive Glaucoma. Int J Mol Sci 2020; 21:ijms21239267. [PMID: 33291737 PMCID: PMC7730513 DOI: 10.3390/ijms21239267] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/23/2020] [Accepted: 12/02/2020] [Indexed: 02/08/2023] Open
Abstract
Melatonin is of great importance for regulating several eye processes, including pressure homeostasis. Melatonin in combination with agomelatine has been recently reported to reduce intraocular pressure (IOP) with higher efficacy than each compound alone. Here, we used the methylcellulose (MCE) rat model of hypertensive glaucoma, an optic neuropathy characterized by the apoptotic death of retinal ganglion cells (RGCs), to evaluate the hypotensive and neuroprotective efficacy of an eye drop nanomicellar formulation containing melatonin/agomelatine. Eye tissue distribution of melatonin/agomelatine in healthy rats was evaluated by HPLC/MS/MS. In the MCE model, we assessed by tonometry the hypotensive efficacy of melatonin/agomelatine. Neuroprotection was revealed by electroretinography; by levels of inflammatory and apoptotic markers; and by RGC density. The effects of melatonin/agomelatine were compared with those of timolol (a beta blocker with prevalent hypotensive activity) or brimonidine (an alpha 2 adrenergic agonist with potential neuroprotective efficacy), two drugs commonly used to treat glaucoma. Both melatonin and agomelatine penetrate the posterior segment of the eye. In the MCE model, IOP elevation was drastically reduced by melatonin/agomelatine with higher efficacy than that of timolol or brimonidine. Concomitantly, gliosis-related inflammation and the Bax-associated apoptosis were partially prevented, thus leading to RGC survival and recovered retinal dysfunction. We suggest that topical melatoninergic compounds might be beneficial for ocular health.
Collapse
|
19
|
Natural Products: Evidence for Neuroprotection to Be Exploited in Glaucoma. Nutrients 2020; 12:nu12103158. [PMID: 33081127 PMCID: PMC7602834 DOI: 10.3390/nu12103158] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/14/2022] Open
Abstract
Glaucoma, a leading cause of irreversible blindness worldwide, is an optic neuropathy characterized by the progressive death of retinal ganglion cells (RGCs). Elevated intraocular pressure (IOP) is recognized as the main risk factor. Despite effective IOP-lowering therapies, the disease progresses in a significant number of patients. Therefore, alternative IOP-independent strategies aiming at halting or delaying RGC degeneration is the current therapeutic challenge for glaucoma management. Here, we review the literature on the neuroprotective activities, and the underlying mechanisms, of natural compounds and dietary supplements in experimental and clinical glaucoma.
Collapse
|
20
|
Sola VM, Aguilar JJ, Vazquez Mosquera AP, Carpentieri AR. Melatonin is an effective protector of gingival cells damaged by the cytotoxic effect of glutamate and DL-buthionine sulfoximine. J Periodontal Res 2020; 56:154-161. [PMID: 32965035 DOI: 10.1111/jre.12806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/08/2020] [Accepted: 09/02/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Cellular damage related to oxidative stress (OS) is implicated in periodontal diseases (PD). Melatonin (MEL) has multiple functions, and it has been described as a potential treatment for PD. We aim at evaluating the protective effects of MEL on an in vitro model of cellular damage triggered by glutamate (GLUT) and DL-buthionine sulfoximine (BSO), on gingival cells (GCs) in culture. MATERIAL AND METHODS A primary culture of GCs from Wistar rats was developed in order to test the protective property of MEL; BSO and GLUT were administered alone as well as in combination with MEL. The viability and apoptosis were measured with MTT assay and TUNEL, respectively, and the concentration of superoxide anion ( O 2 - ) was measured with the NBT method. RESULTS The combination of BSO and GLUT treatment resulted in a decreased viability of GCs. This was evidenced by the increase in both the production of superoxide anion and apoptosis. After MEL administration, the oxidant and pro-apoptotic effects of BSO and GLUT were totally counteracted. CONCLUSIONS These findings demonstrated that MEL has an effective protective role on GCs subjected to cellular damage in a model of OS and cytotoxicity triggered by BSO and GLUT. Consequently, MEL could be used as a therapeutic agent in PD which begin with a significative loss of GCs.
Collapse
Affiliation(s)
- Verónica M Sola
- Cátedra "B" de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina.,INICSA/UNC-CONICET, Enrique Barros esquina Enfermera Gordillo, Ciudad Universitaria, Córdoba, Argentina
| | - Juan J Aguilar
- Instituto Dr. José M.Vanella, Facultad de Ciencias Médicas, UNC, Córdoba, Argentina.,Cátedra "B" de Introducción a la Física y Química Biológica, Facultad de Odontología, UNC, Córdoba, Argentina
| | - Ana P Vazquez Mosquera
- INICSA/UNC-CONICET, Enrique Barros esquina Enfermera Gordillo, Ciudad Universitaria, Córdoba, Argentina.,Cátedra "B" de Introducción a la Física y Química Biológica, Facultad de Odontología, UNC, Córdoba, Argentina
| | - Agata R Carpentieri
- Cátedra "B" de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina.,INICSA/UNC-CONICET, Enrique Barros esquina Enfermera Gordillo, Ciudad Universitaria, Córdoba, Argentina
| |
Collapse
|
21
|
Bessone CDV, Martinez SM, Luna JD, Marquez MA, Ramírez ML, Allemandi DA, Carpentieri ÁR, Quinteros DA. Neuroprotective effect of melatonin loaded in ethylcellulose nanoparticles applied topically in a retinal degeneration model in rabbits. Exp Eye Res 2020; 200:108222. [PMID: 32898513 DOI: 10.1016/j.exer.2020.108222] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 12/18/2022]
Abstract
We are reporting for the first time the synthesis and application of an innovative nanometric system for the controlled topic release of melatonin in the retina. The ethylcellulose nanocapsules were characterized by diverse physicochemical techniques (scanning electron microscopy, zeta potential, hydrodynamic diameters) and an in vitro release study was done. A complete ex vivo and in vivo trans-corneal permeation and an irritation study were carried out with the new formulations in albino rabbits, to which a retinal degenerative model was induced. The results obtained demonstrate that the in vitro release of melatonin (1 mg/mL and 2 mg/mL) transported by nanocapsules is slower when compared to a solution of melatonin. Greater penetration of melatonin through the cornea was demonstrated by ex vivo and in vivo tests. This can be attributable to an enhanced neuroprotective effect of melatonin on retinal ganglion cells when it is included in ethylcellulose nanocapsules compared to a solution of melatonin. These outstanding findings add promising new perspectives to current knowledge about administrations using nano-technological tools in the treatment of neurodegenerative diseases at the ocular level.
Collapse
Affiliation(s)
- Carolina D V Bessone
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Sofia M Martinez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - José D Luna
- Área de Cirugía de Vítreo y Retina, Centro Privado de Ojos Romagosa S.A. and Fundación VER, 5000, Córdoba, Argentina
| | - Marilyn A Marquez
- Área de Cirugía de Vítreo y Retina, Centro Privado de Ojos Romagosa S.A. and Fundación VER, 5000, Córdoba, Argentina
| | - María L Ramírez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Daniel A Allemandi
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Ágata R Carpentieri
- Instituto de Investigación en Ciencias de la Salud (INICSA), CONICET, Universidad Nacional de Córdoba and Cátedra B de Química Biológica, Facultad de Odontología, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Daniela A Quinteros
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
22
|
Adjuvant Therapies in Diabetic Retinopathy as an Early Approach to Delay Its Progression: The Importance of Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3096470. [PMID: 32256949 PMCID: PMC7086452 DOI: 10.1155/2020/3096470] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/08/2020] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus (DM) is a progressive disease induced by a sustained state of chronic hyperglycemia that can lead to several complications targeting highly metabolic cells. Diabetic retinopathy (DR) is a multifactorial microvascular complication of DM, with high prevalence, which can ultimately lead to visual impairment. The genesis of DR involves a complex variety of pathways such as oxidative stress, inflammation, apoptosis, neurodegeneration, angiogenesis, lipid peroxidation, and endoplasmic reticulum (ER) stress, each possessing potential therapeutic biomarkers. A specific treatment has yet to be developed for early stages of DR since no management is given other than glycemic control until the proliferative stage develops, offering a poor visual prognosis to the patient. In this narrative review article, we evaluate different dietary regimens, such as the Mediterranean diet, Dietary Pattern to Stop Hypertension (DASH) and their functional foods, and low-calorie diets (LCDs). Nutraceuticals have also been assessed in DR on account of their antioxidant, anti-inflammatory, and antiangiogenic properties, which may have an important impact on the physiopathology of DR. These nutraceuticals have shown to lower reactive oxygen species (ROS), important inflammatory factors, cytokines, and endothelial damage biomarkers either as monotherapies or combined therapies or concomitantly with established diabetes management or nonconventional adjuvant drugs like topical nonsteroidal anti-inflammatory drugs (NSAIDs).
Collapse
|
23
|
Hypotensive Effect of Nanomicellar Formulation of Melatonin and Agomelatine in a Rat Model: Significance for Glaucoma Therapy. Diagnostics (Basel) 2020; 10:diagnostics10030138. [PMID: 32138160 PMCID: PMC7151109 DOI: 10.3390/diagnostics10030138] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/18/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Melatoninergic agents are known to reduce intraocular pressure (IOP). The present study was performed to evaluate the effect of nanomicellar formulations of melatoninergic agents on IOP in the rat. METHODS Tonometry was used to measure IOP in eyes instilled with melatonin or agomelatine. Ocular hypertension was induced by the injection of methylcellulose in the anterior chamber. RESULTS Melatonin formulated in nanomicelles had a longer lasting hypotonizing effect on IOP with respect to melatonin in saline. Nanomicellar formulations of melatonin and agomelatine, either alone or in combination, had lowering effects that did not depend on their concentration or their combination, which, however, resulted in an increased duration of the hypotonizing effect. The duration of the lowering effect was further increased by the addition of lipoic acid. CONCLUSIONS We demonstrated the effective hypotonizing activity of melatonin and agomelatine in combination with lipoic acid. Although results in animals cannot be directly translated to humans, the possibility of developing novel therapeutical approaches for patients suffering from hypertensive glaucoma should be considered.
Collapse
|
24
|
Rodríguez Villanueva J, Martín Esteban J, Rodríguez Villanueva LJ. Retinal Cell Protection in Ocular Excitotoxicity Diseases. Possible Alternatives Offered by Microparticulate Drug Delivery Systems and Future Prospects. Pharmaceutics 2020; 12:pharmaceutics12020094. [PMID: 31991667 PMCID: PMC7076407 DOI: 10.3390/pharmaceutics12020094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/17/2020] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Excitotoxicity seems to play a critical role in ocular neurodegeneration. Excess-glutamate-mediated retinal ganglion cells death is the principal cause of cell loss. Uncontrolled glutamate in the synapsis has significant implications in the pathogenesis of neurodegenerative disorders. The exploitation of various approaches of controlled release systems enhances the pharmacokinetic and pharmacodynamic activity of drugs. In particular, microparticles are secure, can maintain therapeutic drug concentrations in the eye for prolonged periods, and make intimate contact by improving drug bioavailability. According to the promising results reported, possible new investigations will focus intense attention on microparticulate formulations and can be expected to open the field to new alternatives for doctors, as currently required by patients.
Collapse
Affiliation(s)
- Javier Rodríguez Villanueva
- Human resources for I+D+i Department, National Institute for Agricultural and Food Research and Technology, Ctra. de la Coruña (Autovía A6) Km. 7.5, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-347-4158
| | - Jorge Martín Esteban
- University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain; (J.M.E.); (L.J.R.V.)
| | - Laura J. Rodríguez Villanueva
- University of Alcalá, Ctra. de Madrid-Barcelona (Autovía A2) Km. 33,600, 28805 Alcalá de Henares, Madrid, Spain; (J.M.E.); (L.J.R.V.)
| |
Collapse
|
25
|
Sánchez-Vázquez FJ, López-Olmeda JF, Vera LM, Migaud H, López-Patiño MA, Míguez JM. Environmental Cycles, Melatonin, and Circadian Control of Stress Response in Fish. Front Endocrinol (Lausanne) 2019; 10:279. [PMID: 31244768 PMCID: PMC6579845 DOI: 10.3389/fendo.2019.00279] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/16/2019] [Indexed: 01/10/2023] Open
Abstract
Fish have evolved a biological clock to cope with environmental cycles, so they display circadian rhythms in most physiological functions including stress response. Photoperiodic information is transduced by the pineal organ into a rhythmic secretion of melatonin, which is released into the blood circulation with high concentrations at night and low during the day. The melatonin rhythmic profile is under the control of circadian clocks in most fish (except salmonids), and it is considered as an important output of the circadian system, thus modulating most daily behavioral and physiological rhythms. Lighting conditions (intensity and spectrum) change in the underwater environment and affect fish embryo and larvae development: constant light/darkness or red lights can lead to increased malformations and mortality, whereas blue light usually results in best hatching rates and growth performance in marine fish. Many factors display daily rhythms along the hypothalamus-pituitary-interrenal (HPI) axis that controls stress response in fish, including corticotropin-releasing hormone (Crh) and its binding protein (Crhbp), proopiomelanocortin A and B (Pomca and Pomcb), and plasma cortisol, glucose, and lactate. Many of these circadian rhythms are under the control of endogenous molecular clocks, which consist of self-sustained transcriptional-translational feedback loops involving the cyclic expression of circadian clock genes (clock, bmal, per, and cry) which persists under constant light or darkness. Exposing fish to a stressor can result in altered rhythms of most stress indicators, such as cortisol, glucose, and lactate among others, as well as daily rhythms of most behavioral and physiological functions. In addition, crh and pomca expression profiles can be affected by other factors such as light spectrum, which strongly influence the expression profile of growth-related (igf1a, igf2a) genes. Additionally, the daily cycle of water temperature (warmer at day and cooler at night) is another factor that has to be considered. The response to any acute stressor is not only species dependent, but also depends on the time of the day when the stress occurs: nocturnal species show higher responses when stressed during day time, whereas diurnal fish respond stronger at night. Melatonin administration in fish has sedative effects with a reduction in locomotor activity and cortisol levels, as well as reduced liver glycogen and dopaminergic and serotonergic activities within the hypothalamus. In this paper, we are reviewing the role of environmental cycles and biological clocks on the entrainment of daily rhythms in the HPI axis and stress responses in fish.
Collapse
Affiliation(s)
| | | | - Luisa Maria Vera
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Marcos Antonio López-Patiño
- Laboratory Animal Physiology, Department Biology and Health Science, Faculty of Biology and Centro Singular de Investigación Mariña-ECIMAT, University of Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Laboratory Animal Physiology, Department Biology and Health Science, Faculty of Biology and Centro Singular de Investigación Mariña-ECIMAT, University of Vigo, Vigo, Spain
| |
Collapse
|