1
|
Markin SS, Ponomarenko EA, Romashova YA, Pleshakova TO, Ivanov SV, Beregovykh VV, Konstantinov SL, Stryabkova GI, Chefranova ZY, Lykov YA, Karamova IM, Koledinskii AG, Shestakova KM, Markin PA, Moskaleva NE, Appolonova SA. Targeted metabolomic profiling of acute ST-segment elevation myocardial infarction. Sci Rep 2024; 14:23838. [PMID: 39394398 PMCID: PMC11470145 DOI: 10.1038/s41598-024-75635-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024] Open
Abstract
Myocardial infarction is a major cause of morbidity and mortality worldwide. Metabolomic investigations may be useful for understanding the pathogenesis of ST-segment elevation myocardial infarction (STEMI). STEMI patients were comprehensively examined via targeted metabolomic profiling, machine learning and weighted correlation network analysis. A total of 195 subjects, including 68 STEMI patients, 84 patients with stable angina pectoris (SAP) and 43 non-CVD patients, were enrolled in the study. Metabolomic profiling involving the quantitative analysis of 87 endogenous metabolites in plasma was conducted. This study is the first to perform targeted metabolomic profiling in patients with STEMI. We identified 36 significantly altered metabolites in STEMI patients. Increased levels of four amino acids, eight acylcarnitines, six metabolites of the NO-urea cycle and neurotransmitters, and three intermediates of tryptophan metabolism were detected. The following metabolites exhibited decreased levels: six amino acids, three acylcarnitines, three components of the NO-urea cycle and neurotransmitters, and three intermediates of tryptophan metabolism. We found that the significant changes in tryptophan metabolism observed in STEMI patients-the increase in anthranilic acid and tryptophol and decrease in xanthurenic acid and 3-OH-kynurenine-may play important roles in STEMI pathogenesis. On the basis of the differences in the constructed weighted correlation networks, new significant metabolite ratios were identified. Among the 22 significantly altered metabolite ratios identified, 13 were between STEMI patients and non-CVD patients, and 17 were between STEMI patients and SAP patients. Seven of these ratios were common to both comparisons (STEMI patients vs. non-CVD patients and STEMI patients vs. SAP patients). Additionally, two ratios were consistently observed among the STEMI, SAP and non-CVD groups (anthranilic acid: aspartic acid and GSG (glutamine: serine + glycine)). These findings provide new insight into the diagnosis and pathogenesis of STEMI.
Collapse
Affiliation(s)
| | | | - Yu A Romashova
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - T O Pleshakova
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - S V Ivanov
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - V V Beregovykh
- Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - S L Konstantinov
- Belgorod Regional Clinical Hospital of St. Joseph, Belgorod, 308007, Russia
| | - G I Stryabkova
- Belgorod Regional Clinical Hospital of St. Joseph, Belgorod, 308007, Russia
| | - Zh Yu Chefranova
- Belgorod State National Research University, Belgorod, 308015, Russia
| | - Y A Lykov
- Belgorod State National Research University, Belgorod, 308015, Russia
| | - I M Karamova
- Ufa Emergency City Clinical Hospital, Ufa, 450092, Russia
| | - A G Koledinskii
- Peoples' Friendship University of Russia, Moscow, 117198, Russia
| | - K M Shestakova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - P A Markin
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - N E Moskaleva
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
| | - S A Appolonova
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
- I.M. Sechenov First Moscow State Medical University, (Sechenov University), Moscow, 119435, Russia
| |
Collapse
|
2
|
Culler KL, Sinha A, Filipp M, Giro P, Allen NB, Taylor KD, Guo X, Thorp E, Freed BH, Greenland P, Post WS, Bertoni A, Herrington D, Gao C, Wang Y, Shah SJ, Patel RB. Metabolomic profiling identifies novel metabolites associated with cardiac dysfunction. Sci Rep 2024; 14:20694. [PMID: 39237673 PMCID: PMC11377834 DOI: 10.1038/s41598-024-71329-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Metabolic comorbidities, such as obesity and diabetes, are associated with subclinical alterations in both cardiac structure/function and natriuretic peptides prior to the onset of heart failure (HF). Despite this, the exact metabolic pathways of cardiac dysfunction which precede HF are not well-defined. Among older individuals without HF in the Multi-Ethnic Study of Atherosclerosis (MESA), we evaluated the associations of 47 circulating metabolites measured by 1H-NMR with echocardiographic measures of cardiac structure and function. We then evaluated associations of significant metabolites with circulating N-terminal pro-B-type natriuretic peptide (NT-proBNP). In a separate cohort, we evaluated differences between top metabolites in patients with HF with preserved ejection fraction (HFpEF) and comorbidity-matched controls. Genetic variants associated with top metabolites (mQTLs) were then related to echocardiographic measures and NT-proBNP. Among 3440 individuals with metabolic and echocardiographic data in MESA (62 ± 10 years, 52% female, 38% White), 10 metabolites broadly reflective of glucose and amino acid metabolism were associated with at least 1 measure of cardiac structure or function. Of these 10 metabolites, 4 (myo-inositol, glucose, dimethylsulfone, carnitine) were associated with higher NT-proBNP and 2 (d-mannose, acetone) were associated with lower NT-proBNP. In a separate cohort, patients with HFpEF had higher circulating myo-inositol levels compared with comorbidity-matched controls. Genetic analyses revealed that 1 of 6 known myo-inositol mQTLs conferred risk of higher NT-proBNP. In conclusion, metabolomic profiling identifies several novel metabolites associated with cardiac dysfunction in a cohort at high risk for HF, revealing pathways potentially relevant to future HF risk.
Collapse
Affiliation(s)
- Kasen L Culler
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair St Suite 600, Chicago, IL, 60611, USA
| | - Arjun Sinha
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair St Suite 600, Chicago, IL, 60611, USA
| | - Mallory Filipp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pedro Giro
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair St Suite 600, Chicago, IL, 60611, USA
| | - Norrina B Allen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Xiuqing Guo
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ed Thorp
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin H Freed
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair St Suite 600, Chicago, IL, 60611, USA
| | - Philip Greenland
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Wendy S Post
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alain Bertoni
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - David Herrington
- Department of Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Chen Gao
- Physiology and Pharmacology Department, University of Cincinnati, Cincinnati, OH, USA
| | - Yibin Wang
- Signature Research Program of Cardiovascular and Metabolic Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair St Suite 600, Chicago, IL, 60611, USA
| | - Ravi B Patel
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, 676 N St Clair St Suite 600, Chicago, IL, 60611, USA.
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
3
|
Naeem F, Leone TC, Petucci C, Shoffler C, Kodihalli RC, Hidalgo T, Tow-Keogh C, Mancuso J, Tzameli I, Bennett D, Groarke JD, Flach RJR, Rader DJ, Kelly DP. Targeted Quantitative Plasma Metabolomics Identifies Metabolite Signatures that Distinguish Heart Failure with Reduced and Preserved Ejection Fraction. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.24.24310961. [PMID: 39108509 PMCID: PMC11302718 DOI: 10.1101/2024.07.24.24310961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Background Two general phenotypes of heart failure (HF) are recognized: HF with reduced ejection fraction (HFrEF) and with preserved EF (HFpEF). To develop HF disease phenotype-specific approaches to define and guide treatment, distinguishing biomarkers are needed. The goal of this study was to utilize quantitative metabolomics on a large, diverse population to replicate and extend existing knowledge of the plasma metabolic signatures in human HF. Methods Quantitative, targeted LC/MS plasma metabolomics was conducted on 787 samples collected by the Penn Medicine BioBank from subjects with HFrEF (n=219), HFpEF (n=357), and matched non-failing Controls (n=211). A total of 90 metabolites were analyzed, comprising 28 amino acids, 8 organic acids, and 54 acylcarnitines. 733 of these samples were also processed via an OLINK protein panel for proteomic profiling. Results Consistent with previous studies, unsaturated forms of medium/long chain acylcarnitines were elevated in the HFrEF group to a greater extent than the HFpEF group compared to Controls. A number of amino acid derivatives, including 1- and 3-methylhistidine, homocitrulline, and symmetric (SDMA) and asymmetric (ADMA) dimethylarginine were elevated in HF, with ADMA elevated uniquely in HFpEF. Plasma branched-chain amino acids (BCAA) were not different across the groups; however, short-chain acylcarnitine species indicative of BCAA catabolism were significantly elevated in both HF groups. The ketone body 3-hydroxybutyrate (3-HBA) and its metabolite C4-OH carnitine were uniquely elevated in the HFrEF group. Linear regression models demonstrated a significant correlation between plasma 3-HBA and NT-proBNP in both forms of HF, stronger in HFrEF. Conclusions These results identify plasma signatures that are shared as well as potentially distinguish between HFrEF and HFpEF. Metabolite markers for ketogenic metabolic reprogramming in extra-cardiac tissues were identified as unique signatures in the HFrEF group, possibly related to the lipolytic action of increased levels of BNP. Future studies will be necessary to further validate these metabolites as HF biosignatures that may guide phenotype-specific therapeutics and provide insight into the systemic metabolic responses to HFpEF and HFrEF.
Collapse
Affiliation(s)
- Fawaz Naeem
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Teresa C. Leone
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Christopher Petucci
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Clarissa Shoffler
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| | | | | | | | | | | | | | | | | | - Daniel J. Rader
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, PA
- Cardiovascular Institute, Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel P. Kelly
- Cardiovascular Institute, Department of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
4
|
Liu X, Wang L, Wang Y, Qiao X, Chen N, Liu F, Zhou X, Wang H, Shen H. Myocardial infarction complexity: A multi-omics approach. Clin Chim Acta 2024; 552:117680. [PMID: 38008153 DOI: 10.1016/j.cca.2023.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
Myocardial infarction (MI), a prevalent cardiovascular disease, is fundamentally precipitated by thrombus formation in the coronary arteries, which subsequently decreases myocardial perfusion and leads to cellular necrosis. The intricacy of MI pathogenesis necessitates extensive research to elucidate the disease's root cause, thereby addressing the limitations present in its diagnosis and prognosis. With the continuous advancement of genomics technology, genomics, proteomics, metabolomics and transcriptomics are widely used in the study of MI, which provides an excellent way to identify new biomarkers that elucidate the complex mechanisms of MI. This paper provides a detailed review of various genomics studies of MI, including genomics, proteomics, transcriptomics, metabolomics and multi-omics studies. The metabolites and proteins involved in the pathogenesis of MI are investigated through integrated protein-protein interactions and multi-omics analysis by STRING and Metascape platforms. In conclusion, the future of omics research in myocardial infarction offers significant promise.
Collapse
Affiliation(s)
- Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Nuo Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Fangqian Liu
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Xiaoxiang Zhou
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
5
|
Peng X, Du J, Wang Y. Metabolic signatures in post-myocardial infarction heart failure, including insights into prediction, intervention, and prognosis. Biomed Pharmacother 2024; 170:116079. [PMID: 38150879 DOI: 10.1016/j.biopha.2023.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
Heart failure (HF) is a prevalent long-term complication of myocardial infarction (MI). The incidence of post-MI HF is high, and patients with the condition have a poor prognosis. Accurate identification of individuals at high risk for post-MI HF is crucial for implementation of a protective and ideally personalized strategy to prevent fatal events. Post-MI HF is characterized by adverse cardiac remodeling, which results from metabolic changes in response to long-term ischemia. Moreover, various risk factors, including genetics, diet, and obesity, can influence metabolic pathways in patients. This review focuses on the metabolic signatures of post-MI HF that could serve as non-invasive biomarkers for early identification in high-risk populations. We also explore how metabolism participates in the pathophysiology of post-MI HF. Furthermore, we discuss the potential of metabolites as novel targets for treatment of post-MI HF and as biomarkers for prognostic evaluation. It is expected to provide valuable suggestions for the clinical prevention and treatment of post-MI HF from a metabolic perspective.
Collapse
Affiliation(s)
- Xueyan Peng
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China; Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Jie Du
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China; Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Yuan Wang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China; Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
6
|
Nogal A, Alkis T, Lee Y, Kifer D, Hu J, Murphy RA, Huang Z, Wang-Sattler R, Kastenmüler G, Linkohr B, Barrios C, Crespo M, Gieger C, Peters A, Price J, Rexrode KM, Yu B, Menni C. Predictive metabolites for incident myocardial infarction: a two-step meta-analysis of individual patient data from six cohorts comprising 7897 individuals from the COnsortium of METabolomics Studies. Cardiovasc Res 2023; 119:2743-2754. [PMID: 37706562 PMCID: PMC10757581 DOI: 10.1093/cvr/cvad147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/28/2023] [Accepted: 07/18/2023] [Indexed: 09/15/2023] Open
Abstract
AIMS Myocardial infarction (MI) is a major cause of death and disability worldwide. Most metabolomics studies investigating metabolites predicting MI are limited by the participant number and/or the demographic diversity. We sought to identify biomarkers of incident MI in the COnsortium of METabolomics Studies. METHODS AND RESULTS We included 7897 individuals aged on average 66 years from six intercontinental cohorts with blood metabolomic profiling (n = 1428 metabolites, of which 168 were present in at least three cohorts with over 80% prevalence) and MI information (1373 cases). We performed a two-stage individual patient data meta-analysis. We first assessed the associations between circulating metabolites and incident MI for each cohort adjusting for traditional risk factors and then performed a fixed effect inverse variance meta-analysis to pull the results together. Finally, we conducted a pathway enrichment analysis to identify potential pathways linked to MI. On meta-analysis, 56 metabolites including 21 lipids and 17 amino acids were associated with incident MI after adjusting for multiple testing (false discovery rate < 0.05), and 10 were novel. The largest increased risk was observed for the carbohydrate mannitol/sorbitol {hazard ratio [HR] [95% confidence interval (CI)] = 1.40 [1.26-1.56], P < 0.001}, whereas the largest decrease in risk was found for glutamine [HR (95% CI) = 0.74 (0.67-0.82), P < 0.001]. Moreover, the identified metabolites were significantly enriched (corrected P < 0.05) in pathways previously linked with cardiovascular diseases, including aminoacyl-tRNA biosynthesis. CONCLUSIONS In the most comprehensive metabolomic study of incident MI to date, 10 novel metabolites were associated with MI. Metabolite profiles might help to identify high-risk individuals before disease onset. Further research is needed to fully understand the mechanisms of action and elaborate pathway findings.
Collapse
Affiliation(s)
- Ana Nogal
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, Westminster Bridge Road, SE1 7EH London, UK
| | - Taryn Alkis
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Yura Lee
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Domagoj Kifer
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Jie Hu
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rachel A Murphy
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Cancer Control Research, BC Cancer, Vancouver, BC, Canada
| | - Zhe Huang
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Rui Wang-Sattler
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gabi Kastenmüler
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Birgit Linkohr
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Clara Barrios
- Department of Nephrology, Hospital del Mar, Institut Hospital del Mar d´Investigacions Mediques, Barcelona, Spain
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar, Institut Hospital del Mar d´Investigacions Mediques, Barcelona, Spain
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jackie Price
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Kathryn M Rexrode
- Division of Women’s Health, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, 1200 Pressler St, Suite E407, Houston, 77030 TX, USA
| | - Cristina Menni
- Department of Twin Research, King’s College London, St Thomas’ Hospital Campus, Westminster Bridge Road, SE1 7EH London, UK
| |
Collapse
|
7
|
Zhan C, Tang T, Wu E, Zhang Y, He M, Wu R, Bi C, Wang J, Zhang Y, Shen B. From multi-omics approaches to personalized medicine in myocardial infarction. Front Cardiovasc Med 2023; 10:1250340. [PMID: 37965091 PMCID: PMC10642346 DOI: 10.3389/fcvm.2023.1250340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Myocardial infarction (MI) is a prevalent cardiovascular disease characterized by myocardial necrosis resulting from coronary artery ischemia and hypoxia, which can lead to severe complications such as arrhythmia, cardiac rupture, heart failure, and sudden death. Despite being a research hotspot, the etiological mechanism of MI remains unclear. The emergence and widespread use of omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and other omics, have provided new opportunities for exploring the molecular mechanism of MI and identifying a large number of disease biomarkers. However, a single-omics approach has limitations in understanding the complex biological pathways of diseases. The multi-omics approach can reveal the interaction network among molecules at various levels and overcome the limitations of the single-omics approaches. This review focuses on the omics studies of MI, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and other omics. The exploration extended into the domain of multi-omics integrative analysis, accompanied by a compilation of diverse online resources, databases, and tools conducive to these investigations. Additionally, we discussed the role and prospects of multi-omics approaches in personalized medicine, highlighting the potential for improving diagnosis, treatment, and prognosis of MI.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Erman Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Li C, Zhou Y, Niu Y, He W, Wang X, Zhang X, Wu Y, Zhang W, Zhao L, Zheng H, Song W, Gao H. Deficiency of Pdk1 drives heart failure by impairing taurine homeostasis through Slc6a6. FASEB J 2023; 37:e23134. [PMID: 37561545 DOI: 10.1096/fj.202300272r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023]
Abstract
3-Phosphoinositide-dependent protein kinase-1 (Pdk1) as a serine/threonine protein kinase plays a critical role in multiple signaling pathways. Analysis of the gene expression omnibus database showed that Pdk1 was significantly downregulated in patients with heart diseases. Gene set enrichment analysis of the proteomics dataset identified apoptotic- and metabolism-related signaling pathways directly targeted by Pdk1. Previously, our research indicated that Pdk1 deletion-induced metabolic changes might be involved in the pathogenesis of heart failure; however, the underlying mechanism remains elusive. Here, we demonstrated that deficiency of Pdk1 resulted in apoptosis, oxidative damage, and disturbed metabolism, both in vivo and in vitro. Furthermore, profiling of metabonomics by 1 H-NMR demonstrated that taurine was the major differential metabolite in the heart of Pdk1-knockout mice. Taurine treatment significantly reduced the reactive oxygen species production and apoptosis, improved cardiac function, and prolonged the survival time in Pdk1 deficient mice. Proteomic screening identified solute carrier family 6 member 6 (Slc6a6) as the downstream that altered taurine levels in Pdk1-expression cells. Consistently, cellular apoptosis and oxidative damage were rescued by Slc6a6 in abnormal Pdk1 expression cells. These findings collectively suggest that Pdk1 deficiency induces heart failure via disturbances in taurine homeostasis, triggered by Slc6a6.
Collapse
Affiliation(s)
- Chen Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, China
| | - Yi Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yan Niu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenting He
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinyi Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yali Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Wenli Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Liangcai Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Hong Zheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
| | - Hongchang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou, China
| |
Collapse
|
9
|
Jones RE, Gruszczyk AV, Schmidt C, Hammersley DJ, Mach L, Lee M, Wong J, Yang M, Hatipoglu S, Lota AS, Barnett SN, Toscano-Rivalta R, Owen R, Raja S, De Robertis F, Smail H, De-Souza A, Stock U, Kellman P, Griffin J, Dumas ME, Martin JL, Saeb-Parsy K, Vazir A, Cleland JGF, Pennell DJ, Bhudia SK, Halliday BP, Noseda M, Frezza C, Murphy MP, Prasad SK. Assessment of left ventricular tissue mitochondrial bioenergetics in patients with stable coronary artery disease. NATURE CARDIOVASCULAR RESEARCH 2023; 2:733-745. [PMID: 38666037 PMCID: PMC11041759 DOI: 10.1038/s44161-023-00312-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 06/29/2023] [Indexed: 04/28/2024]
Abstract
Recurrent myocardial ischemia can lead to left ventricular (LV) dysfunction in patients with coronary artery disease (CAD). In this observational cohort study, we assessed for chronic metabolomic and transcriptomic adaptations within LV myocardium of patients undergoing coronary artery bypass grafting. During surgery, paired transmural LV biopsies were acquired on the beating heart from regions with and without evidence of inducible ischemia on preoperative stress perfusion cardiovascular magnetic resonance. From 33 patients, 63 biopsies were acquired, compared to analysis of LV samples from 11 donor hearts. The global myocardial adenosine triphosphate (ATP):adenosine diphosphate (ADP) ratio was reduced in patients with CAD as compared to donor LV tissue, with increased expression of oxidative phosphorylation (OXPHOS) genes encoding the electron transport chain complexes across multiple cell types. Paired analyses of biopsies obtained from LV segments with or without inducible ischemia revealed no significant difference in the ATP:ADP ratio, broader metabolic profile or expression of ventricular cardiomyocyte genes implicated in OXPHOS. Differential metabolite analysis suggested dysregulation of several intermediates in patients with reduced LV ejection fraction, including succinate. Overall, our results suggest that viable myocardium in patients with stable CAD has global alterations in bioenergetic and transcriptional profile without large regional differences between areas with or without inducible ischemia.
Collapse
Affiliation(s)
- Richard E. Jones
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
- Anglia Ruskin University, Chelmsford, UK
- Essex Cardiothoracic Centre, Basildon, UK
| | - Anja V. Gruszczyk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Daniel J. Hammersley
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Lukas Mach
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Michael Lee
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Joyce Wong
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Ming Yang
- MRC Cancer Unit, University of Cambridge, Cambridge, UK
- University of Cologne, CECAD, Cologne, Germany
| | - Suzan Hatipoglu
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Amrit S. Lota
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Sam N. Barnett
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Ruth Owen
- Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
| | - Shahzad Raja
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Fabio De Robertis
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Hassiba Smail
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Anthony De-Souza
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Ulrich Stock
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Peter Kellman
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD USA
| | - Julian Griffin
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Marc-Emmanuel Dumas
- National Heart and Lung Institute, Imperial College London, London, UK
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- European Genomic Institute of Diabetes, INSERM U1283, CNRS 8199, Institut Pasteur de Lille, Lille University Hospital, University of Lille, Lille, France
- McGill Genome Centre, McGill University, Montréal, QC Canada
| | - Jack L. Martin
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Kourosh Saeb-Parsy
- Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Ali Vazir
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | | | - Dudley J. Pennell
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Sunil K. Bhudia
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Brian P. Halliday
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| | - Michela Noseda
- National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Michael P. Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Sanjay K. Prasad
- National Heart and Lung Institute, Imperial College London, London, UK
- Royal Brompton and Harefield Hospitals, Guy’s and St. Thomas’ NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Dai Y, Qiao K, Li D, Isingizwe P, Liu H, Liu Y, Lim K, Woodfield T, Liu G, Hu J, Yuan J, Tang J, Cui X. Plant-Derived Biomaterials and Their Potential in Cardiac Tissue Repair. Adv Healthc Mater 2023; 12:e2202827. [PMID: 36977522 DOI: 10.1002/adhm.202202827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/19/2023] [Indexed: 03/30/2023]
Abstract
Cardiovascular disease remains the leading cause of mortality worldwide. The inability of cardiac tissue to regenerate after an infarction results in scar tissue formation, leading to cardiac dysfunction. Therefore, cardiac repair has always been a popular research topic. Recent advances in tissue engineering and regenerative medicine offer promising solutions combining stem cells and biomaterials to construct tissue substitutes that could have functions similar to healthy cardiac tissue. Among these biomaterials, plant-derived biomaterials show great promise in supporting cell growth due to their inherent biocompatibility, biodegradability, and mechanical stability. More importantly, plant-derived materials have reduced immunogenic properties compared to popular animal-derived materials (e.g., collagen and gelatin). In addition, they also offer improved wettability compared to synthetic materials. To date, limited literature is available to systemically summarize the progression of plant-derived biomaterials in cardiac tissue repair. Herein, this paper highlights the most common plant-derived biomaterials from both land and marine plants. The beneficial properties of these materials for tissue repair are further discussed. More importantly, the applications of plant-derived biomaterials in cardiac tissue engineering, including tissue-engineered scaffolds, bioink in 3D biofabrication, delivery vehicles, and bioactive molecules, are also summarized using the latest preclinical and clinical examples.
Collapse
Affiliation(s)
- Yichen Dai
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Kai Qiao
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Demin Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Phocas Isingizwe
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Haohao Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Yu Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Khoon Lim
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
- School of Medical Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Tim Woodfield
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
| | - Guozhen Liu
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230052, China
| | - Jie Yuan
- Department of Cardiology, Shenzhen People's Hospital, Shenzhen, Guangdong, 518001, China
| | - Junnan Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Xiaolin Cui
- Cardiac and Osteochondral Tissue Engineering (COTE) Group, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 51817, China
- Christchurch Regenerative Medicine and Tissue Engineering (CReaTE) Group, Department of Orthopaedic Surgery, University of Otago, Christchurch, 8011, New Zealand
| |
Collapse
|
11
|
Song Y, Leem J, Dhanani M, McKirnan MD, Ichikawa Y, Braza J, Harrington EO, Hammond HK, Roth DM, Patel HH. Impact of blood factors on endothelial cell metabolism and function in two diverse heart failure models. PLoS One 2023; 18:e0281550. [PMID: 36780477 PMCID: PMC9924994 DOI: 10.1371/journal.pone.0281550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Role of blood-based factors in development and progression of heart failure (HF) is poorly characterized. Blood contains factors released during pathophysiological states that may impact cellular function and provide mechanistic insights to HF management. We tested effects of blood from two distinct HF models on cardiac metabolism and identified possible cellular targets of the effects. Blood plasma was obtained from daunorubicin- and myocardial infarction-induced HF rabbits (Dauno-HF and MI-HF) and their controls (Dauno-Control and MI-Control). Effects of plasma on bioenergetics of myocardial tissue from healthy mice and cellular cardiac components were assessed using high-resolution respirometry and Seahorse flux analyzer. Since endothelial cell respiration was profoundly affected by HF plasma, effects of plasma on endothelial cell barrier function and death were further evaluated. Western-blotting and electron microscopy were performed to evaluate mitochondrial proteins and morphology. Brief exposure to HF plasma decreased cardiac tissue respiration. Endothelial cell respiration was most impacted by exposure to HF plasma. Endothelial cell monolayer integrity was decreased by incubation with Dauno-HF plasma. Apoptosis and necrosis were increased in cells incubated with Dauno-HF plasma for 24 h. Down-regulation of voltage-dependent anion-selective channel (VDAC)-1, translocase of outer membrane 20 (Tom20), and mitochondrial fission factor (MFF) in cells exposed to Dauno-HF plasma and mitochondrial signal transducer and activator of transcription 3 (Stat3) and MFF in cells exposed to MI-HF plasma were observed. Mitochondrial structure was disrupted in cells exposed to HF plasma. These findings indicate that endothelial cells and mitochondrial structure and function may be primary target where HF pathology manifests and accelerates. High-throughput blood-based screening of HF may provide innovative ways to advance disease diagnosis and management.
Collapse
Affiliation(s)
- Young Song
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Joseph Leem
- Veterans Administration San Diego Healthcare System, San Diego, CA, United States of America
| | - Mehul Dhanani
- Veterans Administration San Diego Healthcare System, San Diego, CA, United States of America
| | - M. Dan McKirnan
- Department of Medicine, UCSD School of Medicine, San Diego, CA, United States of America
| | - Yasuhiro Ichikawa
- Veterans Administration San Diego Healthcare System, San Diego, CA, United States of America
| | - Julie Braza
- Department of Medicine, Brown University and the Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, United States of America
| | - Elizabeth O. Harrington
- Department of Medicine, Brown University and the Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, United States of America
| | - H. Kirk Hammond
- Veterans Administration San Diego Healthcare System, San Diego, CA, United States of America
- Department of Medicine, UCSD School of Medicine, San Diego, CA, United States of America
| | - David M. Roth
- Veterans Administration San Diego Healthcare System, San Diego, CA, United States of America
- Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, United States of America
| | - Hemal H. Patel
- Veterans Administration San Diego Healthcare System, San Diego, CA, United States of America
- Department of Anesthesiology, UCSD School of Medicine, San Diego, CA, United States of America
| |
Collapse
|
12
|
Vimal S, Ranjan R, Yadav S, Majumdar G, Mittal B, Sinha N, Agarwal SK. Differences in the serum metabolic profile to identify potential biomarkers for cyanotic versus acyanotic heart disease. Perfusion 2023; 38:124-134. [PMID: 34472991 DOI: 10.1177/02676591211042559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND Growth retardation, malnutrition, and failure to thrive are some of the consequences associated with congenital heart diseases. Several metabolic factors such as hypoxia, anoxia, and several genetic factors are believed to alter the energetics of the heart. Timely diagnosis and patient management is one of the major challenges faced by the clinicians in understanding the disease and provide better treatment options. Metabolic profiling has shown to be potential diagnostic tool to understand the disease. OBJECTIVE The present experiment was designed as a single center observational pilot study to classify and create diagnostic metabolic signatures associated with the energetics of congenital heart disease in cyanotic and acyanotic groups. METHODS Metabolic sera profiles were obtained from 35 patients with cyanotic congenital heart disease (TOF) and 23 patients with acyanotic congenital heart disease (ASD and VSD) using high resolution 1D 1H NMR spectra. Univariate and multivariate statistical analysis were performed to classify particular metabolic disorders associated with cyanotic and acyanotic heart disease. RESULTS The results show dysregulations in several metabolites in cyanotic CHD patients versus acyanotic CHD patients. The discriminatory metabolites were further analyzed with area under receiver operating characteristic (AUROC) curve and identified four metabolic entities (i.e. mannose, hydroxyacetone, myoinositol, and creatinine) which could differentiate cyanotic CHDs from acyanotic CHDs with higher specificity. CONCLUSION An untargeted metabolic approach proved to be helpful for the detection and distinction of disease-causing metabolites in cyanotic patients from acyanotic ones and can be useful for designing better and personalized treatment protocol.
Collapse
Affiliation(s)
- Suman Vimal
- Department of Cardiovascular and Thoracic Surgery, SGPGIMS, Lucknow, Uttar Pradesh, India.,Dr. APJ Abdul Kalam Technical University, IET Campus, Lucknow, Uttar Pradesh, India
| | - Renuka Ranjan
- Centre of Biomedical Research, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Surabhi Yadav
- Department of Cardiovascular and Thoracic Surgery, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Gauranga Majumdar
- Department of Cardiovascular and Thoracic Surgery, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Balraj Mittal
- Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Neeraj Sinha
- Centre of Biomedical Research, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Surendra Kumar Agarwal
- Department of Cardiovascular and Thoracic Surgery, SGPGIMS, Lucknow, Uttar Pradesh, India
| |
Collapse
|
13
|
Liu S, Xing J, Zheng Z, Liu Z, Song F, Liu S. Effect of Qishen granules on isoproterenol-induced chronic heart failure in rats evaluated by comprehensive metabolomics. Phytother Res 2022; 36:4573-4586. [PMID: 35906729 DOI: 10.1002/ptr.7576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022]
Abstract
Qishen granules (QSG), a Chinese herbal formula, has been widely used in the treatment of myocardial ischemic chronic heart failure (CHF) for many years, but its mechanism of action is still unclear. In this study, comprehensive metabolomics was used to investigate the underlying protective mechanisms of QSG in an isoproterenol-induced CHF rat model. A total of 14 biomarkers were identified in serum and 34 biomarkers in urine, which were mainly related to fatty acid metabolism, bile acid metabolism, amino acid metabolism, purine metabolism, vitamin metabolism, and inflammation. Finally, 22 markers were selected for quantitative analysis of serum, urine, and fecal samples to verify the reliability of the results of untargeted metabolomics, and the results were similar to those of untargeted metabolomics. The correlation analysis showed that the targeted quantitative endogenous metabolites and CHF-related indexes were closely related. QSG might alleviate myocardial inflammatory response, oxidative stress, and amino acid metabolism disorder in CHF by regulating the level of endogenous metabolites. This study revealed QSG could regulate potential biomarkers and correlated metabolic pathway, which provided support for the further application of QSG.
Collapse
Affiliation(s)
- Shuxin Liu
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Junpeng Xing
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhong Zheng
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Zhiqiang Liu
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Fengrui Song
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| | - Shu Liu
- National Center of Mass Spectrometry in Changchun and Jilin Provincial Key Laboratory of Chinese Medicine Chemistry and Mass Spectrometry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.,School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
| |
Collapse
|
14
|
Banerjee S, Hong J, Umar S. Comparative analysis of right ventricular metabolic reprogramming in pre-clinical rat models of severe pulmonary hypertension-induced right ventricular failure. Front Cardiovasc Med 2022; 9:935423. [PMID: 36158812 PMCID: PMC9500217 DOI: 10.3389/fcvm.2022.935423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
Background Pulmonary hypertension (PH) leads to right ventricular (RV) hypertrophy and failure (RVF). The precise mechanisms of the metabolic basis of maladaptive PH-induced RVF (PH-RVF) are yet to be fully elucidated. Here we performed a comparative analysis of RV-metabolic reprogramming in MCT and Su/Hx rat models of severe PH-RVF using targeted metabolomics and multi-omics. Methods Male Sprague Dawley rats (250–300 gm; n = 15) were used. Rats received subcutaneous monocrotaline (60 mg/kg; MCT; n = 5) and followed for ~30-days or Sugen (20 mg/kg; Su/Hx; n = 5) followed by hypoxia (10% O2; 3-weeks) and normoxia (2-weeks). Controls received saline (Control; n = 5). Serial echocardiography was performed to assess cardiopulmonary hemodynamics. Terminal RV-catheterization was performed to assess PH. Targeted metabolomics was performed on RV tissue using UPLC-MS. RV multi-omics analysis was performed integrating metabolomic and transcriptomic datasets using Joint Pathway Analysis (JPA). Results MCT and Su/Hx rats developed severe PH, RV-hypertrophy and decompensated RVF. Targeted metabolomics of RV of MCT and Su/Hx rats detected 126 and 125 metabolites, respectively. There were 28 and 24 metabolites significantly altered in RV of MCT and Su/Hx rats, respectively, including 11 common metabolites. Common significantly upregulated metabolites included aspartate and GSH, whereas downregulated metabolites included phosphate, α-ketoglutarate, inositol, glutamine, 5-Oxoproline, hexose phosphate, creatine, pantothenic acid and acetylcarnitine. JPA highlighted common genes and metabolites from key pathways such as glycolysis, fatty acid metabolism, oxidative phosphorylation, TCA cycle, etc. Conclusions Comparative analysis of metabolic reprogramming of RV from MCT and Su/Hx rats reveals common and distinct metabolic signatures which may serve as RV-specific novel therapeutic targets for PH-RVF.
Collapse
Affiliation(s)
- Somanshu Banerjee
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, Los Angeles, CA, United States
| | - Jason Hong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, United States
| | - Soban Umar
- Division of Molecular Medicine, Department of Anesthesiology and Perioperative Medicine, Los Angeles, CA, United States
| |
Collapse
|
15
|
Wang Y, Cao Y, Xiang S, Liang S, Yang X, Zhu N, Fang W, Yu Q. Impact of Myocardial Energy Expenditure and Diastolic Dysfunction on One Year Outcome Patients With HFpEF. Front Physiol 2022; 13:655827. [PMID: 35444562 PMCID: PMC9015097 DOI: 10.3389/fphys.2022.655827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: To explore the correlation between characteristics of myocardial energy expenditure (MEE) and the degree of diastolic dysfunction in patients of heart failure with preserved ejection fraction (HFpEF) and its clinical significance.Methods: 125 consecutive patients diagnosed with HFpEF in the Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University from January 2018 to October 2018 were enrolled. According to the degree of diastolic dysfunction, patients were divided into group A (8 ≤ E/e' ≤15) and group B (E/e'> 15), and MEE was calculated, patients finished 1-year clinical follow-up.Results: The level of MEE in group A was significantly lower than that in group B (p < 0.05). During 1-year follow up, MEE over 3145.69 kcal/systole was associated with increased risk of death as compared to patients with MEE less 3145.69 kcal/systole, and in patients with MEE over 101.68 kcal/min than in patients with MEE less than 101.68 kcal/min.Conclusion: There is a significant correlation between MEE and diastolic dysfunction and MEE over 3145.69 kcal/systole as well as MEE over 101.68 kcal/min are linked with increased risk of 1-year mortality in HFpEF.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- Department of Nephrology, Affiliated Xinhua Hospital of Dalian University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Yalan Cao
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- Zunyi Medical University, Zunyi, China
| | - Shuting Xiang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- Zunyi Medical University, Zunyi, China
| | - Shunji Liang
- Department of Echocardiogram, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Xiumei Yang
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ning Zhu
- Department of Cardiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weiyi Fang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai, China
| | - Qin Yu
- Department of Cardiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- *Correspondence: Qin Yu,
| |
Collapse
|
16
|
Rebrova TY, Afanasiev SA. State of the Antioxidant System and the Severity of Lipid-Peroxidation Processes in the Myocardium and Blood Plasma of Rats of Different Ages with Postinfarction Cardiosclerosis. ADVANCES IN GERONTOLOGY 2021. [DOI: 10.1134/s2079057021020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Du Z, Lu Y, Sun J, Chang K, Lu M, Fang M, Zeng X, Zhang W, Song J, Guo X, Tu P, Jiang Y. Pharmacokinetics/pharmacometabolomics-pharmacodynamics reveals the synergistic mechanism of a multicomponent herbal formula, Baoyuan decoction against cardiac hypertrophy. Biomed Pharmacother 2021; 139:111665. [PMID: 34243607 DOI: 10.1016/j.biopha.2021.111665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/23/2022] Open
Abstract
Multicomponent herbal formulas (MCHFs) have earned a wide reputation for their definite efficacy in preventing or treating chronic complex diseases. However, holistic elucidation of the causal relationship between the bioavailable ingredients of MCHFs and their multitarget interactions is very challenging. To solve this problem, pharmacokinetics/pharmacometabolomics-pharmacodynamics (PK/PM-PD) combined with a multivariate biological correlation-network strategy was developed and applied to a classic MCHF, Baoyuan decoction (BYD), to clarify its active components and synergistic mechanism against cardiac hypertrophy (CH). First, multiple plasma metabolic biomarkers for β-adrenergic agonist-induced CH rats were identified by using untargeted metabolomic profiling, and then, these CH-associated endogenous metabolites and the absorbed BYD-compounds in plasma at different treatment stages after oral administration of BYD were analyzed by using targeted PK and PM. Second, the dynamic relationship of BYD-related compounds and CH-associated endogenous metabolites and signaling pathways was built by using multivariate and bioinformatic correlation analysis. Finally, metabolic-related PD indicators were predicted and further verified by biological tests. The results demonstrated that the bioavailable BYD-compounds, such as saponins and flavonoids, presented differentiated and distinctive metabolic features and showed positive or negative correlations with various CH-altered metabolites and PD-indicators related to gut microbiota metabolism, amino acid metabolism, lipid metabolism, energy homeostasis, and oxidative stress at different treatment stages. This study provides a novel strategy for investigating the dynamic interaction between BYD and the biosystem, providing unique insight for disclosing the active components and synergistic mechanisms of BYD against CH, which also supplies a reference for other MCHF related research.
Collapse
Affiliation(s)
- Zhiyong Du
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Yingyuan Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Jiaxu Sun
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Kun Chang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Mengqiu Lu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Meng Fang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Xiangrui Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Wenxin Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Jinyang Song
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Xiaoyu Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Pengfei Tu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| | - Yong Jiang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China.
| |
Collapse
|
18
|
Al Hageh C, Rahy R, Khazen G, Brial F, Khnayzer RS, Gauguier D, Zalloua PA. Plasma and urine metabolomic analyses in aortic valve stenosis reveal shared and biofluid-specific changes in metabolite levels. PLoS One 2020; 15:e0242019. [PMID: 33237940 PMCID: PMC7688110 DOI: 10.1371/journal.pone.0242019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/24/2020] [Indexed: 01/04/2023] Open
Abstract
Aortic valve stenosis (AVS) is a prevalent condition among the elderly population that eventually requires aortic valve replacement. The lack of reliable biomarkers for AVS poses a challenge for its early diagnosis and the application of preventive measures. Untargeted gas chromatography mass spectrometry (GC-MS) metabolomics was applied in 46 AVS cases and 46 controls to identify plasma and urine metabolites underlying AVS risk. Multivariate data analyses were performed on pre-processed data (e.g. spectral peak alignment), in order to detect changes in metabolite levels in AVS patients and to evaluate their performance in group separation and sensitivity of AVS prediction, followed by regression analyses to test for their association with AVS. Through untargeted analysis of 190 urine and 130 plasma features that could be detected and quantified in the GC-MS spectra, we identified contrasting levels of 22 urine and 21 plasma features between AVS patients and control subjects. Following metabolite assignment, we observed significant changes in the concentration of known metabolites in urine (n = 14) and plasma (n = 15) that distinguish the metabolomic profiles of AVS patients from healthy controls. Associations with AVS were replicated in both plasma and urine for about half of these metabolites. Among these, 2-Oxovaleric acid, elaidic acid, myristic acid, palmitic acid, estrone, myo-inositol showed contrasting trends of regulation in the two biofluids. Only trans-Aconitic acid and 2,4-Di-tert-butylphenol showed consistent patterns of regulation in both plasma and urine. These results illustrate the power of metabolomics in identifying potential disease-associated biomarkers and provide a foundation for further studies towards early diagnostic applications in severe heart conditions that may prevent surgery in the elderly.
Collapse
Affiliation(s)
- Cynthia Al Hageh
- Université de Paris, INSERM UMRS 1124, Paris, France
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Ryan Rahy
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Georges Khazen
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | | | - Rony S. Khnayzer
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
- * E-mail: (DG); (RSK); (PAZ)
| | - Dominique Gauguier
- Université de Paris, INSERM UMRS 1124, Paris, France
- McGill University and Genome Quebec Innovation Centre, Montreal, QC, Canada
- * E-mail: (DG); (RSK); (PAZ)
| | - Pierre A. Zalloua
- School of Medicine, University of Balamand, Amioun, Lebanon
- * E-mail: (DG); (RSK); (PAZ)
| |
Collapse
|
19
|
Zhao Z, Zhang Y, Liu L, Chen Y, Wang D, Jin X, Shen C. Metabolomics study of the effect of smoking and high-fat diet on metabolic responses and related mechanism following myocardial infarction in mice. Life Sci 2020; 263:118570. [PMID: 33058917 DOI: 10.1016/j.lfs.2020.118570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/02/2020] [Accepted: 10/03/2020] [Indexed: 11/24/2022]
Abstract
AIMS The present study aimed to evaluate the impact of chronic smoking and high fat diet on the post-MI metabolic features and inflammation resolution. MAIN METHODS Eight weeks old C57BL/6J mice were randomly divided into control(C), smoking(S), high-fat diet(H), and smoking plus high-fat diet(SH) groups for 16 weeks. MI was induced by permanent coronary ligation. Cardiac function was assessed by echocardiography at 5 days post-MI. The infarcted heart tissue was collected for the metabolic profile using metabolomics and quantification of pro-resolving mediators with immunoblotting. KEY FINDINGS Percentage of fractional shortening (FS%) and ejection fraction (EF%) were further reduced in SH than that in either S or H group (P < 0.05). Myocardial metabolomics analysis indicated that 3, 6, and 11 disturbed metabolic pathways were considered as the most relevant pathway (Impact > 0.1) in S, H, and SH groups, respectively. The common most relevant pathway among three groups was arachidonic acid metabolism. The levels of arachidonic acid and TXB2 were significantly higher, while the 5-LOX and HO-1 expression was significantly lower in SH group than that in either S or H group (P < 0.05). SIGNIFICANCE Smoking superimposed on high-fat diet could aggravate post-MI cardiac dysfunction and cause significant disturbance of metabolic pathways associated with inflammation, energy metabolism, as well as excessive oxidative stress. Smoking combined with high-fat diet could also magnify the post-MI inflammation and impair the resolution of inflammation in MI mice.
Collapse
Affiliation(s)
- Zhe Zhao
- Department of Geriatrics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yaping Zhang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Liang Liu
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Yu Chen
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Di Wang
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China
| | - Xian Jin
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China.
| | - Chengxing Shen
- Department of Cardiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
20
|
Bai H, Sun K, Wu JH, Zhong ZH, Xu SL, Zhang HR, Gu YH, Lu SF. Proteomic and metabolomic characterization of cardiac tissue in acute myocardial ischemia injury rats. PLoS One 2020; 15:e0231797. [PMID: 32365112 PMCID: PMC7197859 DOI: 10.1371/journal.pone.0231797] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022] Open
Abstract
The pathological process and mechanism of myocardial ischemia (MI) is very complicated, and remains unclear. An integrated proteomic-metabolomics analysis was applied to comprehensively understand the pathological changes and mechanism of MI. Male Sprague-Dawley rats were randomly divided into a mock surgery (MS) group and an MI group. The MI model was made by ligating the left anterior descending coronary artery, twenty-four hours after which, echocardiography was employed to assess left ventricular (LV) function variables. Blood samples and left ventricular tissues were collected for ELISA, metabolomics and proteomics analysis. The results showed that LV function, including ejection fraction (EF) and fractional shortening (FS), was significantly reduced and the level of cTnT in the serum increased after MI. iTRAQ proteomics showed that a total of 169 proteins were altered including 52 and 117 proteins with increased and decreased expression, respectively, which were mainly involved in the following activities: complement and coagulation cascades, tight junction, regulation of actin cytoskeleton, MAPK signaling pathway, endocytosis, NOD-like receptor signaling pathway, as well as phagosome coupled with vitamin digestion and absorption. Altered metabolomic profiling of this transition was mostly enriched in pathways including ABC transporters, glycerophospholipid metabolism, protein digestion and absorption and aminoacyl-tRNA biosynthesis. The integrated metabolomics and proteomics analysis indicated that myocardial injury after MI is closely related to several metabolic pathways, especially energy metabolism, amino acid metabolism, vascular smooth muscle contraction, gap junction and neuroactive ligand-receptor interaction. These findings may contribute to understanding the mechanism of MI and have implication for new therapeutic targets.
Collapse
Affiliation(s)
- Hua Bai
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Sun
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia-Hong Wu
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ze-Hao Zhong
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sen-Lei Xu
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-Ru Zhang
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi-Huang Gu
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
- * E-mail: (SFL); (YHG)
| | - Sheng-Feng Lu
- Acupuncture and Tuina college, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
- * E-mail: (SFL); (YHG)
| |
Collapse
|
21
|
Wang SM, Ye LF, Wang LH. Shenmai Injection Improves Energy Metabolism in Patients With Heart Failure: A Randomized Controlled Trial. Front Pharmacol 2020; 11:459. [PMID: 32362824 PMCID: PMC7181884 DOI: 10.3389/fphar.2020.00459] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background In recent years, the application of Shenmai (SM) injection, a traditional Chinese medicine (TCM), to treat heart failure (HF) has been gradually accepted in China. However, whether SM improves energy metabolism in patients with HF has not been determined due to the lack of high-quality studies. We aimed to investigate the influence of SM on energy metabolism in patients with HF. Methods This single-blind, controlled study randomly assigned 120 eligible patients equally into three groups receiving SM, trimetazidine (TMZ), or control in addition to standard medical treatment for HF for 7 days. The primary endpoints were changes in free fatty acids (FFAs), glucose, lactic acid (LA), pyroracemic acid (pyruvate, PA) and branched chain amino acids (BCAAs) in serum. The secondary outcomes included the New York Heart Association (NYHA) functional classification, TCM syndrome score (TCM-s), left ventricular injection fraction (LVEF), left ventricular internal diastolic diameter (LVIDd), left ventricular internal dimension systole (LVIDs), and B-type natriuretic peptide (BNP). Results After treatment for 1 week, the NYHA functional classification, TCM-s, and BNP level gradually decreased in the patients in all three groups, but these metrics were significantly increased in the patients in the SM group compared with those in the patients in the TMZ and control groups (P < 0.05). Moreover, energy metabolism was improved in the NYHA III–IV patients in the SM group compared with those in the patients in the TMZ and control groups as evidenced by changes in the serum levels of FFA, LA, PA, and BCAA. Conclusions Integrative treatment with SM in addition to standard medical treatment for HF was associated with improved cardiac function compared to standard medical treatment alone. The benefit of SM in HF may be related to an improvement in energy metabolism, which seems to be more remarkable than that following treatment with TMZ.
Collapse
Affiliation(s)
- Shao-Mei Wang
- Cardiovascular Medicine Department, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Bengbu Medical College, Bengbu, China
| | - Li-Fang Ye
- Cardiovascular Medicine Department, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Li-Hong Wang
- Cardiovascular Medicine Department, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
22
|
Advances in tissue engineering of nanocellulose-based scaffolds: A review. Carbohydr Polym 2019; 224:115144. [PMID: 31472870 DOI: 10.1016/j.carbpol.2019.115144] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/08/2019] [Accepted: 07/29/2019] [Indexed: 01/12/2023]
Abstract
Scaffolds based on nanocellulose (NC) have crucial applications in tissue engineering (TE) owing to the biocompatibility, water absorption, water retention, optical transparency, and chemo-mechanical properties. In this review, we summarize the scaffolds based on nanocellulose, including nanocrystalline cellulose and nanofibrillated cellulose. We compare four representative methods to prepare NC-based scaffolds, containing electrospinning, freeze-drying, 3D printing, and solvent casting. We outline the characteristics of scaffolds obtained by different methods. Our focus is on the applications of NC-based scaffolds to repair, improve or replace damaged tissues and organs, including skin, blood vessel, nerve, skeletal muscle, heart, liver, and ophthalmology. NC-based scaffolds are attractive materials for regeneration of different tissues and organs due to the remarkable features. Finally, we propose the challenges and potentials of NC-based TE scaffolds.
Collapse
|