1
|
Zhang R, Wang Y, Jiang H, Aheniyazi A, Tao J, Li J, Yang Y. Therapeutic Angiogenesis Mediated by Traditional Chinese Medicine: Advances in Cardiovascular Disease Treatment. JOURNAL OF ETHNOPHARMACOLOGY 2025:119871. [PMID: 40345269 DOI: 10.1016/j.jep.2025.119871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/26/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) shows growing potential as an adjunct or alternative therapy for vascular occlusion diseases (e.g., stroke, peripheral artery disease) by promoting therapeutic angiogenesis to restore blood flow in ischemic regions while minimizing side effects. AIMS OF THE STUDY This review examines TCM-mediated angiogenesis mechanisms and therapeutic advances in vascular occlusion management, establishing a theoretical foundation for clinical translation and precision medicine development. MATERIALS AND METHODS We systematically analyzed PubMed articles on TCM-induced angiogenesis in vascular occlusion diseases, focusing on herbal formulations, single herbs, bioactive compounds, and their associated signaling pathways. Search PubMed for studies investigating the role of Chinese herbal medicine (TCM), natural compounds, and herbal medicine in angiogenesis, while excluding research related to cancer, tumor, or oncological contexts. RESULTS TCM formulas, individual herbs, and monomeric compounds enhance endothelial cell proliferation, migration, and tube formation via pathways such as HIF/VEGF, PI3K/AKT, NOTCH, BMP/ALK, and Apelin/APJ, improving ischemic blood flow. CONCLUSION This review highlights angiogenesis as a novel strategy for vascular occlusive diseases and underscores TCM's efficacy through multi-target angiogenic regulation mechanism.However, further research using modern medical technologies is needed to optimize clinical application and advance precision medicine.
Collapse
Affiliation(s)
- Rong Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Yunze Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Haoyan Jiang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Aliyanmu Aheniyazi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Jin Tao
- Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China.
| | - Yining Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830000, China; Department of Cardiology, People's Hospital of Xinjiang Uyghur Autonomous Region, Urumqi, China; Xinjiang Key Laboratory of Cardiovascular Homeostasis and Regeneration Research, Urumqi, China.
| |
Collapse
|
2
|
Kocot N, Pękala E, Koczurkiewicz-Adamczyk P, Chłoń-Rzepa G, Łapa A, Wójcik-Pszczoła K. Airway and cardiovascular remodeling in chronic obstructive pulmonary disease (COPD) as a target for transient receptor potential ankyrin 1 (TRPA1) channel modulators. Bioorg Chem 2025; 158:108301. [PMID: 40058223 DOI: 10.1016/j.bioorg.2025.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/06/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by chronic inflammation, which leads to airway remodeling (AR). AR refers to various structural changes occurring in the airway wall, resulting in thickening, and narrowing of the airways. Apart from airways, and lung tissue, pulmonary vasculature also undergoes remodeling. Thus, the pressure in vascular bed is increased, leading to pulmonary hypertension and further right and left ventricle hypertrophy, as well as myocardial fibrosis. Currently, there is lack of effective treatment directly targeting airway and cardiovascular remodeling in the course of COPD. Due to a lot of research showing involvement of transient receptor potential ankyrin 1 (TRPA1) in respiratory disorders, it seems reasonable to consider this ion channel as a molecular target in treatment of remodeling consequences of COPD. The aim of this review is to summarize current knowledge of its role in this case and to identify areas requiring further research. Moreover, we provide few patented structures intended to treat chronic respiratory diseases, which may be worth investigating in the context of airway remodeling.
Collapse
Affiliation(s)
- Natalia Kocot
- Jagiellonian University, Doctoral School of Medical and Health Sciences, Łazarza 16, 31-530 Kraków, Poland; Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Elżbieta Pękala
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Paulina Koczurkiewicz-Adamczyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Grażyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Aleksandra Łapa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| | - Katarzyna Wójcik-Pszczoła
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Pharmaceutical Biochemistry, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
3
|
Chen M, Fu B, Zhou H, Wu Q. Therapeutic potential and mechanistic insights of astragaloside IV in the treatment of arrhythmia: a comprehensive review. Front Pharmacol 2025; 16:1528208. [PMID: 40276608 PMCID: PMC12018449 DOI: 10.3389/fphar.2025.1528208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/02/2025] [Indexed: 04/26/2025] Open
Abstract
Arrhythmia, a common cardiovascular disorder, results from disturbances in cardiac impulse generation and conduction, leading to decreased cardiac output and myocardial oxygenation, with potentially life-threatening consequences. Despite advancements in therapeutic approaches, the incidence and mortality associated with arrhythmia remain high, and drug-related adverse effects continue to pose significant challenges. Traditional Chinese Medicine (TCM) has attracted considerable attention for its potential as a complementary and alternative approach in treating cardiovascular diseases, including arrhythmia. Astragalus, a prominent herb in TCM, is commonly used in clinical practice for its multi-faceted therapeutic properties, encompassing anti-arrhythmic, cardiotonic, anti-inflammatory, and immunomodulatory effects. Astragaloside IV, a primary active compound in Astragalus membranaceus, has demonstrated cardioprotective effects through mechanisms such as antioxidant, anti-inflammatory, and anti-apoptotic activities. Although evidence suggests that astragaloside IV holds promise in arrhythmia treatment, comprehensive reviews of its specific mechanisms and clinical applications in arrhythmia are scarce. This review systematically explores the pharmacological properties and underlying mechanisms of astragaloside IV in arrhythmia treatment. Utilizing a targeted search of databases including PubMed, Web of Science, Cochrane Library, Embase, CNKI, and Wanfang Data, we summarize recent findings and examine astragaloside IV's potential applications in arrhythmia prevention and treatment. Our analysis aims to provide a theoretical foundation for the development of novel arrhythmia treatment strategies, while offering insights into future research directions for clinical application.
Collapse
Affiliation(s)
- Meilian Chen
- Cardiac and Pulmonary Department, Quanzhou Hospital of Traditional Chinese Medicine, Fujian, China
| | - Binlan Fu
- Department of Internal Medicine, Chen Dai Central Health Center, Jinjiang, China
| | - Hao Zhou
- Department of Cardiology, The 966th Hospital of The PLA Joint Logistic Support Force, Dandong, China
| | - Qiaomin Wu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Lin L, Zhao C, Lv H, Zhu L, Wang W, Zheng X. Astragaloside IV promotes neuronal axon regeneration by inhibiting the PTEN/AKT pathway. Brain Res 2025; 1850:149451. [PMID: 39793915 DOI: 10.1016/j.brainres.2025.149451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/06/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
BACKGROUND Neuronal survival and regeneration are critical aspects of recovery from ischemic brain injuries. Astragaloside IV (AS-IV), a saponin extracted from the traditional Chinese medicine Astragalus membranaceus, has shown promise in promoting neuronal health. This study investigates the effects of AS-IV on neuronal survival and apoptosis post-oxygen-glucose deprivation (OGD), focusing on the modulation of the PTEN/AKT signaling pathway. METHODS Rat primary neuronal cells were isolated and subjected to OGD to simulate ischemic conditions. Afterwards, cells were treated with low and high doses of AS-IV. Neuronal viability and apoptosis were assessed using MTT and flow cytometry (FCM) assays. Immunofluorescence and Western blot analyses were performed to evaluate the expression of neuronal markers and proteins involved in the PTEN/AKT pathway. RESULTS Post-OGD, neuronal cells exhibited decreased viability and increased apoptosis, which were significantly mitigated by AS-IV. Immunofluorescence showed enhanced Tuj1 expression, indicating increased neuronal purity and survival, enhanced NF200 expression, indicating increased axon lengths. FCM results revealed reduced apoptosis rates, particularly with higher doses of AS-IV. Western blot analysis confirmed inhibition of PTEN and activation of AKT, facilitating enhanced neuronal survival and axona regeneration. Additionally, overexpression of PTEN negated the anti-apoptotic effects of AS-IV, underscoring the critical role of the PTEN/AKT pathway in AS-IV mediated neuroprotection. CONCLUSION AS-IV enhances neuronal survival and axona regeneration by modulating the PTEN/AKT pathway, highlighting its potential as a therapeutic agent for ischemic brain injuries. These findings suggest that targeting this pathway could be a strategic focus for developing effective neuroprotective therapies.
Collapse
Affiliation(s)
- Luning Lin
- Department of Traditional Chinese Medicine Pharmacy, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou 317500, China
| | - Chenyang Zhao
- Department of Clinical Lab, Taizhou Hospital of Traditional Chinese and Western Medicine, Taizhou 317200, China
| | - Huijuan Lv
- Department of Acupuncture and Moxibustion, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou 317500, China
| | - Liangrong Zhu
- Department of Pharmacy, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou 317500, China
| | - Wangen Wang
- Department of Traditional Chinese Medicine Pharmacy, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou 317500, China
| | - Xintian Zheng
- Department of Traditional Chinese Medicine Pharmacy, Wenling Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Taizhou 317500, China.
| |
Collapse
|
5
|
Zhu XZ, Qiu Z, Lei SQ, Leng Y, Li WY, Xia ZY. The Role of P53 in Myocardial Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther 2025; 39:195-209. [PMID: 37389674 DOI: 10.1007/s10557-023-07480-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE P53 is one of the key tumor suppressors. In normal cells, p53 is maintained at low levels by the ubiquitination of the ubiquitinated ligase MDM2. In contrast, under stress conditions such as DNA damage and ischemia, the interaction between p53 and MDM2 is blocked and activated by phosphorylation and acetylation, thereby mediating the trans-activation of p53 through its target genes to regulate a variety of cellular responses. Previous studies have shown that the expression of p53 is negligible in normal myocardium, tends to increase in myocardial ischemia and is maximally induced in ischemia-reperfused myocardium, demonstrating a possible key role of p53 in the development of MIRI. In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and describe the therapeutic agents targeting the relevant targets to provide new strategies for the prevention and treatment of MIRI. METHODS We collected 161 relevant papers mainly from Pubmed and Web of Science (search terms "p53" and "myocardial ischemia-reperfusion injury"). After that, we selected pathway studies related to p53 and classified them according to their contents. We eventually analyzed and summarized them. RESULTS AND CONCLUSION In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and validate its status as an important intermediate affecting MIRI. On the one hand, p53 is regulated and modified by multiple factors, especially non-coding RNAs; on the other hand, p53 regulates apoptosis, programmed necrosis, autophagy, iron death and oxidative stress in MIRI through multiple pathways. More importantly, several studies have reported medications targeting p53-related therapeutic targets. These medications are expected to be effective options for the alleviation of MIRI, but further safety and clinical studies are needed to convert them into clinical applications.
Collapse
Affiliation(s)
- Xi-Zi Zhu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Wen-Yuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
6
|
Pan J, Wang J, Lei Z, Wang H, Zeng N, Zou J, Zhang X, Sun J, Guo D, Luan F, Shi Y. Therapeutic Potential of Chinese Herbal Medicine and Underlying Mechanism for the Treatment of Myocardial Infarction. Phytother Res 2025; 39:189-232. [PMID: 39523856 DOI: 10.1002/ptr.8368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction (MI) is a prevalent disease with high mortality rates worldwide. The course of MI is intricate and variable, necessitating personalized treatment strategies based on different mechanisms. However, variety of postoperative complications and rejections, such as heart failure, arrhythmias, cardiac rupture, and left ventricular thrombus, contribute to a poor prognosis. Despite the inclusion of antiplatelet agents and statins in the conventional treatment regimen, their clinical applicability is constrained by potential adverse effects and limited efficacy. Additionally, the mechanisms leading to MI are complex and diverse. Therefore, the development of novel compounds for MI treatment. The use of traditional Chinese medicine (TCM) in the prevention and treatment of cardiovascular diseases, including MI, is grounded in its profound historical background, comprehensive theoretical system, and accumulated knowledge. An increasing number of contemporary evidence-based medical studies have demonstrated that TCM plays a significant role in alleviating symptoms and improving the quality of life for MI patients. Chinese herbal formulations and active ingredients can intervene in the pathological process of MI through key factors such as inflammation, oxidative stress, apoptosis, ferroptosis, pyroptosis, myocardial fibrosis, angiogenesis, and autophagy. This article critically reviews existing herbal formulations from an evidence-based medicine perspective, evaluating their research status and potential clinical applications. Additionally, it explores recent advancements in the use of herbal medicines and their components for the prevention and treatment of MI, offering detailed insights into their mechanisms of action.
Collapse
Affiliation(s)
- Jiaojiao Pan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jinhui Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Ziwen Lei
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - He Wang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, People's Republic of China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Jing Sun
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Fei Luan
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, People's Republic of China
| |
Collapse
|
7
|
Zhao YD, Su QX, Wang NL, Pei D, Huang XY. Separation of astragaloside IV from Astragalus membranaceus based on high-speed countercurrent chromatography in continuous injection mode. PHYTOCHEMICAL ANALYSIS : PCA 2025; 36:273-278. [PMID: 39187395 DOI: 10.1002/pca.3438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Astragaloside IV (AS-IV) is an index for the quality evaluation of the traditional Chinese medicine Astragalus and an important material basis for Astragalus to exert its medicinal effects, and it is difficult to obtain a single AS-IV by ordinary separation methods. OBJECTIVE To find a new isolation method that can prepare AS-IV quickly and efficiently. METHODOLOGY AS-IV was isolated from Astragalus membranaceus extract by high-speed countercurrent chromatography using a two-phase solvent system consisting of ethyl acetate/n-butanol/water (4.2:0.8:5, v/v) at a speed of 950 rpm at a flow rate of 2 mL/min using one of the high-speed countercurrent chromatographic sequential injection models developed during the previous study. RESULTS Compared with the common countercurrent chromatographic separation, this separation method increased the injection volume and yield by 4-fold and 4.47-fold, respectively, with only about 1.2-fold increase in solvent consumption and separation time, and the purity was basically not reduced, and 55.9 mg of AS-IV, with a purity of 96.95%, was finally prepared from 400 mg of the crude extract in 240 min. CONCLUSION The continuous injection mode of high-speed countercurrent chromatography was able to successfully prepare a large amount of AS-IV with high purity at one time.
Collapse
Affiliation(s)
- Yin-Di Zhao
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Qian-Xia Su
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Ning-Li Wang
- Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Dong Pei
- Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
| | - Xin-Yi Huang
- School of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Key Laboratory of Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, China
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Eduction, Yunnan Minzu University, Kunming, China
| |
Collapse
|
8
|
Li H, Luo ZR, Huang MY, Cai H, Lu PP, Xu YW, Li MJ, Guo HD. Modified Taohong Siwu Decoction Improved Cardiac Function after Myocardial Infarction by Activating PI3K/Akt Signaling Pathway. Curr Pharm Des 2025; 31:1213-1226. [PMID: 39781735 DOI: 10.2174/0113816128341178241028062518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Taohong Siwu decoction (THSWD), a traditional prescription for enhancing blood circulation and eliminating blood stasis, primarily comprises peach kernel, safflower, angelica, chuanxiong, and rehmannia. Modified Taohong Siwu decoction (MTHSWD), an advanced version of THSWD, incorporates additional ingredients such as epimedium, cinnamon, and Salvia miltiorrhiza. This addition serves to augment its efficacy in warming yang and promoting blood circulation. MTHSWD has excellent heart protection in cardiac damage, which indicates a promising application prospect. However, the mechanisms are yet unclear. METHODS In this study, network pharmacology and molecular docking studies demonstrated that the effects of MTHSWD may be significantly influenced by the PI3K/Akt signaling pathway. In addition, to verify this mechanism, three groups were divided and randomly selected from among the 35 Sprague-Dawley rats: Myocardial infarction (MI) group, THSWD group, and MTHSWD group. RESULTS MTHSWD greatly improved fractional shortening as well as ejection fraction and reduced the infarct size. MTHSWD attenuated cell apoptosis by activating the Akt pathway in infarcted areas. In vitro, the cytoprotective effects of MTHSWD on H9C2 cells were significantly attenuated when PI3K/Akt was inhibited. CONCLUSION Therefore, the study found that MTHSWD had a positive effect on heart function after myocardial infarction by activating the Akt pathway.
Collapse
Affiliation(s)
- Han Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhi-Rong Luo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Meng-Ying Huang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hao Cai
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping-Ping Lu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yan-Wu Xu
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Biochemistry, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming-Jie Li
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hai-Dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
9
|
Zhou G, Xu R, Groth T, Wang Y, Yuan X, Ye H, Dou X. The Combination of Bioactive Herbal Compounds with Biomaterials for Regenerative Medicine. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:607-630. [PMID: 38481114 DOI: 10.1089/ten.teb.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Regenerative medicine aims to restore the function of diseased or damaged tissues and organs by cell therapy, gene therapy, and tissue engineering, along with the adjunctive application of bioactive molecules. Traditional bioactive molecules, such as growth factors and cytokines, have shown great potential in the regulation of cellular and tissue behavior, but have the disadvantages of limited source, high cost, short half-life, and side effects. In recent years, herbal compounds extracted from natural plants/herbs have gained increasing attention. This is not only because herbal compounds are easily obtained, inexpensive, mostly safe, and reliable, but also owing to their excellent effects, including anti-inflammatory, antibacterial, antioxidative, proangiogenic behavior and ability to promote stem cell differentiation. Such effects also play important roles in the processes related to tissue regeneration. Furthermore, the moieties of the herbal compounds can form physical or chemical bonds with the scaffolds, which contributes to improved mechanical strength and stability of the scaffolds. Thus, the incorporation of herbal compounds as bioactive molecules in biomaterials is a promising direction for future regenerative medicine applications. Herein, an overview on the use of bioactive herbal compounds combined with different biomaterial scaffolds for regenerative medicine application is presented. We first introduce the classification, structures, and properties of different herbal bioactive components and then provide a comprehensive survey on the use of bioactive herbal compounds to engineer scaffolds for tissue repair/regeneration of skin, cartilage, bone, neural, and heart tissues. Finally, we highlight the challenges and prospects for the future development of herbal scaffolds toward clinical translation. Overall, it is believed that the combination of bioactive herbal compounds with biomaterials could be a promising perspective for the next generation of regenerative medicine. Impact statement This article reviews the combination of bioactive herbal compounds with biomaterials in the promotion of skin, cartilage, bone, neural, and heart regeneration, due to the anti-inflammatory, antibacterial, antioxidative, and proangiogenic effects of the herbal compounds, but also their effects on the improvement of mechanic strength and stability of biomaterial scaffolds. This review provides a promising direction for the next generation of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Guoying Zhou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ruojiao Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yanying Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xingyu Yuan
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hua Ye
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom
- Oxford Suzhou Centre for Advanced Research, University of Oxford, Suzhou, China
| | - Xiaobing Dou
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
10
|
Sha Z, Liu W, Jiang T, Zhang K, Yu Z. Astragaloside IV induces the protective effect of bone marrow mesenchymal stem cells derived exosomes in acute myocardial infarction by inducing angiogenesis and inhibiting apoptosis. Biotechnol Genet Eng Rev 2024; 40:1438-1455. [PMID: 36971224 DOI: 10.1080/02648725.2023.2194087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023]
Abstract
Bone marrow mesenchymal stem cells (BMECs)-derived exosomes (MSC-Exo) can improve acute myocardial infarction (AMI). Astragaloside IV (AS-IV) has also been reported to have cardioprotective pharmacological effects. However, it is not entirely clear whether AS-IV can improve AMI by inducing MSC-Exo. BMSCs and MSC-Exo were isolated and identified, and we also established the AMI rat model and the OGD/R model with H9c2 cells. After MSC-Exo or AS-IV-mediated MSC-Exo treatment, cell angiogenesis, migration, and apoptosis were evaluated by tube formation, wound healing, and TUNEL staining. The cardiac function of the rats was measured by echocardiography. The pathological changes and collagen deposition in rats were also assessed with Masson and Sirius red staining. The levels of α-SMA, CD31 and inflammatory factors were determined by immunohistochemistry and enzyme-linked immunosorbent assay (ELISA). In vitro, AS-IV-mediated MSC-Exo can significantly enhance the angiogenesis and migration of H9c2 cells induced by OGD/R, and significantly reduce their apoptosis. In vivo, AS-IV-mediated MSC-Exo can improve the cardiac function of rats, and attenuate pathological damage and collagen deposition in AMI model rats. In addition, AS-IV-mediated MSC-Exo can also promote angiogenesis and reduce inflammatory factors in rats with AMI. AS-IV-stimulated MSC-Exo can improve myocardial contractile function, myocardial fibrosis and angiogenesis, reduce inflammatory factors and induce apoptosis in rats after AMI.
Collapse
Affiliation(s)
- Zhongxin Sha
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Wupeng Liu
- Department of Cardiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P. R. China
| | - Tianpeng Jiang
- Department of Interventional Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| | - Kaiping Zhang
- Department of Cardiology, Guihang 302 Hospital, Anshun, P.R. China
| | - Zhenqiu Yu
- Department of Hypertension, The Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China
| |
Collapse
|
11
|
Du P, Xu L, Wang Y, Jiao T, Cheng J, Zhang C, Tapu MSR, Dai J, Li J. Astragaloside IV ameliorates pressure overload-induced heart failure by enhancing angiogenesis through HSF1/VEGF pathway. Heliyon 2024; 10:e37019. [PMID: 39296120 PMCID: PMC11408759 DOI: 10.1016/j.heliyon.2024.e37019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/24/2024] [Accepted: 08/26/2024] [Indexed: 09/21/2024] Open
Abstract
Astragaloside IV(AS-IV), the main active ingredient of Astragalus, has been used as a treatment for heart failure with favorable effects, but its molecular mechanism has not been fully elucidated. Network pharmacological analysis and molecular docking revealed that Heat shock transcription factor 1 (HSF1) is a potential target of AS-IV. We designed cellular and animal experiments to investigate the role and intrinsic molecular mechanisms of AS-IV in ameliorating pressure overload-induced heart failure. In cellular experiments, Myocardial microvascular endothelial cells (MMVECs) were cultured in isolation and stimulated by adding high and low concentrations of AS-IV, and a cell model with down-regulation of HSF1 expression was constructed by using siRNA technology. Changes in the expression of key molecules of HSF1/VEGF signaling pathway and differences in tube-forming ability were detected in different groups of cells using PCR, WB and tube-forming assay. In animal experiments, TAC technology was applied to establish a pressure overload-induced heart failure model in C57 mice, postoperative mice were ingested AS-IV by gavage, and adenoviral transfection technology was applied to construct a mouse model with down-regulation of HSF1 expression.Small animal ultrasound for cardiac function assessment, MASSON staining, CD31 immunohistochemistry, and Western blotting (WB) were performed on the mice. The results showed that AS-IV could promote the expression of key molecules of HSF1/VEGF signaling pathway, enhance the tube-forming ability of MMVECs, increase the density of myocardial capillaries, reduce myocardial fibrosis, and improve the cardiac function of mice with TAC.AS-IV could modulate the HSF1/VEGF signaling pathway to promote the angiogenesis and improve the pressure overload-induced heart failure.
Collapse
Affiliation(s)
- Peizhao Du
- Department of Cardiology, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Linghao Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Yuanqi Wang
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Tiantian Jiao
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jing Cheng
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Chunsheng Zhang
- Department of Cardiology, East Hospital of Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Md Sakibur Rahman Tapu
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jian Dai
- Department of Cardiology, Baoshan District Hospital of Integrated Traditional Chinese and Western Medicine of Shanghai, Shanghai University of Traditional Chinese Medicine, Shanghai, 201999, China
| | - Jiming Li
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| |
Collapse
|
12
|
Yang L, Liu N, Yang Y. Astragaloside IV-induced BMSC exosomes promote neovascularization and protect cardiac function in myocardial infarction mice via the miR-411/HIF-1α axis. J Liposome Res 2024; 34:452-463. [PMID: 38088046 DOI: 10.1080/08982104.2023.2293844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/07/2023] [Indexed: 12/26/2023]
Abstract
This study focused on investigating the mechanism of the astragaloside IV-induced bone marrow mesenchymal stem cell exosome (AS-IV-MSC-exo)/microRNA(miR)-411/HIF-1α axis in affecting vascular neovascularization and protecting cardiac function in myocardial infarction (MI) mice. Exosomes (MSC-exo and AS-IV-MSC-exo) were separated by differential centrifugation and then characterized. MI mouse models were established by left anterior descending coronary artery ligation. Echocardiography was used to evaluate cardiac function. HE staining and Masson staining were performed to observe myocardial histopathology. Capillary density in the myocardium via immunohistochemistry and quantified the expression of vascular endothelial growth factor (VEGF) via RT-qPCR. The expression of miR-411 and HIF-1α was tested by RT-qPCR and western blot and the targeting relationship of miR-411 and HIF-1α was verified by bioinformatics website and dual luciferase reporter gene assay. Exosomes with lipid bi-layer membrane structure, expressing exosomal surface marker proteins, and being taken up by cardiomyocytes could be successfully isolated utilizing ultracentrifugation. Intramyocardial injection of MSC-exo could restore cardiac function, decrease myocardial pathological changes and collagen deposition, and promote neovascularization in MI mice; the effect of AS-IV-MSC-exo was more significant. The ability of AS-IV-MSC-exo to restore cardiac function, lower myocardial pathological changes and collagen deposition, and promote neovascularization in MI mice was diminished when miR-411 expression in AS-IV-MSC-exo was reduced. Mechanistically, miR-411 was found to target and inhibit HIF-1α expression. Overexpression of HIF-1α impaired the impact of AS-IV-MSC-exo on improving cardiac function and promoting neovascularization in MI mice. AS-IV-MSC-exo improves cardiac function and promoted neovascularization via the miR-411/HIF-1α axis, thereby ameliorating MI.
Collapse
Affiliation(s)
- Lei Yang
- School of Medicine, Zhumadian Key Laboratory of Chronic Disease Research and Translational Medicine, Huanghuai University, Zhumadian, People's Republic of China
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, People's Republic of China
| | - Nuan Liu
- School of Medicine, Zhumadian Key Laboratory of Chronic Disease Research and Translational Medicine, Huanghuai University, Zhumadian, People's Republic of China
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, People's Republic of China
- Institute of Cardiovascular and Cerebrovascular Diseases, Huanghuai University, Zhumadian, People's Republic of China
| | - Yang Yang
- Department of Scientific Research Section, Zhumadian Central Hospital, Affiliated Hospital of Huanghuai University, Zhumadian, People's Republic of China
| |
Collapse
|
13
|
Jin N, Qiu Y, Zhang K, Fang Y, Qu S, Zhu L, Li H, Nie B. Sacubitril/valsartan alleviates myocardial infarction-induced inflammation in mice by promoting M2 macrophage polarisation via regulation of PI3K/Akt pathway. Acta Cardiol 2024; 79:768-777. [PMID: 39257342 DOI: 10.1080/00015385.2024.2400401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Macrophage polarisation-mediated inflammation plays a critical role in ventricular remodelling after myocardial infarction (MI). Sacubitril/Valsartan (Sac/Val) is an angiotensin receptor-neprilysin inhibitor that has shown beneficial effects on MI and heart failure. This study aims to further explore the mechanisms by which Sac/Val exerts its protective effects against MI. METHODS A mouse MI model was induced by ligating the left anterior descending coronary artery, followed by Sac/Val administration. TTC staining and Masson trichrome staining were employed for estimating myocardial infarct size and fibrosis, respectively. The expression levels of proinflammatory factors were determined by ELISA and RT-qPCR. Flow cytometry and immunofluorescence staining were implemented to detect CD206-positive cell infiltration in mouse hearts. Western blotting was conducted to assess protein levels of Arg1, pro-fibrotic factors, and PI3K/Akt signalling-related markers. RESULTS Sac/Val treatment reduced myocardial infarct size and fibrosis in mice after MI. Sac/Val administration decreased proinflammatory cytokine production and facilitated M2 macrophage polarisation in MI mouse cardiac tissues. Sac/Val activated PI3K/Akt signalling in MI mouse hearts. Blocking PI3K/Akt signalling counteracted Sac/Val-mediated protective effects in MI mice. CONCLUSION Sac/Val ameliorates MI-induced inflammation by facilitating M2 macrophage polarisation and activating PI3K/Akt signalling.
Collapse
Affiliation(s)
- Nan Jin
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Ying Qiu
- Department of General practice, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Kuanxin Zhang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Yulin Fang
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Shifang Qu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Lu Zhu
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Han Li
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| | - Bin Nie
- Department of Geriatrics, The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, China
| |
Collapse
|
14
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
16
|
Sheng F, Yang S, Li M, Wang J, Liu L, Zhang L. Research Progress on the Anti-Cancer Effects of Astragalus membranaceus Saponins and Their Mechanisms of Action. Molecules 2024; 29:3388. [PMID: 39064966 PMCID: PMC11280308 DOI: 10.3390/molecules29143388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Astragalus membranaceus saponins are the main components of A. membranaceus, a plant widely used in traditional Chinese medicine. Recently, research on the anti-cancer effects of A. membranaceus saponins has received increasing attention. Numerous in vitro and in vivo experimental data indicate that A. membranaceus saponins exhibit significant anti-cancer effects through multiple mechanisms, especially in inhibiting tumor cell proliferation, migration, invasion, and induction of apoptosis, etc. This review compiles relevant studies on the anti-cancer properties of A. membranaceus saponins from various databases over the past two decades. It introduces the mechanism of action of astragalosides, highlighting their therapeutic benefits in the management of cancer. Finally, the urgent problems in the research process are highlighted to promote A. membranaceus saponins as an effective drug against cancer.
Collapse
Affiliation(s)
- Feiya Sheng
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Siyu Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Mi Li
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Jiaojiao Wang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (F.S.); (S.Y.); (M.L.); (J.W.)
| | - Lianghong Liu
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, China
| | - Lele Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| |
Collapse
|
17
|
Wei YR, Hou YL, Yin YJ, Li Z, Liu Y, Han NX, Wang ZX, Liu L, Wang XQ, Hao YJ, Ma K, Gu JJ, Jia ZH. Tongxinluo Activates PI3K/AKT Signaling Pathway to Inhibit Endothelial Mesenchymal Transition and Attenuate Myocardial Fibrosis after Ischemia-Reperfusion in Mice. Chin J Integr Med 2024; 30:608-615. [PMID: 38386252 DOI: 10.1007/s11655-024-3652-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 02/23/2024]
Abstract
OBJECTIVE To investigate the potential role of Tongxinluo (TXL) in attenuating myocardial fibrosis after myocardial ischemia-reperfusion injury (MIRI) in mice. METHODS A MIRI mouse model was established by left anterior descending coronary artery ligation for 45 min. According to a random number table, 66 mice were randomly divided into 6 groups (n=11 per group): the sham group, the model group, the LY-294002 group, the TXL group, the TXL+LY-294002 group and the benazepril (BNPL) group. The day after modeling, TXL and BNPL were administered by gavage. Intraperitoneal injection of LY-294002 was performed twice a week for 4 consecutive weeks. Echocardiography was used to measure cardiac function in mice. Masson staining was used to evaluate the degree of myocardial fibrosis in mice. Qualitative and quantitative analysis of endothelial mesenchymal transition (EndMT) after MIRI was performed by immunohistochemistry, immunofluorescence staining and flow cytometry, respectively. The protein expressions of platelet endothelial cell adhesion molecule-1 (CD31), α-smoth muscle actin (α-SMA), phosphatidylinositol-3-kinase (PI3K) and phospho protein kinase B (p-AKT) were assessed using Western blot. RESULTS TXL improved cardiac function in MIRI mice, reduced the degree of myocardial fibrosis, increased the expression of CD31 and inhibited the expression of α-SMA, thus inhibited the occurrence of EndMT (P<0.05 or P<0.01). TXL significantly increased the protein expressions of PI3K and p-AKT (P<0.05 or P<0.01). There was no significant difference between TXL and BNPL group (P>0.05). In addition, the use of the PI3K/AKT pathway-specific inhibitor LY-294002 to block this pathway and combination with TXL intervention, eliminated the protective effect of TXL, further supporting the protective effect of TXL. CONCLUSION TXL activated the PI3K/AKT signaling pathway to inhibit EndMT and attenuated myocardial fibrosis after MIRI in mice.
Collapse
Affiliation(s)
- Ya-Ru Wei
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China
| | - Yun-Long Hou
- Shijiazhuang Yiling Pharmaceutical New Drug Evaluation Center, Shijiazhuang, 050035, China
| | - Yu-Jie Yin
- Hebei Institute of Integrated Traditional and Western Medicine, Shijiazhuang, 050035, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Department of Cardiology, Hebei Yiling Hospital, Shijiazhuang, 050091, China
| | - Zhen Li
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yi Liu
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Ning-Xin Han
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zi-Xuan Wang
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Lu Liu
- Hebei Institute of Integrated Traditional and Western Medicine, Shijiazhuang, 050035, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
- Department of Cardiology, Hebei Yiling Hospital, Shijiazhuang, 050091, China
| | - Xiao-Qi Wang
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China
| | - Yuan-Jie Hao
- Graduate School, Hebei Medical University, Shijiazhuang, 050017, China
| | - Kun Ma
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China
| | - Jiao-Jiao Gu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China
| | - Zhen-Hua Jia
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, 050090, China.
- Hebei Institute of Integrated Traditional and Western Medicine, Shijiazhuang, 050035, China.
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China.
- Department of Cardiology, Hebei Yiling Hospital, Shijiazhuang, 050091, China.
| |
Collapse
|
18
|
Haybar H, Sarbazjoda E, Purrahman D, Mahmoudian-Sani MR, Saki N. The prognostic potential of long noncoding RNA XIST in cardiovascular diseases: a review. Per Med 2024; 21:257-269. [PMID: 38889283 DOI: 10.1080/17410541.2024.2360380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 05/23/2024] [Indexed: 06/20/2024]
Abstract
There is a significant mortality rate associated with cardiovascular disease despite advances in treatment. long Non-coding RNAs (lncRNAs) play a critical role in many biological processes and their dysregulation is associated with a wide range of diseases in which their downstream pathways are disrupted. A lncRNA X-inactive specific transcript (XIST) is well known as a factor that regulates the physiological process of chromosome dosage compensation for females. According to recent studies, lncRNA XIST is involved in a variety of cellular processes, including apoptosis, proliferation, invasion, metastasis, oxidative stress and inflammation, through molecular networks with microRNAs and their downstream targets in neoplastic and non-neoplastic diseases. Because these cellular processes play a role in the pathogenesis of cardiovascular diseases, we aim to investigate the role that lncRNA XIST plays in this process. Additionally, we wish to determine whether it is a prognostic factor or a potential therapeutic target in these diseases.
Collapse
Affiliation(s)
- Habib Haybar
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ehsan Sarbazjoda
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Daryush Purrahman
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| | - Mohammad Reza Mahmoudian-Sani
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz,Iran
| |
Collapse
|
19
|
Fazio A, Neri I, Koufi FD, Marvi MV, Galvani A, Evangelisti C, McCubrey JA, Cocco L, Manzoli L, Ratti S. Signaling Role of Pericytes in Vascular Health and Tissue Homeostasis. Int J Mol Sci 2024; 25:6592. [PMID: 38928298 PMCID: PMC11203602 DOI: 10.3390/ijms25126592] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Pericytes are multipotent cells embedded within the vascular system, primarily surrounding capillaries and microvessels where they closely interact with endothelial cells. These cells are known for their intriguing properties due to their heterogeneity in tissue distribution, origin, and multifunctional capabilities. Specifically, pericytes are essential in regulating blood flow, promoting angiogenesis, and supporting tissue homeostasis and regeneration. These multifaceted roles draw on pericytes' remarkable ability to respond to biochemical cues, interact with neighboring cells, and adapt to changing environmental conditions. This review aims to summarize existing knowledge on pericytes, emphasizing their versatility and involvement in vascular integrity and tissue health. In particular, a comprehensive view of the major signaling pathways, such as PDGFβ/ PDGFRβ, TGF-β, FOXO and VEGF, along with their downstream targets, which coordinate the behavior of pericytes in preserving vascular integrity and promoting tissue regeneration, will be discussed. In this light, a deeper understanding of the complex signaling networks defining the phenotype of pericytes in healthy tissues is crucial for the development of targeted therapies in vascular and degenerative diseases.
Collapse
Affiliation(s)
- Antonietta Fazio
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Irene Neri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Foteini-Dionysia Koufi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Maria Vittoria Marvi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Andrea Galvani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
- Department of Biomolecular Sciences, University of Urbino “Carlo Bo”, 61029 Urbino, Italy
| | - Camilla Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - James A. McCubrey
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA;
| | - Lucio Cocco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Lucia Manzoli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| | - Stefano Ratti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy; (A.F.); (I.N.); (F.-D.K.); (M.V.M.); (A.G.); (C.E.); (L.C.); (L.M.)
| |
Collapse
|
20
|
Farazi MM, Rostamzadeh F, Jafarinejad-Farsangi S, Moazam Jazi M, Jafari E, Gharbi S. CircPAN3/miR-221/PTEN axis and apoptosis in myocardial Infarction: Quercetin's regulatory effects. Gene 2024; 909:148316. [PMID: 38401834 DOI: 10.1016/j.gene.2024.148316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/29/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
The circular RNA/microRNA/mRNA axis is a new layer of non-coding RNA(ncRNA)-based regulatory gene expression networks upstream of numerous cell signaling pathways. Circular RNAPAN3 (circPAN3) is involved in autophagy, fibrosis and apoptosis which are responsible for the reduction incardiac functional capacityfollowingmyocardial infarction(MI). However, the molecular mechanism of circPAN3 association with apoptosis is unknown. In addition, the relationship between quercetin as a cardioprotective factor in MI and circular RNA-dependent regulatory pathways has not yet been elucidated. MI was induced in Wistar rats using the left anterior descending artery (LAD) ligation method. One day after surgery, quercetin (30 mg/kg) was injected intraperitoneal (IP) every other day for two weeks. The expression of circPAN3 was increased in the MI group (P < 0.05). The increase in circPAN3 was accompanied by a decrease in miR-221 (P < 0.0001), an increase in PTEN (P < 0.0001), and cleaved caspase 3 (P < 0.001). Quercetin effectively reduced the expression of circPAN3 (P < 0.05), PTEN (P < 0.0001), and cleaved caspase 3 (P < 0.001), and increased the expression of miR-221 (P < 0.0001) and the ratio of p-AKT to p-PI3K (P < 0.001). The circPAN3/miR-221/PTEN pathway is an ncRNA-dependent apoptotic pathway in MI cardiac tissue. Quercetin effectively modulated this pathway, resulting in a reduction of cardiac tissue death and improvement in cardiac function after MI. This suggests that the circPAN3/miR-221 axis plays a role in apoptosis in MI, and quercetin can act as a protective candidate by modulating this pathway.
Collapse
Affiliation(s)
- Mohammad Mojtaba Farazi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Farzaneh Rostamzadeh
- Cardiovascular Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Maryam Moazam Jazi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Jafari
- Pathology and Stem Cell Research Center, Department of Pathology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Sedigheh Gharbi
- Department of Biology, Faculty of Science, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
21
|
Liu N, Ji Y, Liu R, Jin X. The state of astragaloside IV research: A bibliometric and visualized analysis. Fundam Clin Pharmacol 2024; 38:208-224. [PMID: 37700611 DOI: 10.1111/fcp.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/15/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Astragaloside IV has emerged as a pharmaceutical monomer with great medical applications and potential. Astragaloside IV has many effects such as improving myocardial ischemia, cerebral ischemia-reperfusion injury, anti-inflammatory, analgesic, antiviral, promoting lymphocyte proliferation, and antitumor effects. However, there are few bibliometric studies on astragaloside IV. OBJECTIVES We aim to visualize the hotspots and trends in astragaloside IV research through bibliometric analysis to further understand the future development of basic and clinical research. Methods The articles and reviews on astragaloside IV were screened from the Web of Science Core Collection, and knowledge maps were generated using CiteSpace software. Bibliometric analysis was performed on 971 articles published from 1998 to 2022. RESULTS The number of articles on astragaloside IV increased yearly. These publications came from 42 countries/regions, with China being the largest. The primary research institutions were Shanghai University of Traditional Chinese Medicine and Guangzhou University of Traditional Chinese Medicine. Journal of Ethnopharmacology was the most studied journal and co-cited journal. A total of 473 authors were included, among which Hongxin Wang had the highest number of publications and Zhang Wd had the highest total citation frequency. After analysis, the most common keywords are astragaloside IV, expression, and oxidative stress. Cardiovascular disease, cerebral ischemia, cancer, and kidney disease are current and developing research fields. CONCLUSION This study used bibliometrics and visualization methods to analyze the research hotspots and trends of astragaloside IV. Astragaloside IV on ischemia-reperfusion injury, cancer, and tumor may become the focus of future research.
Collapse
Affiliation(s)
- Ning Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yansu Ji
- Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Rui Liu
- State Key Laboratory of Component-based Chinese Medicine, Haihe Laboratory of Modern Chinese Medicine, College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin Jin
- Military Medicine Section, Logistics University of Chinese People's Armed Police Force, Tianjin, China
| |
Collapse
|
22
|
Deng X, Wu Y, Tang Y, Ge Z, Wang D, Zheng C, Zhao R, Lin W, Wang G. Microenvironment-responsive smart hydrogels with antibacterial activity and immune regulation for accelerating chronic wound healing. J Control Release 2024; 368:518-532. [PMID: 38462042 DOI: 10.1016/j.jconrel.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Current therapeutic strategies for chronic refractory wounds remain challenge owing to their unfavorable wound microenvironment and poor skin regeneration ability. Thus far, a regimen for effective chronic refractory wounds management involves bacterial elimination, alleviation of oxidative stress, inhibition of inflammatory response, and promotion of angiogenesis. In this work, an injectable glycopeptide hydrogel based on phenylboronic acid-grafted ϵ-polylysine (EPBA) and poly (vinyl alcohol) (PVA) with pH/reactive oxygen species (ROS) dual-responsive properties was prepared, which exerted intrinsic antibacterial and antioxidant properties. ROS-responsive micelles (MIC) loaded with herb-derived Astragaloside IV (AST) are introduced into the hydrogel before gelation. Attributed to the acidic condition and oxidative stress microenvironment of wound bed, the hydrogel gradually disintegrates, and the released EPBA could help to eliminate bacterial. Meanwhile, the subsequential release of AST could help to achieve anti-oxidation, anti-inflammatory, proangiogenic effects, and regulation of macrophage polarization to accelerate chronic wound healing. In addition, the wound repair mechanism of composite hydrogel accelerating skin regeneration was assessed by RNA-sequencing, exploring a range of potential targets and pathway for further study. Collectively, this multifunctional hydrogel dressing, matching different healing stages of tissue remodeling, holds a great potential for the treatment of chronic refractory wounds.
Collapse
Affiliation(s)
- Xiangtian Deng
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China; Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ye Wu
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China
| | - YunFeng Tang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China; Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zilu Ge
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China; Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dong Wang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China; Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Renliang Zhao
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China; Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Department of Orthopedics, Orthopedics Research Institute, West China Hospital, Sichuan University, China; Trauma medical center, Department of Orthopedics surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
He H, Lin C, Lu Y, Wu H. Knockdown of miR-24 Suppressed the Tumor Growth of Cervical Carcinoma Through Regulating PTEN/PI3K/AKT Signaling Pathway. Biochem Genet 2024; 62:1277-1290. [PMID: 37589947 DOI: 10.1007/s10528-023-10491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/06/2023] [Indexed: 08/18/2023]
Abstract
Cervical cancer (CC) is the most prevalent malignant tumor in gynecology. Despite routine surgery, advanced CC is hard to remove completely. MicroRNA-24 (miR-24) regulates several types of tumors, but its regulatory function in CC was previously unknown. We established stable knockdown of miR-24 and phosphatase and tensin homolog (PTEN) in CC cells. We measured mRNA and protein expression with RT-PCR and western blotting. We evaluated cell proliferation, invasion, migration, and apoptosis with CCK8, Transwell, wound healing, and flow cytometry, respectively. We also examined the influence of miR-24 and PTEN on tumor growth in a metastatic tumor model in nude mice. The expression of miR-24 was significantly increased in CC tissues and cell lines (C-33A, HeLa S3, SiHa). MiR-24 inhibitor greatly suppressed PTEN/PI3K/AKT, while miR-24 mimic markedly activated this signaling pathway. Knockdown of PTEN significantly reversed the effects of miR-24 inhibitor on cell proliferation, invasion, migration, and apoptosis of CC cells. The significant inhibition effect of tumor growth and ki67 expression caused by miR-24 inhibitor was reversed by si-PTEN. MiR-24 inhibitor significantly suppressed cell proliferation, invasion, migration, epithelial-mesenchymal transition (EMT) process, and tumor growth, while promoting cell apoptosis. However, the influence of miR-24 inhibitor was markedly reversed by si-PTEN. Targeting miR-24 could provide a novel therapeutic strategy for the prevention and treatment of CC.
Collapse
Affiliation(s)
- Haixin He
- Department of Gynecology Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 758 Fuma Road, Fuzhou, 350014, China
| | - Cuibo Lin
- Department of Gynecology Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 758 Fuma Road, Fuzhou, 350014, China
| | - Yongwei Lu
- Department of Gynecology Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 758 Fuma Road, Fuzhou, 350014, China
| | - Hongqing Wu
- Department of Gynecology Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, No. 758 Fuma Road, Fuzhou, 350014, China.
| |
Collapse
|
24
|
Ding Y, Xiang Q, Zhu P, Fan M, Tong H, Wang M, Cheng S, Yu P, Shi H, Zhang H, Chen X. Qihuang Zhuyu formula alleviates coronary microthrombosis by inhibiting PI3K/Akt/αIIbβ3-mediated platelet activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155276. [PMID: 38295661 DOI: 10.1016/j.phymed.2023.155276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/28/2023] [Accepted: 12/10/2023] [Indexed: 02/13/2024]
Abstract
BACKGROUND Coronary microembolism (CME) is commonly seen in the peri-procedural period of Percutaneous Coronary Intervention (PCI), where local platelet activation and endothelial cell inflammation crosstalk may lead to micro thrombus erosion and rupture, with serious consequences. Qihuang Zhuyu Formula (QHZYF) is a Chinese herbal compound with high efficacy against coronary artery disease, but its antiplatelet mechanism is unclear. HYPOTHESIS/PURPOSE This study aimed to elucidate the effects and mechanisms of QHZYF on sodium laurate-induced CME using network pharmacology and in vitro and in vivo experiments. METHODS We employed high-performance liquid chromatography mass spectrometry to identify the main components of QHZYF. Network pharmacology analysis, molecular docking and surface plasmon resonance (SPR) were utilized to predict the primary active components, potential therapeutic targets, and intervention pathways mediating the effects of QHZYF on platelet activation. Next, we pretreated a sodium laurate-induced minimally invasive CME rat model with QHZYF. In vivo experiments were performed to examine cardiac function in rats, to locate coronary arteries on heart sections to observe internal microthrombi, to extract rat Platelet-rich plasma (PRP) for adhesion assays and CD62p and PAC-1 (ITGB3/ITGA2B) flow assays, and to measure platelet-associated protein expression in PRP. In vitro clot retraction and Co-culture of HUVECs with PRP were performed and the gene pathway was validated through flow cytometry and immunofluorescence. RESULTS Combining UPLC-Q-TOF/MS technology and database mining, 78 compounds were finally screened as the putative and representative compounds of QHZYF, with 75 crossover genes associated with CME. QHZYF prevents CME mainly by regulating key pathways of the inflammation and platelets, including Lipid and atherosclerosis, Fluid shear stress, platelet activation, and PI3K-Akt signaling pathways. Five molecules including Calyson, Oroxin A, Protosappanin A,Kaempferol and Geniposide were screened and subjected to molecular docking and SPR validation in combination with Lipinski rules (Rule of 5, Ro5). In vivo experiments showed that QHZYF not only improved myocardial injury but also inhibited formation of coronary microthrombi. QHZYF inhibited platelet activation by downregulating expression of CD62p receptor and platelet membrane protein αIIbβ3 and reduced the release of von Willebrand Factor (vWF), Ca2+ particles and inflammatory factor IL-6. Further analysis revealed that QHZYF inhibited the activation of integrin αIIbβ3, via modulating the PI3K/Akt pathways. In in vitro experiments, QHZYF independently inhibited platelet clot retraction. Upon LPS induction, the activation of platelet membrane protein ITGB3 was inhibited via the PI3K/Akt pathway, revealing an important mechanism for attenuating coronary microthrombosis. We performed mechanistic validation using PI3K inhibitor LY294002 and Akt inhibitor MK-2206 to show that QHZYF inhibited platelet membrane protein activation and inflammation to improved coronary microvessel embolism by regulating PI3K/Akt/αIIbβ3 pathways, mainly by inhibiting PI3K and Akt phosphorylation. CONCLUSION QHZYF interferes with coronary microthrombosis through inhibition of platelet adhesion, activation and inflammatory crosstalk, thus has potential in clinical anti-platelet applications. Calyson, Oroxin A, Protosappanin A, Kaempferol and Geniposide may be the major active ingredient groups of QHZYF that alleviate coronary microthrombosis.
Collapse
Affiliation(s)
- Yuhan Ding
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Qian Xiang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Peiyuan Zhu
- Department of Transfusion Medicine, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, PR China
| | - Manlu Fan
- Department of TCM, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, Shandong 250013, China
| | - Huaqin Tong
- Department of Cardiology, Yangzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou 225127, China
| | - Mengxi Wang
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China; First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Songyi Cheng
- Department of Cardiology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210022, China
| | - Peng Yu
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China
| | - Haibo Shi
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China
| | - Haowen Zhang
- College of Health Preservation and Rehabilitation, Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Xiaohu Chen
- Department of Cardiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, PR China; Department of Cardiology, Jiangsu Province Hospital of Chinese Medicine, Nanjing 210029, PR China.
| |
Collapse
|
25
|
Jiang H, Wang W, Mao Y, Jiang L, Yu J, Zhu X, Fu H, Lin Z, Shen H, Pan X, Xue X. Morroniside-mediated mitigation of stem cell and endothelial cell dysfunction for the therapy of glucocorticoid-induced osteonecrosis of the femoral head. Int Immunopharmacol 2024; 127:111421. [PMID: 38157694 DOI: 10.1016/j.intimp.2023.111421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/14/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Prolonged use of glucocorticoids (GCs) potentially lead to a condition known as GCs-induced osteonecrosis of the femoral head (GIONFH). The primary mechanisms underlying this phenomenon lies in stem cells and endothelial cells dysfunctions. Morroniside, an iridoid glycoside sourced from Cornus officinalis, possesses numerous biological capabilities, including combating oxidative stress, preventing apoptosis, opposing ischemic effects, and promoting the regeneration of bone tissue. PURPOSE This study aimed to analyze the impact of Morroniside on Dexamethasone (DEX)-induced dysfunction in stem cells and endothelial cells, and its potential as a therapeutic agent for GIONFH in rat models. METHODS ROS assay, JC-1 assay, and TUNEL assay were used to detect oxidative stress and apoptosis levels in vitro. For the evaluation of the osteogenic capability of bone marrow-derived mesenchymal stem cells, we employed ALP and ARS staining. Additionally, the angiogenic ability of endothelial cells was assessed using tube formation assay and migration assay. Microcomputed tomography analysis, hematoxylin-eosin staining, and immunohistochemical staining were utilized to evaluate the in vivo therapeutic efficacy of Morroniside. RESULTS Morroniside mitigates DEX-induced excessive ROS expression and cell apoptosis, effectively reducing oxidative stress and alleviating cell death. In terms of osteogenesis, Morroniside reverses DEX-induced osteogenic impairment, as evidenced by enhanced ALP and ARS staining, as well as increased osteogenic protein expression. In angiogenesis, Morroniside counteracts DEX-induced vascular dysfunction, demonstrated by an increase in tube-like structures in tube formation assays, a rise in the number of migrating cells, and elevated levels of angiogenic proteins. In vivo, our results further indicate that Morroniside alleviates the progression of GIONFH. CONCLUSION The experimental findings suggest that Morroniside concurrently mitigates stem cell and endothelial cell dysfunction through the PI3K/AKT signaling pathway both in vitro and in vivo. These outcomes suggest that Morroniside serves as a potential therapeutic agent for GIONFH.
Collapse
Affiliation(s)
- Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yiwen Mao
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Liting Jiang
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiachen Yu
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xinyi Zhu
- The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Haonan Fu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hanting Shen
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second Clinical School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
26
|
Xiong W, Zhang X, Zhou J, Chen J, Liu Y, Yan Y, Tan M, Huang H, Si Y, Wei Y. Astragaloside IV promotes exosome secretion of endothelial progenitor cells to regulate PI3KR2/SPRED1 signaling and inhibit pyroptosis of diabetic endothelial cells. Cytotherapy 2024; 26:36-50. [PMID: 37747393 DOI: 10.1016/j.jcyt.2023.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/27/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
BACKGROUND AIMS Treating chronic non-healing diabetic wounds and achieving complete skin regeneration has always been a critical clinical challenge. METHODS In order to address this issue, researchers conducted a study aiming to investigate the role of miR-126-3p in regulating the downstream gene PIK3R2 and promoting diabetic wound repair in endothelial progenitor cell (EPC)-derived extracellular vesicles. The study involved culturing EPCs with astragaloside IV, transfecting them with miR-126-3p inhibitor or mock plasmid, interfering with high glucose-induced damage in human umbilical vein endothelial cells (HUVECs) and treating diabetic skin wounds in rats. RESULTS The healing of rat skin wounds was observed through histological staining. The results revealed that treatment with miR-126-3p-overexpressing EPC-derived extracellular vesicles accelerated the healing of rat skin wounds and resulted in better tissue repair with slower scar formation. In addition, the transfer of EPC-derived extracellular vesicles with high expression of miR-126-3p to high glucose-damaged HUVECs increased their proliferation and invasion, reduced necrotic and apoptotic cell numbers and improved tube formation. In this process, the expression of angiogenic factors vascular endothelial growth factor (VEGF)A, VEGFB, VEGFC, basic fibroblast growth factor and Ang-1 significantly increased, whereas the expression of caspase-1, NRLP3, interleukin-1β, inteleukin-18, PIK3R2 and SPRED1 was suppressed. Furthermore, miR-126-3p was able to target and inhibit the expression of the PIK3R2 gene, thereby restoring the proliferation and migration ability of high glucose-damaged HUVEC. CONCLUSIONS In summary, these research findings demonstrate the important role of miR-126-3p in regulating downstream genes and promoting diabetic wound repair, providing a new approach for treating chronic non-healing diabetic wounds.
Collapse
Affiliation(s)
- Wu Xiong
- Department of Burns and Plastic Surgery, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Xi Zhang
- Hunan Brain Hospital (Clinical Medical School of Hunan University of Chinese Medicine), Changsha, Hunan Province, China.
| | - Jianda Zhou
- Department of Plastic Surgery, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jie Chen
- Department of Aesthetic Plastic Surgery, the First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yu Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yu Yan
- Department of Endocrinology, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Meixin Tan
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Hongyu Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yuqi Si
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| | - Yang Wei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan Province, China
| |
Collapse
|
27
|
Wang H, Huang Y, Zhou C, Gong F, Wang J, Chen G. Engineering VEGF-like peptide QKCMP promotes rapid endothelialization of blood vessels. J Appl Biomater Funct Mater 2024; 22:22808000241301180. [PMID: 39568108 DOI: 10.1177/22808000241301180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Angiogenesis, which involves many essential processes, such as human reproduction, organ development, and wound healing, is regulated by multiple signaling pathways. QKCMP is a polypeptide with similar effects to vascular endothelial growth factor (VEGF), which promotes angiogenesis. In this study, zebrafish were treated with different concentrations of QKCMP, and it was found that QKCMP significantly promoted the growth of blood vessels. Human umbilical vein endothelial cells (HUVECs) was then treated with different concentrations of QKCMP, which proved that QKCMP could promote cell proliferation and inhibit cell apoptosis, and thus obtain a complete gene expression matrix. Genes and biological functions or pathways significantly associated with QKCMP were obtained using differential gene expression analysis, weighted gene co-expression network analysis (WGCNA), and enrichment analyses. Among them, genes significantly related to QKCMP are enriched in biological processes (BP) such as vascular formation and development, as well as the main signaling pathway: PI3K/AKT signaling pathway. The proproliferative and antiapoptotic effects of QKCMP on the HUVECs and the induction of cell cycle were then verified using cell counting kit 8 (CCK-8) and flow cytometry. Finally, it was confirmed that QKCMP promotes angiogenesis and rapid endothelialization by stimulating the PI3K-AKT and Hippo signaling pathways using quantitative real-time PCR (qRT-PCR) and western blot (WB).
Collapse
Affiliation(s)
- Haifeng Wang
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Chenhui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fanyong Gong
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiangyong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Gao Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Chen Y, Tai Z, Zhu C, Yu Q, Zhu Q, Chen Z. Vascular Endothelial Growth Factor A VEGFA Inhibition: An Effective Treatment Strategy for Psoriasis. Int J Mol Sci 2023; 25:59. [PMID: 38203230 PMCID: PMC10778864 DOI: 10.3390/ijms25010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Psoriasis is an inflammatory skin disease mediated by the immune system and characterized by an inflammatory ring, also known as an epithelial immune microenvironment (EIME). The interaction between the epithelial tissue of the skin and the immune system has a crucial role in the immune cycle of psoriasis. Although the formation of new blood vessels in skin lesions provides energy support for the proliferation of epidermal keratinocytes, the role of angiogenesis in psoriasis has not been extensively studied. Vascular endothelial growth factor A (VEGFA) is a key regulator of angiogenesis that has an important role in the development of psoriasis. VEGFA promotes angiogenesis and directly stimulates epidermal keratinocytes and infiltrating immune cells, thus contributing to the progression of psoriasis. Measuring VEGFA levels to identify angiogenic characteristics in psoriasis patients may be a predictive biomarker for disease severity and response to anti-angiogenic therapy. Clinical data have shown that anti-angiogenic therapy can improve skin lesions in psoriasis patients. Therefore, this study aimed to uncover the underestimated role of blood vessels in psoriasis, explore the relationship between VEGFA and keratinocytes in the EIME, and inspire innovative drug therapies for the treatment of psoriasis.
Collapse
Affiliation(s)
| | | | | | | | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Y.C.); (Z.T.); (C.Z.); (Q.Y.)
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, 1278 Baode Road, Shanghai 200443, China; (Y.C.); (Z.T.); (C.Z.); (Q.Y.)
| |
Collapse
|
29
|
Guo M, Yan P, Zhu M, Choi M, Li X, Huang J, Zou J, Yuan J, Ding W, Li D, Han X, Wang Y, Wu J. Microcystin-LR prenatal exposure drives preeclampsia-like changes in mice by inhibiting the expression of TGF-β and VEGFA. Food Chem Toxicol 2023; 182:114189. [PMID: 37980977 DOI: 10.1016/j.fct.2023.114189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/20/2023] [Accepted: 11/08/2023] [Indexed: 11/21/2023]
Abstract
Microcystin-leucine-arginine (MC-LR) is widespread in the water and food, which has suspected to be associated with adverse pregnancy outcomes. In the present study, we aim to assess the interaction between MC-LR exposure and preeclampsia development and elucidate the molecular events involved. After exposure to MC-LR during pregnancy, the mice developed hypertension and proteinuria, the typical symptoms of preeclampsia. This was associated with decreased invasiveness of placental trophoblast and vascular dysplasia caused by MC-LR through down-regulating VEGFA and TGF-β expression via AKT/m-TOR/HIF-1α pathway. In addition, this conclusion has been confirmed in a case-control study. Significantly, the addition of Deferoxamine (DFM), a phosphorylated serine-threonine protein kinases (p-AKT) specific agonist, can antagonize the inhibitory effect of MC-LR on the expression of related proteins, which further ameliorate the migration and invasion ability of HTR-8/Svneo cells. To sum up, our study revealed the pathologic mechanism by which MC-LR lead to preeclampsia and emphasized the importance of pregnancy management.
Collapse
Affiliation(s)
- Meihong Guo
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Pinru Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Mengjiao Zhu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Manhou Choi
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xinrui Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jiahao Huang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jianghao Zou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jintao Yuan
- The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Zhenjiang, Jiangsu, 212300, China
| | - Weidong Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yong Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
30
|
Liu ZB, Fan XY, Wang CW, Ye X, Wu CJ. Potentially active compounds that improve PAD through angiogenesis: A review. Biomed Pharmacother 2023; 168:115634. [PMID: 37879211 DOI: 10.1016/j.biopha.2023.115634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/27/2023] Open
Abstract
Peripheral arterial disease (PAD) has been historically neglected, which has resulted in a lack of effective drugs in clinical practice. However, with the increasing prevalence of diseases like atherosclerosis and diabetes, the incidence of PAD is rising and cannot be ignored. Researchers are exploring the potential of promoting angiogenesis through exogenous compounds to improve PAD. This paper focuses on the therapeutic effect of natural products (Salidroside, Astragaloside IV, etc.) and synthetic compounds (Cilostazol, Dapagliflozin, etc.). Specifically, it examines how they can promote autocrine secretion of vascular endothelial cells, enhance cell paracrine interactions, and regulate endothelial progenitor cell function. The activation of these effects may be closely related to PI3K, AMPK, and other pathways. Overall, these exogenous compounds have promising therapeutic potential for PAD. This study aims to summarize the potential active compounds, provide a variety of options for the search for drugs for the treatment of PAD, and bring light to the treatment of patients.
Collapse
Affiliation(s)
- Zi-Bo Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin-Yun Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen-Wei Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xun Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chun-Jie Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu Univesity of Traditional Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
31
|
Yang X, Wang J, Dai X, Ma N, Cheng H, Guo H, Chen S, Huang Y, Wu J. The mechanism and targeted intervention of the HIF-1 pathway in improving atherosclerotic heart's sensitivity to ischemic postconditioning. Free Radic Biol Med 2023; 208:494-509. [PMID: 37660838 DOI: 10.1016/j.freeradbiomed.2023.08.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND IPoC possesses a preventive effect against IR injury in healthy myocardium, but IPoC's protective effect on atherosclerotic myocardium is controversial. The current investigation aims to determine whether IPoC remains protective in atherosclerotic myocardium subjected to ischemia-reperfusion (IR) injury; to explore the specific mechanisms by which IPoC exerts cardioprotection; to explore whether HIF-1 upregulation combined with IPoC could further the provide cardioprotection; and to gaze at the specific mechanism whereby combined treatment expert the cardioprotection. METHODS ApoE-/- mice fed with a high-fat diet (HFD) were used to develop a model of atherosclerosis. The myocardial IR model was induced by occlusion of the left anterior descending (LAD) artery for 45 min, followed by reperfusion for 120 min. The protection of IPoC in both healthy and atherosclerotic myocardium was evaluated by measuring oxidative stress, apoptosis, infarct size, pathology, mitochondrial dysfunction and morphology of myocardium. The specific mechanism by which IPoC exerts cardioprotection in healthy and atherosclerotic myocardium was observed by measuring the expression of proteins involved in HIF-1, APMK and RISK pathways. The effect of HIF-1α overexpression on the cardioprotection by IPoC was observed by intravenous AAV9 -HIF-1α injection. RESULTS In healthy ischemic myocardium, IPoC exerted myocardial protective effects (antioxidant, anti-apoptosis, and improved mitochondrial function) through the activation of HIF-1, AMPK and RISK pathways. In atherosclerotic ischemic myocardium, IPoC exerted cardioprotection only through the activation of HIF-1 pathway; however, HIF-1 overexpression combined IPoC restored the activation of AMPK and RISK pathways, thereby further alleviating the myocardial IR injury. CONCLUSIONS In the atherosclerotic state, the HIF-1 pathway is the intrinsic mechanism by which IPoC exerts cardioprotective effects. The combination of HIF-1 upregulation and IPoC has a significant effect in reducing myocardial injury, which is worth being promoted and advocated. In addition, HIF-1-AMPK and HIF-1-RISK may be two endogenous cardioprotective signalling pathways with great value, which deserve to be thoroughly investigated in the future.
Collapse
Affiliation(s)
- Xue Yang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jiang Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiaowen Dai
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Ning Ma
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hu Cheng
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hai Guo
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Siyu Chen
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yidan Huang
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianjiang Wu
- Department of Anesthesiology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
32
|
Huang X, Zhang M, Song Y, Sun B, Lin L, Song X, Li C. Integrated network pharmacology to investigate the mechanism of Salvia miltiorrhiza Bunge in the treatment of myocardial infarction. J Cell Mol Med 2023; 27:3514-3525. [PMID: 37643320 PMCID: PMC10660626 DOI: 10.1111/jcmm.17932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 08/05/2023] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Salvia miltiorrhiza Bunge is a natural drug for treating myocardial infarction (MI). However, the targets and mechanisms of S. miltiorrhiza Bunge in the treatment of MI are yet to be elucidated. Traditional Chinese medicine systems pharmacology (TCMSP) data were used to screen out chemical constituents, and UniProt was used to predict relevant targets. Disease targets were obtained from the Online Mendelian Inheritance in Man and GeneCards databases. We used the STRING platform to build a protein-protein interaction network and used Cytoscape_v3.8.1 software to make a Drug-Ingredients-Gene Symbols-Disease network map. The Metascape database was used to perform gene ontology and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses for drug-disease overlapping gene symbols. The targets identified by network pharmacology were further verified by in vitro and in vivo experiments. Seventy-five active components of S. miltiorrhiza Bunge were obtained from the TCMSP database, while 370 disease targets and 29 cross-targets were obtained from the Genecards database. The KEGG pathway enrichment results suggested that the mechanism of S. miltiorrhiza Bunge in the treatment of MI was significantly related to the VEGF signalling pathway. In vitro and in vivo experiments were used to evaluate the reliability of some important active ingredients and targets. S. miltiorrhiza Bunge alleviated the damage to cardiac function, attenuated myocardial fibrosis and protected endothelial cell function by increasing the expression of TGF-β and VEGFA. S. miltiorrhiza Bunge showed the therapeutic effect of MI by promoting the expression of VEGFA signalling pathway, providing a reliable basis for exploring herbal treatment of MI.
Collapse
Affiliation(s)
- Xueying Huang
- School of pharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Muxin Zhang
- First Clinical Medical CollegeShandong University of Traditional Chinese MedicineJinanChina
| | - Yu Song
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Bowen Sun
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Lin Lin
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Xiaoli Song
- School of pharmacyShandong University of Traditional Chinese MedicineJinanChina
| | - Chao Li
- Innovative Institute of Chinese Medicine and PharmacyShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
33
|
Lin Y, Jiang Y, Xian H, Cai X, Wang T. Expression and correlation of the Pi3k/Akt pathway and VEGF in oral submucous fibrosis. Cell Prolif 2023; 56:e13491. [PMID: 37157945 PMCID: PMC10623954 DOI: 10.1111/cpr.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Oral submucous fibrosis (OSF) has a high incidence in Asia countries, but its underlying molecular mechanism was not exploited completely. In this research, we investigated the expression of the phosphatidyl inositol 3-kinase (Pi3k)/protein kinase B (Akt) pathway and vascular endothelial growth factor (VEGF) in oral submucosal fibrosis, explore the correlation between the Pi3k/Akt pathway and VEGF, and identify the mechanisms involved in OSF. The pathological changes and fibrosis stages of OSF tissues (n = 30, 10 each of early, moderate and advanced OSF) were determined using Haematoxylin-eosin staining (HE) and Masson staining, respectively. Collagen type I (Col-I), Pi3k, Akt, VEGF, TGF-β and p-Akt expression was detected using immunohistochemistry, qPCR and WB. The correlation between Pi3k, Akt and VEGF was analysed. Col-I expression increased as OSF progressed. However, their expression was downregulated in normal and moderate to advanced OSF tissues. VEGF expression positively correlated with Pi3k and Akt expression. VEGF expression correlated positively and negatively with the Pi3k inhibitor, LY294002 below and above a concentration of 10 μM, respectively. VEGF expression correlated positively with the Pi3k/Ak activator, IGF-1. Due to the synergistic effect between Pi3k/Akt pathway and VEGF on OSF lesions and fibrosis process, targeted Pi3k/Akt pathway regulation can induce VEGF expression and improve ischemia, ultimately treating OSF.
Collapse
Affiliation(s)
- Yanan Lin
- Hainan General HospitalHaikouHainanChina
- The Affiliated Hainan Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Yueying Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Haiyu Xian
- Hainan General HospitalHaikouHainanChina
- The Affiliated Hainan Hospital of Hainan Medical UniversityHaikouHainanChina
| | - Xiaoxiao Cai
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Tao Wang
- Hainan General HospitalHaikouHainanChina
- The Affiliated Hainan Hospital of Hainan Medical UniversityHaikouHainanChina
| |
Collapse
|
34
|
Shan H, Lin Y, Yin F, Pan C, Hou J, Wu T, Xia W, Zuo R, Cao B, Jiang C, Zhou Z, Yu X. Effects of astragaloside IV on glucocorticoid-induced avascular necrosis of the femoral head via regulating Akt-related pathways. Cell Prolif 2023; 56:e13485. [PMID: 37186483 PMCID: PMC10623974 DOI: 10.1111/cpr.13485] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/27/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
We investigated the role of astragaloside IV (AS-IV) in preventing glucocorticoid-induced avascular necrosis of the femoral head (ANFH) and the underlying molecular mechanisms. Network pharmacology was used to predict the molecular targets of AS-IV. Molecular dynamic simulations were performed to explore the binding mechanism and interaction mode between AS-IV and Akt. Rat models of glucocorticoid-induced ANFH with AS-IV intervention were established, and osteogenesis, angiogenesis, apoptosis and oxidative stress were evaluated before and after blocking the PI3K/Akt pathway with LY294002. The effects of glucocorticoid and AS-IV on bone marrow mesenchymal stem cells and human umbilical vein endothelial cells incubated with and without LY294002 were determined. Downregulated p-Akt expression could be detected in the femoral heads of glucocorticoid-induced ANFH patients and rats. AS-IV increased trabecular bone integrity and vessel density of the femoral head in the model rats. AS-IV increased Akt phosphorylation and upregulated osteogenesis-, angiogenesis-, apoptosis- and oxidative stress-related proteins and mRNA and downregulated Bax, cleaved caspase-3 and cytochrome c levels. AS-IV promoted human umbilical vein endothelial cell migration, proliferation and tube formation ability; bone marrow mesenchymal stem cell proliferation; and osteogenic differentiation under glucocorticoid influence. AS-IV inhibited apoptosis. LY294002 inhibited these effects. AS-IV prevented glucocorticoid-induced ANFH by promoting osteogenesis and angiogenesis via the Akt/Runx2 and Akt/HIF-1α/VEGF pathways, respectively, and suppressing apoptosis and oxidative stress via the Akt/Bad/Bcl-2 and Akt/Nrf2/HO-1 pathways, respectively.
Collapse
Affiliation(s)
- Haojie Shan
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yiwei Lin
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fuli Yin
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenhao Pan
- Department of Orthopaedics & Traumatology, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongSARChina
| | - Jianzhong Hou
- Department of General Surgery, Shanghai Fengxian Central HospitalShanghai Jiao Tong University Affiliated Sixth People's Hospital South CampusShanghaiChina
| | - Tianyi Wu
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenyang Xia
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Rongtai Zuo
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bojun Cao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chaolai Jiang
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zubin Zhou
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaowei Yu
- Department of Orthopaedic SurgeryShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
35
|
Zheng S, Liao J, Sun M, Liu R, Lv J. Extracellular shuttling miR-21 contributes to esophageal cancers and human umbilical vein endothelial cell communication in the tumor microenvironment and promotes tumor angiogenesis by targeting phosphatase and tensinhomolog. Thorac Cancer 2023; 14:3119-3132. [PMID: 37726969 PMCID: PMC10626251 DOI: 10.1111/1759-7714.15103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Cell-cell communication by carcinoma-derived exosomes can influence the tumor microenvironment (TME) and regulate cancer progression. Based on the overexpression of microRNA-21-5p (miR-21) in plasma from patients diagnosed with esophageal squamous cell carcinoma (ESCC) and exosomes from ESCC cell lines identified earlier, this study aimed to explore the influence of exosomal miR-21 within the TME. METHOD ScRNA-Seq and Bulk RNA-Seq were integrated to elucidate the communication between cancer and endothelial cells. The functionality and mechanisms by which exo-miR-21 derived from carcinoma regulate endothelial cell-mediated angiogenesis were assessed using a cocultivation model of EC9706 cells and recipient human umbilical vein endothelial cells (HUVECs), through blood vessel formation experiments, luciferase reporter assays, RT-qPCR, and western blot analysis. RESULT A total of 3842 endothelial cells were extracted from the scRNA-seq data of ESCC samples and reclustered into five cell subtype. Cell-cell communication analysis revealed cancer cells presented a strong interaction with angiogenesis-like endothelial cells in secreted signaling. MiR-21 was unregulated in ESCC and the carcinoma-derived exo-miR-21 was significantly raised in HUVECs. The exo-miR-21 promoted the proliferation and migration of HUVECs while also enhancing, closed mesh count, and junction number in HUVECs. Mechanistically, dual-luciferase reporter assay revealed that PTEN was the target of miR-21. Meanwhile, p-Akt was significantly increased and suppressed by inhibition of miR-21 and PI3K inhibitor LY294002. CONCLUSION Exo-miR-21-mediated communication between endothelial and cancer cells plays a pivotal role in promoting the angiogenesis of ESCC. Therefore, controlling exo-miR-21 could serve as a novel therapeutic strategy for ESCC by targeting angiogenesis.
Collapse
Affiliation(s)
- Shanbo Zheng
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiPeople's Republic of China
- Institute of Thoracic OncologyFudan UniversityShanghaiPeople's Republic of China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiPeople's Republic of China
| | - Juan Liao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public HealthSoutheast UniversityNanjingPeople's Republic of China
- Department of Science and Education, Affiliated Hangzhou First People's HospitalZhejiang University School of MedicineHangzhouPeople's Republic of China
| | - Mingjun Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public HealthSoutheast UniversityNanjingPeople's Republic of China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public HealthSoutheast UniversityNanjingPeople's Republic of China
| | - Junjie Lv
- Department of Thoracic Surgery and State Key Laboratory of Genetic EngineeringFudan University Shanghai Cancer CenterShanghaiPeople's Republic of China
- Institute of Thoracic OncologyFudan UniversityShanghaiPeople's Republic of China
- Department of Oncology, Shanghai Medical CollegeFudan UniversityShanghaiPeople's Republic of China
| |
Collapse
|
36
|
Zhang Z, Zhang M, Xu Y, Lu M, Zhang L, Li C. Effect of Astragaloside IV on improving cardiac function in rats with heart failure: a preclinical systematic review and meta-analysis. Front Pharmacol 2023; 14:1226008. [PMID: 37854719 PMCID: PMC10579795 DOI: 10.3389/fphar.2023.1226008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023] Open
Abstract
Background: Astragaloside IV (ASIV) is the primary pharmacologically active compound found in Astragalus propinquus Schischkin, which has potential protective effects on cardiac function. However, there are almost no systematic evaluations of ASIV for the treatment of heart failure (HF). Methods: Preclinical studies published before 27 December 2022, were retrieved from PubMed, Web of Science, MEDLINE, SinoMed, Chinese National Knowledge Infrastructure (CNKI), VIP information database, and Wanfang Data information site. The quality of included research was evaluated using SYRCLE's RoB tool. Review Manager 5.4.1 was used to perform meta-analyses of the cardiac function parameters and other indicators. Regression analysis was conducted to observe the dose-efficacy relationship. Results: Nineteen studies involving 489 animals were included. Results indicated that compared with the control group, ASIV could enhance cardiac function indicators, including left ventricular ejection fraction (LVEF), left ventricular fractional shortening (LVFS), left ventricular pressure change rate (±dp/dtmax), left ventricular end-diastolic pressure (LVEDP), left ventricular systolic pressure (LVSP), heart weight/body weight (HW/BW) and left ventricular weight/body weight (LVW/BW). Furthermore, the regression analysis showed that the treatment of HF with ASIV was dose-dependent. Conclusion: Findings suggest that ASIV can inhibit cardiac hypertrophy by reducing cardiac preload and afterload, thereby protecting cardiac function.
Collapse
Affiliation(s)
- Zhiyuan Zhang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yongkai Xu
- Department of Peripheral Vascular Medicine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
37
|
Gao H, Li Y, Jin Y, Zhang L, Xia X, Liu J, Wang H, Xie Y, Ding W. Electroacupuncture activates angiogenesis by regulating the PI3K/Pten/Thbs1 signaling pathway to promote the browning of adipose tissue in HFD-induced obese mice. Biomed Pharmacother 2023; 166:115386. [PMID: 37651803 DOI: 10.1016/j.biopha.2023.115386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/23/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
This study investigated the effect of electroacupuncture (EA) on the browning of white adipose tissue (WAT) via angiogenesis and its potential mechanism in obese mice. Four-week-old male C56BL/6 mice were randomly divided into a high-fat diet (HFD) and a normal chow diet (ND) group. After 12 weeks, HFD mice were randomly divided into two groups to receive or not receive EA for 3 weeks. After EA treatment, body weight, adipocyte size, serum glucose (GLU), triacylglycerol (TG), cholesterol (CHO), leptin (Lep), monocyte chemoattractant protein-1 (MCP-1), WAT browning-related genes, angiogenesis-related genes, and the PI3K/Pten/Thbs1 signaling pathway were evaluated. The results indicated that EA significantly reduced body weight, adipocyte size, and serum concentrations of GLU, TG, CHO, Lep and MCP-1 and promoted WAT browning. Angiogenesis and the PI3K/Pten/Thbs1 signaling pathway were all activated by EA intervention. The expression levels were consistent with the results of RNA-seq and confirmed via qRTPCR and WB. Our study showed that EA may activate angiogenesis via the PI3K/Pten/Thbs1 signaling pathway in WAT, thereby promoting the browning and thermogenesis of adipose tissue.
Collapse
Affiliation(s)
- Hongyan Gao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanhui Li
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Yue Jin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Zhang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiuwen Xia
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinkun Liu
- Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China
| | - Huaifu Wang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ya Xie
- Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu 610007, China
| | - Weijun Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
38
|
Zhang Y, Wang Y, Li J, Li C, Liu W, Long X, Wang Z, Zhao R, Ge J, Shi B. ANNEXIN A2 FACILITATES NEOVASCULARIZATION TO PROTECT AGAINST MYOCARDIAL INFARCTION INJURY VIA INTERACTING WITH MACROPHAGE YAP AND ENDOTHELIAL INTEGRIN Β3. Shock 2023; 60:573-584. [PMID: 37832154 DOI: 10.1097/shk.0000000000002198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
ABSTRACT Cardiac macrophages with different polarization phenotypes regulate ventricular remodeling and neovascularization after myocardial infarction (MI). Annexin A2 (ANXA2) promotes macrophage polarization to the repair phenotype and regulates neovascularization. However, whether ANXA2 plays any role in post-MI remodeling and its underlying mechanism remains obscure. In this study, we observed that expression levels of ANXA2 were dynamically altered in mouse hearts upon MI and peaked on the second day post-MI. Using adeno-associated virus vector-mediated overexpression or silencing of ANXA2 in the heart, we also found that elevation of ANXA2 in the infarcted myocardium significantly improved cardiac function, reduced cardiac fibrosis, and promoted peri-infarct angiogenesis, compared with controls. By contrast, reduction of cardiac ANXA2 exhibited opposite effects. Furthermore, using in vitro coculture system, we found that ANXA2-engineered macrophages promoted cardiac microvascular endothelial cell (CMEC) proliferation, migration, and neovascularization. Mechanistically, we identified that ANXA2 interacted with yes-associated protein (YAP) in macrophages and skewed them toward pro-angiogenic phenotype by inhibiting YAP activity. In addition, ANXA2 directly interacted with integrin β3 in CMECs and enhanced their growth, migration, and tubule formation. Our results indicate that increased expression of ANXA2 could confer protection against MI-induced injury by promoting neovascularization in the infarcted area, partly through the inhibition of YAP in macrophages and activation of integrin β3 in endothelial cells. Our study provides new therapeutic strategies for the treatment of MI injury.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Yan Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Jiao Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Chaofu Li
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Weiwei Liu
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Xianping Long
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Zhenglong Wang
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Ranzun Zhao
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Bei Shi
- Department of Cardiology, Affiliated Hospital of Zunyi Medical University, Guizhou, China
| |
Collapse
|
39
|
Kardooni A, Bahrampour A, Golmohammadi S, Jalili A, Alishahi MM. The Role of Epithelial Mesenchymal Transition (EMT) in Pathogenesis of Cardiotoxicity: Diagnostic & Prognostic Approach. Mol Biotechnol 2023; 65:1403-1413. [PMID: 36847962 DOI: 10.1007/s12033-023-00697-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/11/2023] [Indexed: 03/01/2023]
Abstract
Cancer is one of the diseases, which it is not still completely curable; the existing treatments are associated with many complications, that double its complexity. One of the causes of cancer cell metastasis is Epithelial Mesenchymal Transition (EMT). Recently study demonstrated that EMT cause cardiotoxicity and heart diseases such as heart failure, hypertrophy and fibrosis. This study evaluated molecular and signaling pathway, which lead to cardiotoxicity via EMT. It was demonstrated that the processes of inflammation, oxidative stress and angiogenesis were involved in EMT and cardiotoxicity. The pathways related to these processes act as a double-edged sword. In relation to inflammation and oxidative stress, molecular pathways caused apoptosis of cardiomyocytes and cardiotoxicity induction. While the angiogenesis process inhibits cardiotoxicity despite the progression of EMT. On the other hand, some molecular pathways such as PI3K/mTOR despite causing the progression of EMT lead to the proliferation of cardiomyocytes and prevent cardiotoxicity. Therefore, it was concluded that the identification of molecular pathways can help in designing therapeutic and preventive strategies to increase patients' survival.
Collapse
Affiliation(s)
- Ali Kardooni
- Department of Cardiology, School of Medicine, Atherosclerosis Research Center, Golestan Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Somaye Golmohammadi
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACER, Tehran, Iran
- Parvaz Research Ideas Supporter Institute, Tehran, Iran
| | | |
Collapse
|
40
|
Zhang L, Gao J, Li Z, Liu J, Zhang C, Liu J, Dong H, Mei W. Astragaloside IV relieves IL-1β-induced human nucleus pulposus cells degeneration through modulating PI3K/Akt signaling pathway. Medicine (Baltimore) 2023; 102:e34815. [PMID: 37603510 PMCID: PMC10443759 DOI: 10.1097/md.0000000000034815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/27/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is a multifactorial disease that is associated with nucleus pulposus (NP) apoptosis and extracellular matrix (ECM) degeneration and inflammation. Astragaloside IV (AS IV) has antioxidant, free radical scavenging, anti-inflammatory and anti-apoptosis effects. This study was to investigate whether AS IV could inhibit IL-1β-mediated apoptosis of HNP cells and its possible signal transduction pathway. METHODS Human nucleus pulposus cells (HNPCs) were stimulated with AS IV or LY294002 (PI3K inhibitor), followed by exposure to IL-1β for 24 hours. CCK8, TUNEL analysis and flow cytometry, ELISA and Western blotting were used to analyze the effects of AS IV on cell proliferation, apoptosis, inflammation, ECM and PI3K/Akt pathway signaling path-related proteins in IL-1β-induced HNPCs. RESULTS Compared with IL-1β-induced HNPCs, AS IV could improve the proliferation activity and the expressions of Collagen II, Aggrecan and Bcl-2 proteins, inhibit the apoptosis rate, inflammation and Bax and cleaved caspase-3 protein expression, and increase the activity of PI3K/Akt pathway. LY294002 attenuated the protective effect of AS IV against IL-1β-induced HNPCs degeneration. CONCLUSION AS IV can inhibit IL-1β-induced HNPCs apoptosis inflammation and ECM degeneration by activating PI3K/Akt signaling pathway, which can be an effective drug to reduce disc degeneration.
Collapse
Affiliation(s)
- Lu Zhang
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Junsheng Gao
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Zhentao Li
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Jun Liu
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Chong Zhang
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Jie Liu
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Hui Dong
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| | - Wei Mei
- Orthopedics, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, Henan, China
| |
Collapse
|
41
|
Wang DD, Zhang LZ, Pang CJ, Ye JZ. Astragaloside IV promotes keratinocyte proliferation and migration through upregulating lncRNA H19 recruited ILF3 to enhance the stability of CDK4 mRNA. Kaohsiung J Med Sci 2023; 39:811-823. [PMID: 37132584 DOI: 10.1002/kjm2.12691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/02/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023] Open
Abstract
Skin is the first line of the body to resist pathogen invasion. A potentially fatal infection may result from problems with wound healing. Small molecule drugs like astragaloside IV (AS-IV) show pro-healing activities, but the mechanisms are not fully understood. Using real-time quantitative PCR and a western blot assay, the amount of gene expression was evaluated. The proliferation and migration of keratinocytes were determined by MTS and wound healing assay, respectively. The binding of lncRNA H19 to RBP protein ILF3 and the binding of ILF3 protein to CDK4 mRNA were confirmed by RNA immunoprecipitation. Treatment with AS-IV enhanced the expression of lncRNA H19, ILF3, and CDK4 and improved the proliferation and migration of keratinocytes HaCaT. Additionally, apoptosis of keratinocytes was attenuated by AS-IV. Further studies showed that both lncRNA H19 and ILF3 were important for AS-IV-mediated keratinocyte growth and migration. In addition, lncRNA H19 recruited ILF3 to increase CDK4 mRNA level and enhanced cell proliferation. We discovered a lncRNA H19/ILF3/CDK4 axis that is activated by AS-IV to promote keratinocyte migration and proliferation. These results elucidate the mechanism of action of AS-IV and justify its application in further application in wound healing treatment.
Collapse
Affiliation(s)
- Dan-Dan Wang
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, PR China
- Department of Anorectum, The Affiliated Hospital Of Qingdao University, Qingdao, PR China
| | - Li-Ze Zhang
- Department of Anorectum, The Affiliated Hospital Of Qingdao University, Qingdao, PR China
| | - Cheng-Jian Pang
- Department of Anorectum, The Affiliated Hospital Of Qingdao University, Qingdao, PR China
| | - Jian-Zhou Ye
- The First Clinical College, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
42
|
Yang C, Pan Q, Ji K, Tian Z, Zhou H, Li S, Luo C, Li J. Review on the protective mechanism of astragaloside IV against cardiovascular diseases. Front Pharmacol 2023; 14:1187910. [PMID: 37251311 PMCID: PMC10213926 DOI: 10.3389/fphar.2023.1187910] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/03/2023] [Indexed: 05/31/2023] Open
Abstract
Cardiovascular disease is a global health problem. Astragaloside IV (AS-IV) is a saponin compound extracted from the roots of the Chinese herb Astragalus. Over the past few decades, AS-IV has been shown to possess various pharmacological properties. It can protect the myocardium through antioxidative stress, anti-inflammatory effects, regulation of calcium homeostasis, improvement of myocardial energy metabolism, anti-apoptosis, anti-cardiomyocyte hypertrophy, anti-myocardial fibrosis, regulation of myocardial autophagy, and improvement of myocardial microcirculation. AS-IV exerts protective effects on blood vessels. For example, it can protect vascular endothelial cells through antioxidative stress and anti-inflammatory pathways, relax blood vessels, stabilize atherosclerotic plaques, and inhibit the proliferation and migration of vascular smooth muscle cells. Thus, the bioavailability of AS-IV is low. Toxicology indicates that AS-IV is safe, but should be used cautiously in pregnant women. In this paper, we review the mechanisms of AS-IV prevention and treatment of cardiovascular diseases in recent years to provide a reference for future research and drug development.
Collapse
Affiliation(s)
- Chunkun Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingquan Pan
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Zhuang Tian
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Hongyuan Zhou
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Chuanchao Luo
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, China
| | - Jun Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Lu L, Li DX, Chen W, Li GS, Hao P. Bradykinin-(1-9) mitigates autophagy through upregulating PI3K/Akt in rats with myocardial infarction. Biochem Biophys Res Commun 2023; 660:35-42. [PMID: 37060829 DOI: 10.1016/j.bbrc.2023.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 04/17/2023]
Abstract
The cardioprotective mechanisms of bradykinin-(1-9) in myocardial infarction were unclear. We investigated the effect of bradykinin-(1-9) on cardiac function, fibrosis, and autophagy induced by myocardial infarction and identified the mechanisms involved. To investigate the cardioprotective effect of bradykinin-(1-9), various doses of bradykinin-(1-9), its B2 receptor blocker HOE140, or their combination were administered to rats via subcutaneous osmotic minipump implantation before myocardial infarction. After 2 days, myocardial infarction was induced by ligation of the left anterior descending coronary artery. After 2 weeks, echocardiographic measurements and euthanasia were performed. Bradykinin-(1-9) treatment attenuated left ventricular dysfunction, fibrosis, and autophagy in rats with myocardial infarction, which was partially reversed by HOE140 administration. Moreover, the downregulatory effect of bradykinin-(1-9) on autophagy was partially reversed by combination with the PI3K inhibitor LY294002. Thus, bradykinin-(1-9) inhibits myocardial infarction-induced cardiomyocyte autophagy by upregulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Lin Lu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China; Department of Cardiovascular Medicine, the Third Affiliated Hospital of Shandong First Medical University, Jinan, 250031, Shandong Province, China
| | - Dai-Xu Li
- Department of Cardiovascular Medicine, The Fourth People's Hospital of Jinan, Jinan, 250031, Shandong Province, China
| | - Wei Chen
- Department of Cardiovascular Medicine, the Third Affiliated Hospital of Shandong First Medical University, Jinan, 250031, Shandong Province, China
| | - Gui-Shuang Li
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China.
| | - Panpan Hao
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
44
|
Zhang Q, Wen XH, Tang SL, Zhao ZW, Tang CK. Role and therapeutic potential of gelsolin in atherosclerosis. J Mol Cell Cardiol 2023; 178:59-67. [PMID: 36967105 DOI: 10.1016/j.yjmcc.2023.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Atherosclerosis is the major pathophysiological basis of a variety of cardiovascular diseases and has been recognized as a lipid-driven chronic inflammatory disease. Gelsolin (GSN) is a member of the GSN family. The main function of GSN is to cut and seal actin filaments to regulate the cytoskeleton and participate in a variety of biological functions, such as cell movement, morphological changes, metabolism, apoptosis and phagocytosis. Recently, more and more evidences have demonstrated that GSN is Closely related to atherosclerosis, involving lipid metabolism, inflammation, cell proliferation, migration and thrombosis. This article reviews the role of GSN in atherosclerosis from inflammation, apoptosis, angiogenesis and thrombosis.
Collapse
Affiliation(s)
- Qiang Zhang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Department of Intensive Care Unit, the First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hui Wen
- School of Nursing, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shi-Lin Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Department of Intensive Care Unit, the First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhen-Wang Zhao
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Department of Intensive Care Unit, the First Affiliated Hospital of University of South China, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
45
|
Chen Y, Huang Q, Feng Y. Exercise improves cardiac function in the aged rats with myocardial infarction. Physiol Res 2023; 72:27-35. [PMID: 36545879 PMCID: PMC10069814 DOI: 10.33549/physiolres.934966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023] Open
Abstract
Exercise can improve the cardiovascular health. However, the mechanism contributing to its beneficial effect on elderly patients with myocardial infarction is obscure. 20-month-old male Sprague-Dawley rats were used to establish myocardial infarction (MI) model by permanent ligation of the left anterior descending coronary artery (LAD) of the heart, followed by 4-week interval exercise training on a motor-driven rodent treadmill. The cardiac function, myocardial fibrosis, apoptosis, oxidative stress, and inflammatory responses were determined by using pressure transducer catheter, polygraph physiological data acquisition system, Masson's trichrome staining, and ELISA to evaluate the impact of post-MI exercise training on MI. Western blot were performed to detect the activation of AMPK/SIRT1/PGC-1alpha signaling in the hearts of aged rats. Exercise training significantly improved cardiac function and reduced the cardiac fibrosis. In infarcted heart, the apoptosis, oxidative stress, and inflammation were significantly reduced after 4-week exercise training. Mechanistically, AMPK/SIRT1/PGC-1alpha pathway was activated in the myocardial infarction area after exercise training, which might participate in the protection of cardiac function. Exercise training improves cardiac function in MI rats through reduction of apoptosis, oxidative stress, and inflammation, which may mediate by the activation of AMPK/SIRT1/PGC-1alpha signaling pathway.
Collapse
Affiliation(s)
- Y Chen
- Department of Geriatric Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China, Department of Cardiology, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, China.
| | | | | |
Collapse
|
46
|
Wu C, Chen F, Huang S, Zhang Z, Wan J, Zhang W, Liu X. Progress on the role of traditional Chinese medicine in therapeutic angiogenesis of heart failure. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115770. [PMID: 36191661 DOI: 10.1016/j.jep.2022.115770] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/21/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cardiovascular diseases are still the leading cause of death worldwide. Heart failure (HF), as the terminal stage of many cardiovascular diseases, has brought a heavy burden to the global medical system. Microvascular rarefaction (decreased myocardial capillary density) with reduced coronary flow reserve is a hallmark of HF and therapeutic myocardial angiogenesis is now emerging as a promising approach for the prevention and treatment in HF. Traditional Chinese medicine (TCM) has made remarkable achievements in the treatment of many cardiovascular diseases. Growing evidence have shown that their protective effect in HF is closely related to therapeutic angiogenesis. AIM OF THE STUDY This review is to enlighten the therapeutic effect and pro-angiogenic mechanism of TCM in HF, and provide valuable hints for the development of pro-angiogenic drugs for the treatment of HF. MATERIALS AND METHODS The relevant information about cardioprotective TCM was collected from electronic scientific databases such as PubMed, Web of Science, ScienceDirect, and China National Knowledge Infrastructure (CNKI). RESULTS The studies showed that TCM formulas, extracts, and compounds from herbal medicines can provide therapeutic effect in HF with their pro-angiogenic activity. Their actions are achieved mainly by regulating the key angiogenesis factors particularly VEGF, as well as related regulators including signal molecules and pathways, non-coding miRNAs and stem cells. CONCLUSION TCM and their active components might be promising in therapeutic angiogenesis for the treatment of HF.
Collapse
Affiliation(s)
- Chennan Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Fei Chen
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Si Huang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Zhen Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Jingjing Wan
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Weidong Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, China; Academy of Interdisciplinary Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Xia Liu
- School of Pharmacy, Second Military Medical University, Shanghai, China.
| |
Collapse
|
47
|
Xue K, Chen S, Chai J, Yan W, Zhu X, Ji D, Wu Y, Liu H, Wang W. Nitration of cAMP-Response Element Binding Protein Participates in Myocardial Infarction-Induced Myocardial Fibrosis via Accelerating Transcription of Col1a2 and Cxcl12. Antioxid Redox Signal 2023; 38:709-730. [PMID: 36324232 DOI: 10.1089/ars.2021.0273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aims: Myocardial fibrosis after myocardial infarction (MI) leads to heart failure. Nitration of protein can alter its function. cAMP-response element binding protein (CREB) is a key transcription factor involved in fibrosis. However, little is known about the role of nitrated CREB in MI-induced myocardial fibrosis. Meanwhile, downstream genes of transcription factor CREB in myocardial fibrosis have not been identified. This study aims to verify the hypothesis that nitrated CREB promotes MI-induced myocardial fibrosis via regulating the transcription of Col1a2 and Cxcl12. Results: Our study showed that (1) the level of nitrative stress was elevated and nitrated CREB was higher in the myocardium after MI. Tyr182, 307, and 336 were the nitration sites of CREB; (2) with the administration of peroxynitrite (ONOO-) scavengers, CREB phosphorylation, nuclear translocation, and binding activity to TORC2 (transducers of regulated CREB-2) were attenuated; (3) the expressions of extracellular matrix (ECM) proteins were upregulated and downregulated in accordance with the expression alteration of CREB both in vitro and in vivo; (4) CREB accelerated transcription of Col1a2 and Cxcl12 after MI directly. With the administration of ONOO- scavengers, ECM protein expressions were attenuated; meanwhile, the messenger RNA (mRNA) levels of Col1a2 and Cxcl12 were alleviated as well. Innovation and Conclusion: Nitration of transcription factor CREB participates in MI-induced myocardial fibrosis through enhancing its phosphorylation, nuclear translocation, and binding activity to TORCs, among which CREB transcripts Col1a2 and Cxcl12 directly. These data indicated that nitrated CREB might be a potential therapeutic target against MI-induced myocardial fibrosis.
Collapse
Affiliation(s)
- Ke Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China.,Department of Pathology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Shuai Chen
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Jiayin Chai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Wenjing Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Xinyu Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Dengyu Ji
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Ye Wu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Beijing Key Laboratory for Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| |
Collapse
|
48
|
Han X, Yang Y, Zhang M, Li L, Xue Y, Jia Q, Wang X, Guan S. Liquiritin Protects Against Cardiac Fibrosis After Myocardial Infarction by Inhibiting CCL5 Expression and the NF-κB Signaling Pathway. Drug Des Devel Ther 2022; 16:4111-4125. [PMID: 36483459 PMCID: PMC9724582 DOI: 10.2147/dddt.s386805] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose Despite significant advances in interventional treatment, myocardial infarction (MI) and subsequent cardiac fibrosis remain major causes of high mortality worldwide. Liquiritin (LQ) is a flavonoid extract from licorice that possesses a variety of pharmacological properties. However, to our knowledge, the effects of LQ on myocardial fibrosis after MI have not been reported in detail. The aim of our research was to explore the potential role and mechanism of LQ in MI-induced myocardial damage. Methods The MI models were established by ligating the left anterior descending branch of the coronary artery. Next, rats were orally administered LQ once a day for 14 days. Biochemical assays, histopathological observations, ELISA, and Western blotting analyses were then conducted. Results LQ improved the heart appearance and ECG, decreased cardiac weight index and reduced levels of cardiac-specific markers such as CK, CK-MB, LDH, cTnI and BNP. Meanwhile, LQ reduced myocardial infarct size and improved hemodynamic parameters such as LVEDP, LVSP and ±dp/dtmax. Moreover, H&E staining showed that LQ attenuated the pathological damage caused by MI. Masson staining showed that LQ alleviated myocardial cell disorder and fibrosis while reducing collagen deposition. LQ also decreased the levels of oxidative stress and inflammation. Western blotting demonstrated that LQ significantly down-regulated the expressions of Collagen I, Collagen III, TGF-β1, MMP-9, α-SMA, CCL5, and p-NF-κB. Conclusion LQ protected against myocardial fibrosis following MI by improving cardiac function, and attenuating oxidative damage and inflammatory response, which may be associated with inhibition of CCL5 expression and the NF-κB pathway.
Collapse
Affiliation(s)
- Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Yakun Yang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Muqing Zhang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China,Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Li Li
- School of Pharmacy, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Yucong Xue
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Xiangting Wang
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China,Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang, People’s Republic of China,Correspondence: Xiangting Wang, College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China, Email
| | - Shengjiang Guan
- Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China,School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, People’s Republic of China,Shengjiang Guan, Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, People’s Republic of China, Email
| |
Collapse
|
49
|
Ma X, Lu J, Gu XR, Jia Y, Shen B, Weiming Y, Du GH, Zheng CB. Cardioprotective Effects and Mechanisms of Saponins on Cardiovascular Disease. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221147404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular disease (CVD), a leading cause of morbidity and mortality, is among the most prevalent health problems worldwide and effective strategies for its prevention and treatment are urgently required. In this regard, increasing research has demonstrated that natural drugs offer antihypertensive, antiatherosclerotic, and cardioprotective activities, and many are applied widely for the treatment of CVD and its manifestations such as myocardial infarction, peripheral vascular diseases, and coronary heart disease. Natural drugs have significant advantages in the treatment of CVD due to their efficacy and safety profiles. Saponins are an important class of active components of plant natural products and play an important role in the treatment of CVD. This review covers the most up-to-date information on saponins concerning their cardioprotective effects and mechanisms of action.
Collapse
Affiliation(s)
- Xin Ma
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Jun Lu
- Guangxi Key Laboratory for Pharmaceutical Molecular Discovery and Druggability Optimization, School of Pharmacy, Guilin Medical University, Guilin, China
- Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, China
| | - Xue-Rong Gu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yinnong Jia
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Baochun Shen
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Yang Weiming
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Guan-Hua Du
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, China
| | - Chang-Bo Zheng
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| |
Collapse
|
50
|
Wang Y, Xue Y, Guo HD. Intervention effects of traditional Chinese medicine on stem cell therapy of myocardial infarction. Front Pharmacol 2022; 13:1013740. [PMID: 36330092 PMCID: PMC9622800 DOI: 10.3389/fphar.2022.1013740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases are the leading cause of global mortality, in which myocardial infarction accounts for 46% of total deaths. Although good progress has been achieved in medication and interventional techniques, a proven method to repair the damaged myocardium has not yet been determined. Stem cell therapy for damaged myocardial repair has evolved into a promising treatment for ischemic heart disease. However, low retention and poor survival of the injected stem cells are the major obstacles to achieving the intended therapeutic effects. Chinese botanical and other natural drug substances are a rich source of effective treatment for various diseases. As such, numerous studies have revealed the role of Chinese medicine in stem cell therapy for myocardial infarction treatment, including promoting proliferation, survival, migration, angiogenesis, and differentiation of stem cells. Here, we discuss the potential and limitations of stem cell therapy, as well as the regulatory mechanism of Chinese medicines underlying stem cell therapy. We focus on the evidence from pre-clinical trials and clinical practices, and based on traditional Chinese medicine theories, we further summarize the mechanisms of Chinese medicine treatment in stem cell therapy by the commonly used prescriptions. Despite the pre-clinical evidence showing that traditional Chinese medicine is helpful in stem cell therapy, there are still some limitations of traditional Chinese medicine therapy. We also systematically assess the detailed experimental design and reliability of included pharmacological research in our review. Strictly controlled animal models with multi-perspective pharmacokinetic profiles and high-grade clinical evidence with multi-disciplinary efforts are highly demanded in the future.
Collapse
Affiliation(s)
- Yu Wang
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuezhen Xue
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hai-dong Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|