1
|
Xi Z, Dai R, Ze Y, Jiang X, Liu M, Xu H. Traditional Chinese medicine in lung cancer treatment. Mol Cancer 2025; 24:57. [PMID: 40001110 PMCID: PMC11863959 DOI: 10.1186/s12943-025-02245-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Lung cancer remains a major global health challenge and one of the leading causes of cancer-related deaths worldwide. Despite significant advancements in treatment, challenges such as drug resistance, side effects, metastasis and recurrence continue to impact patient outcomes and quality of life. In response, there is growing interest in complementary and integrative approaches to cancer care. Traditional Chinese medicine (TCM), with its long history, abundant clinical experience, holistic perspective and individualized approach, has garnered increasing attention for its role in lung cancer prevention and management. This review provides a comprehensive overview of the advances in TCM for lung cancer treatment, covering its theoretical foundation, treatment principles, clinical experiences and evidence supporting its efficacy. We also provide a systematic summary of the preclinical mechanisms, through which TCM impacts lung cancer, including the induction of cell death, reversal of drug resistance, inhibition of metastasis and modulation of immune responses. Additionally, future prospects for TCM in lung cancer treatment are discussed, offering insights into its expanded application and integration with modern medicine to address this challenging disease.
Collapse
Affiliation(s)
- Zhichao Xi
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Rongchen Dai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Yufei Ze
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Xue Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China
| | - Mengfan Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| | - Hongxi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Engineering Research Center of Shanghai Colleges for TCM New Drug Discovery, Shanghai, 201203, China.
| |
Collapse
|
2
|
Koochaki R, Amini E, Zarehossini S, Zareh D, Haftcheshmeh SM, Jha SK, Kesharwani P, Shakeri A, Sahebkar A. Alkaloids in Cancer therapy: Targeting the tumor microenvironment and metastasis signaling pathways. Fitoterapia 2024; 179:106222. [PMID: 39343104 DOI: 10.1016/j.fitote.2024.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
The use of phytomedicine in cancer therapy is a growing field of research that takes use of the medicinal properties of plant-derived compounds. Under the domain of cancer therapy and management, alkaloids, a prominent group of natural compounds, have showed significant potential. Alkaloids often affect a wide range of essential cellular mechanisms involved in cancer progression. These multi-targeting capabilities, can give significant advantages to alkaloids in overcoming resistance mechanisms. For example, berberine, an alkaloid found in Berberis species, is widely reported to induce apoptosis by activating caspases and regulating apoptotic pathways. Notably, alkaloids like as quinine have showed promise in inhibiting the formation of new blood vessels required for tumor growth. In addition, alkaloids have shown anti-proliferative and anticancer properties mostly via modulating key signaling pathways involved in metastasis, including those regulating epithelial-mesenchymal transition. This work provides a comprehensive overview of naturally occurring alkaloids that exhibit anticancer properties, with a specific emphasis on their underlying molecular mechanisms of action. Furthermore, many methods to modify previously reported difficult physicochemical properties using nanocarriers in order to enhance its systemic bioavailability have been discussed as well. This study also includes information on newly discovered alkaloids that are now being studied in clinical trials for their potential use in cancer treatment. Further, we have also briefly mentioned on the application of high-throughput screening and molecular dynamics simulation for acceleration on the identification of potent alkaloids based compounds to target and treat cancer.
Collapse
Affiliation(s)
- Raoufeh Koochaki
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Elaheh Amini
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sara Zarehossini
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Danial Zareh
- Department of Cell & Molecular Biology (genetic), Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
3
|
Zhang YM, Li T, Xu CC, Qian JY, Guo H, Zhang X, Zhan ZJ, Lu JJ. Uncover the anticancer potential of lycorine. Chin Med 2024; 19:121. [PMID: 39245716 PMCID: PMC11382518 DOI: 10.1186/s13020-024-00989-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
BACKGROUND Natural products have a long history in drug discovery. Lycorine is an alkaloid derived from Amaryllidaceae plants, demonstrating significant pharmacological potential. Lycorine and its hydrochloride salt, lycorine hydrochloride, have shown outstanding anticancer effects both in vitro and in vivo. PURPOSE This review aims to comprehensively summarize recent research advancements regarding the anticancer potential of lycorine and lycorine hydrochloride. It intends to elucidate current research limitations, optimization strategies, and future research directions to guide clinical translation. METHODS Various databases, e.g., Web of Science, PubMed, and Chinese National Knowledge Infrastructure, are systematically searched for relevant articles using keywords such as lycorine, cancer, pharmacokinetics, and toxicity. The retrieved literature is then categorized and summarized to provide an overview of the research advancements in the anticancer potential of lycorine and lycorine hydrochloride. RESULTS Lycorine and lycorine hydrochloride demonstrate significant anticancer activities against various types of cancer both in vitro and in vivo, employing diverse mechanisms such as inducing cell cycle arrest, triggering cellular senescence, regulating programmed cell death, inhibiting angiogenesis, suppressing metastasis, and modulating immune system. Furthermore, pharmacokinetic profiles and toxicity data are summarized. Additionally, this review discusses the druggability, limitations, optimization strategies, and target identification of lycorine, offering insights for future preclinical studies. CONCLUSION The anticancer effects and safety profile of lycorine and lycorine hydrochloride suggest promising potential for clinical applications. Further research on their in-depth mechanisms and optimization strategies targeting their limitations will enhance the understanding and druggability of lycorine and lycorine hydrochloride.
Collapse
Affiliation(s)
- Yan-Ming Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Ting Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China
| | - Chun-Cao Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China
| | - Jia-Yu Qian
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Hongwei Guo
- Guangxi Key Laboratory of Bioactive Molecules Research and Evaluation & Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Xiaolei Zhang
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zha-Jun Zhan
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao SAR, 999078, China.
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao SAR, 999078, China.
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao SAR, 999078, China.
| |
Collapse
|
4
|
Zhai J, Jiang JF, Shi L. Lycorine weakens tamoxifen resistance of breast cancer via abrogating HAGLR-mediated epigenetic suppression on VGLL4 by DNMT1. Kaohsiung J Med Sci 2023; 39:278-289. [PMID: 36606584 DOI: 10.1002/kjm2.12636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 01/07/2023] Open
Abstract
Much is known about the significance of lycorine, a natural alkaloid, in combating various types of cancer, including breast cancer (BC), but whether it participates in regulating tamoxifen (TAM) resistance and its underlying mechanism remain to be elucidated. Tamoxifen-resistant (TAMR) BC cells were first established by continuously exposed to increasing concentrations of TAM. Levels of targeted gene including HOXD antisense growth-associated lncRNA (HAGLR) and Vestigial like family member 4 (VGLL4) were analyzed by qRT-PCR and western blot, respectively. Cell proliferation ability was assessed by MTT and EdU assays. Flow cytometry was carried out to evaluate the apoptosis. VGLL4 promoter methylation was examined using methylation specific PCR (MSP). The role of HAGLR acting on the expression of VGLL4 via DNA hypermethylation was confirmed by RNA immunoprecipitation (RIP). Here, we reported that lycorine administration reduced the survival ratio of TAMR BC cells, decreased the IC50 of TAM, and strengthened TAM-induced apoptosis. HAGLR, observed to be highly expressed in TAMR BC cells, was identified to be a downstream effector of lycorine, of which overexpression abolished lycorine-mediated TAMR inhibition. VGLL4 served as a target of HAGLR in regulating lycorine-mediated suppression on tamoxifen resistance of TAMR BC cells. Mechanistically, HAGLR epigenetically suppressed VGLL4 expression via DNA methyltransferase 1 (DNMT1)-mediated DNA hypermethylation. Taken together, our data highlights the pivotal role of lycorine in TAM resistance of BC, which may provide a potential agent for improving the effectiveness and efficacy of BC resistance.
Collapse
Affiliation(s)
- Jing Zhai
- Department of Pharmacy, Gansu provincial Hospital, Lanzhou, Gansu Province, People's Republic of China
| | - Jun-Feng Jiang
- Division of Oncology, Gansu Provincial Cancer Hospital, Lanzhou, Gansu Province, People's Republic of China
| | - Lei Shi
- Department of Pharmacy, Gansu provincial Hospital, Lanzhou, Gansu Province, People's Republic of China
| |
Collapse
|
5
|
Wei Z, Chen J, Zuo F, Guo J, Sun X, Liu D, Liu C. Traditional Chinese Medicine has great potential as candidate drugs for lung cancer: A review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 300:115748. [PMID: 36162545 DOI: 10.1016/j.jep.2022.115748] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE With high mortality and morbidity rates, lung cancer (LC) has become one of the major threats to human health. The treatment strategies for LC currently face issues, such as drug resistance and body tolerance. Traditional Chinese medicine (TCM) is characterized by novel pharmacological mechanisms, low toxicity, and limited side effects. TCM includes a substantial number of biologically active ingredients, several of which are effective monomeric agents against LC. An increasing number of researchers are focusing their efforts on the discovery of active anti-cancer ingredients in TCM. AIM OF THE REVIEW In this review, we summarized the anti-LC mechanisms of five types of TCM monomeric compounds. Our goal is to provide research ideas for the identification of new prospective medication candidates for the treatment of LC. MATERIALS AND METHODS We collected reports on the anti-LC effects of TCM monomers from web databases, including PubMed, Science Direct, Web of Science, and Europe PubMed Central. Among the keywords used were "lung cancer," "traditional Chinese medicine," "pharmacology," and their combinations thereof. Then, we systematically summarized the anti-LC efficacy and related mechanisms of TCM monomers. RESULTS Based on the available literature, this paper reviewed the therapeutic effects and mechanisms of five types of TCM monomers on LC. The characteristics of TCM monomers include the capabilities to suppress the tumor cell cycle, inhibit proliferation, induce apoptosis, promote autophagy, inhibit tumor cell invasion and metastasis, and enhance efficacy or reduce drug resistance when combined with cytotoxic agents and other methods to arrest the progression of LC and prolong the survival of patients. CONCLUSIONS TCM contains numerous flavonoids, alkaloids, terpenoids, polyphenols, and other active compounds that are effective against LC. Given their chemical structure and pharmacological properties, these monomers are suitable as candidate drugs for the treatment of LC.
Collapse
Affiliation(s)
- Zhicheng Wei
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China.
| | - Jing Chen
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Fang Zuo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Julie Guo
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Xiaodong Sun
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China
| | - Deming Liu
- Chongqing Clinical Research Center for Dermatology, Chongqing Key Laboratory of Integrative Dermatology Research, Key Laboratory of External Therapies of Traditional Chinese Medicine in Eczema, Department of Dermatology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400011, PR China.
| | - Conghai Liu
- Department of Pharmacy, Dazhou Central Hospital, Dazhou, 635000, PR China.
| |
Collapse
|
6
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Dong P, Gassler N, Taheri M, Baniahmad A, Dilmaghani NA. A review on the role of cyclin dependent kinases in cancers. Cancer Cell Int 2022; 22:325. [PMID: 36266723 PMCID: PMC9583502 DOI: 10.1186/s12935-022-02747-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) class of serine/threonine kinases has crucial roles in the regulation of cell cycle transition and is mainly involved in the pathogenesis of cancers. The expression of CDKs is controlled by a complex regulatory network comprised of genetic and epigenetic mechanisms, which are dysregulated during the progression of cancer. The abnormal activation of CDKs results in uncontrolled cancer cell proliferation and the induction of cancer stem cell characteristics. The levels of CDKs can be utilized to predict the prognosis and treatment response of cancer patients, and further understanding of the function and underlying mechanisms of CDKs in human tumors would pave the way for future cancer therapies that effectively target CDKs. Defects in the regulation of cell cycle and mutations in the genes coding cell-cycle regulatory proteins lead to unrestrained proliferation of cells leading to formation of tumors. A number of treatment modalities have been designed to combat dysregulation of cell cycle through affecting expression or activity of CDKs. However, effective application of these methods in the clinical settings requires recognition of the role of CDKs in the progression of each type of cancer, their partners, their interactions with signaling pathways and the effects of suppression of these kinases on malignant features. Thus, we designed this literature search to summarize these findings at cellular level, as well as in vivo and clinical levels.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region, Iraq
| | - Peixin Dong
- Department of Obstetrics and Gynecology, Hokkaido University School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nikolaus Gassler
- Section of Pathology, Institute of Forensic Medicine, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Nader Akbari Dilmaghani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
PLOD3 regulates the expression of YAP1 to affect the progression of non-small cell lung cancer via the PKCδ/CDK1/LIMD1 signaling pathway. J Transl Med 2022; 102:440-451. [PMID: 35039611 DOI: 10.1038/s41374-021-00674-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 12/25/2022] Open
Abstract
Procollagen-lysine, 2-oxoglutarate 5-dioxygenase (PLOD3) is a crucial oncogene in human lung cancer, whereas protein kinase C δ (PKCδ) acts as a tumor suppressor. In this study, we aimed to explore the regulation by PLOD3 on the expression of YAP1 to affect the progression of non-small cell lung cancer (NSCLC) via the PKCδ/CDK1/LIMD1 signaling pathway. We found that PLOD3, CDK1, and YAP1 were highly expressed, while LIMD1 was poorly expressed in NSCLC tissues. Mechanistic investigation demonstrated that silencing PLOD3 promoted the cleavage of PKCδ in a caspase-dependent manner to generate a catalytically active fragment cleaved PKCδ, enhanced phosphorylation levels of CDK1, and LIMD1 but suppressed nuclear translocation of YAP1. Furthermore, functional experimental results suggested that loss of PLOD3 led to increased phosphorylation levels of CDK1 and LIMD1 and downregulated YAP1, thereby suppressing the proliferation, colony formation, cell cycle entry, and resistance to apoptosis of NSCLC cells in vitro and inhibiting tumor growth in vivo. Taken together, these results show that PLOD3 silencing activates the PKCδ/CDK1/LIMD1 signaling pathway to prevent the progression of NSCLC, thus providing novel insight into molecular targets for treating NSCLC.
Collapse
|
8
|
Jian T, Zhang Y, Zhang G, Ling J. Metabolomic comparison between natural Huaier and artificial cultured Huaier. Biomed Chromatogr 2022; 36:e5355. [PMID: 35156219 DOI: 10.1002/bmc.5355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 11/06/2022]
Abstract
Vanderbylia robiniophila (Murrill) B.K. (Huaier) is a kind of higher fungal fruiting body parasitic on the trunk of Sophora japonica and Robinia pseudoacacia L.. As a traditional Chinese medicine with a history of more than 1600 years, Huaier has attracted wide attention for its excellent anticancer activity. A systematic study on the metabolome differences between natural Huaier and artificial cultured Huaier was conducted using liquid chromatography-mass spectrometry in this study. Principal component analysis and orthogonal projection on latent structure-discriminant analysis results showed that cultured Huaier evidently separated and individually separated from natural Huaier, indicating metabolome difference between natural Huaier and cultured Huaier. Hierarchical clustering analysis was further performed to cluster the differential metabolites and samples based on their metabolic similarity. The higher content of amino acids, alkaloids and terpenoids in natural Huaier makes it an excellent choice as a traditional Chinese medicine for anti-cancer or nutritional supplementation. The results of the Bel-7402 and A549 cells cytotoxicity test showed that the anticancer activity of natural Huaier was better than that of cultured Huaier. This may be due to the difference in chemical composition, which makes the anticancer activity of natural and cultured Huaier different.
Collapse
Affiliation(s)
- Tongtong Jian
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guoying Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianya Ling
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Tallini LR, Giordani RB, de Andrade JP, Bastida J, Zuanazzi JAS. Structural Diversity and Biological Potential of Alkaloids from the Genus Hippeastrum, Amaryllidaceae: an Update. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2021; 31:648-657. [PMID: 34924642 PMCID: PMC8670614 DOI: 10.1007/s43450-021-00211-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
The subfamily Amaryllidoideae, Amaryllidaceae, presents an exclusive group of structures known as Amaryllidaceae alkaloids, which have a broad spectrum of biological activities. These plants are classified into 59 genera, including Hippeastrum Herb., which comprises approximately 60 species distributed mainly in South America, being widely used as ornamental plants due to the beauty of its flowers. This review presents an update about the alkaloid profiling of Hippeastrum extracts published between 2012 and 2021, as well as an approach to the biological potential of these compounds. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s43450-021-00211-z.
Collapse
Affiliation(s)
- Luciana R. Tallini
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Raquel B. Giordani
- Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, RN 59012-570 Brazil
| | - Jean Paulo de Andrade
- Instituto de Investigación Interdisciplinaria, Vicerrectoría Académica, Universidad de Talca, Campus Talca, 3460000 Talca, Chile
| | - Jaume Bastida
- Grup de Productes Naturals, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - José Angelo S. Zuanazzi
- Programa de Pós-graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 90610-000 Brazil
| |
Collapse
|
10
|
Sabo AA, Dudau M, Constantin GL, Pop TC, Geilfus CM, Naccarati A, Dragomir MP. Two Worlds Colliding: The Interplay Between Natural Compounds and Non-Coding Transcripts in Cancer Therapy. Front Pharmacol 2021; 12:652074. [PMID: 34295245 PMCID: PMC8290364 DOI: 10.3389/fphar.2021.652074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/07/2021] [Indexed: 12/25/2022] Open
Abstract
Cancer is a devastating disease and has recently become the leading cause of death in western countries, representing an immense public health burden. When it comes to cancer treatment, chemotherapy is one of the main pillars, especially for advanced stage tumors. Over the years, natural compounds have emerged as one of the most valuable resources for new chemotherapies. It is estimated that more than half of the currently used chemotherapeutic agents are derived from natural compounds. Usually, natural compounds are discovered empirically and an important limitation of introducing new anti-cancer natural products is lack of knowledge with regard to their mechanism of action. Recent data has proven that several natural compounds may function via modulating the expression and function of non-coding RNAs (ncRNAs). NcRNAs are a heterogenous class of RNA molecules which are usually not translated into proteins but have an important role in gene expression regulation and are involved in multiple tumorigenic processes, including response/resistance to pharmacotherapy. In this review, we will discuss how natural compounds function via ncRNAs while summarizing the available data regarding their effects on over 15 types of cancer. Moreover, we will critically analyze the current advances and limitations in understanding the way natural compounds exert these health-promoting effects by acting on ncRNAs. Finally, we will propose several hypotheses that may open new avenues and perspectives regarding the interaction between natural compounds and ncRNAs, which could lead to improved natural compound-based therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Alexandru A. Sabo
- Pediatrics 2 (General and Special Pediatrics), Klinikum Stuttgart, Olgahospital, Zentrum für Kinder, Jugend- und Frauenmedizin, Stuttgart, Germany
| | - Maria Dudau
- Biochemistry-Proteomics Department, Victor Babes National Institute of Pathology, Bucharest, Romania
- Department of Cellular and Molecular Biology and Histology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - George L. Constantin
- Division of Soil Science and Site Science, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tudor C. Pop
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, Bucharest, Romania
| | - Christoph-M. Geilfus
- Division of Controlled Environment Horticulture, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alessio Naccarati
- IIGM Italian Institute for Genomic Medicine, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Mihnea P. Dragomir
- Department of Surgery, Fundeni Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
11
|
Gao L, Feng Y, Ge C, Xu X, Wang S, Li X, Zhang K, Wang C, Dai F, Xie S. Identification of molecular anti-metastasis mechanisms of lycorine in colorectal cancer by RNA-seq analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 85:153530. [PMID: 33761445 DOI: 10.1016/j.phymed.2021.153530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/23/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the most common malignancies worldwide. Metastasis is the major cause of death in patients with CRC. Lycorine, the phenanthridine alkaloid most commonly found in spp of the Amaryllidaceae family, has shown promising anticancer activities with minor side effects. However, the effects and the detailed mechanism of lycorine against metastasis of CRC remains unclear. STUDY DESIGN/METHODS The purpose of this study was to investigate the effects of lycorine on CRC and characterize the molecular mechanisms observed in lycorine-treated CRC cells using RNA-sequencing. MTT assay, colony formation assay, acridine orange/ethidium bromide (AO/EB) staining and Annexin V-FITC/Propidium iodide (PI) staining were conducted to examine the effects of lycorine on cell proliferation and apoptosis in CRC cells. RNA sequencing, real-time PCR assays and western blot were performed. Migration and invasion abilities of lycorine-treated CRC cells were investigated by wound healing and transwell invasion assays. The mouse CRC lung metastasis model was established and was used to detect the effect of lycorine on CRC in vivo. RESULTS Our results demonstrated that lycorine inhibited the proliferation and colony formation of CRC cells in a concentration-dependent manner. AO/EB staining and Annexin V-FITC/PI staining showed that lycorine induced apoptosis in a concentration-dependent manner. Lycorine also reduced lung metastasis of CRC in vivo. Moreover, transcriptomic analysis suggested that lycorine regulated the expression of 3556 genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway was implicated according to the differentially expressed genes (DEGs), and multiple pathways including those of mitogen-activated protein kinase (MAPK), relaxin, Ras, phosphatidylinositol 3‑kinase (PI3K)-protein kinase B (Akt) and Wnt/β-catenin were selected by functional enrichment analyses. Furthermore, based on transcriptomic analysis, we found that the tumor necrosis factor (TNF) pathway and endoplasmic reticulum stress were responsible for lycorine-induced apoptosis. CONCLUSIONS These results obtained in this study demonstrated that lycorine has the potential to suppress CRC in vitro and in vivo through the lycorine-regulated multiple signaling pathways.
Collapse
Affiliation(s)
- Lei Gao
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; Joint International Research Laboratory of Food & Medicine Resource Function, Henan University, Kaifeng, 475004, Henan, China
| | - Yongli Feng
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Chaochao Ge
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Xiaojuan Xu
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China
| | - Senzhen Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Xinna Li
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Kemeng Zhang
- School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China
| | - Chaojie Wang
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China
| | - Fujun Dai
- Key Laboratory of Natural Medicine and Immuno-Engineering, Henan University, Kaifeng 475004, Henan, China; School of Life Sciences, Henan University, Kaifeng, 475004, Henan, China.
| | - Songqiang Xie
- School of Pharmacy, Henan University, Kaifeng 475004, Henan, China.
| |
Collapse
|
12
|
Jiang W, Zhu D, Wang C, Zhu Y. Tumor suppressing effects of tristetraprolin and its small double-stranded RNAs in bladder cancer. Cancer Med 2021; 10:269-285. [PMID: 33259133 PMCID: PMC7826468 DOI: 10.1002/cam4.3622] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/20/2020] [Accepted: 10/25/2020] [Indexed: 12/23/2022] Open
Abstract
Bladder cancer (BCa) is a common malignant tumor of urinary system with few treatments, so more useful therapeutic targets are still needed. Antitumor effects of tristetraprolin (TTP) have been explored in many type tumors, but its roles in bladder cancer are still unknown until now. In this study, public expression profiles and tissue microarray analysis showed that TTP mRNA and protein levels decreased in BCa relative to the normal bladder tissue. To explore biological functions of TTP in BCa, 488 TTP target genes, which could be both suppressed and bound by TTP, were identified by comprehensively analyzing publicly available high-throughput data obtained from Gene Expression Omnibus (GEO). Gene enrichment analysis showed that these genes were enriched in pathways such as cell cycle, epithelial to mesenchymal transition (EMT), and Wnt signaling. Clustering analysis and gene set variation analysis indicated that patients with high expression of TTP target genes had poorer prognosis and stronger tumor proliferation ability relative to the BCa patients with low expression of TTP target genes. In vitro experiments validated that TTP could suppress proliferation, migration, and invasiveness of BCa cells. And TTP could suppress mRNA expression of cyclin-dependent kinase 1 (CDK1) in BCa cells by target its 3' UTR. Then, we identified a new small double-stranded RNA (dsRNA) named dsTTP-973 which could increase TTP expression in BCa cells, in vivo and in vitro experiments revealed that dsTTP-973 could suppress aggressiveness of BCa. In conclusion, TTP played a role of tumor suppressor gene in BCa like other tumors, and its dsRNA named dsTTP-973 could induce TTP expression in BCa and suppress aggressiveness of BCa. With the help of materials science, dsTTP-973 may become a potential treatment for BCa in the future.
Collapse
Affiliation(s)
- Wen Jiang
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Dandan Zhu
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chenghe Wang
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yu Zhu
- Department of UrologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
13
|
Yao H, Chen R, Yang Y, Jiang J. LncRNA BBOX1-AS1 Aggravates the Development of Ovarian Cancer by Sequestering miR-361-3p to Augment PODXL Expression. Reprod Sci 2020; 28:736-744. [PMID: 33159291 DOI: 10.1007/s43032-020-00366-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022]
Abstract
Ovarian cancer (OC) is a kind of common gynecological malignancy around the world. Mounting literatures have confirmed the implication of lncRNAs in the development of various cancers. Long non-coding RNA (LncRNA) BBOX1-AS1 has not been reported in most cancer types including OC. Presently, we aimed at exploring the function and regulatory mechanism of BBOX1-AS1 in OC. As a result, we demonstrated the extremely high BBOX1-AS1 expression in OC tissues and cells. BBOX1-AS1 silence inhibited OC progression by suppressing cell proliferation and promoting cell apoptosis. Importantly, BBOX1-AS1 was verified to bind to miR-361-3p, which presented a low expression trend in OC cells. Subsequently, PODXL was testified as the downstream target of miR-361-3p. Of note, BBOX1-AS1 positively regulated PODXL through their competition in binding with miR-361-3p. Furthermore, miR-361-3p inhibition facilitated the growth of BBOX1-AS1-deficient OC cells, while such facilitating effect was then counteracted in response to PODXL depletion. All the results above explained that BBOX1-AS1 was overexpressed in OC and that BBOX1-AS1 caused carcinogenic influences on OC cell growth via miR-361-3p/PODXL pathway, highlighting BBOX1-AS1 as a novel potential target for OC treatment.
Collapse
Affiliation(s)
- Huiping Yao
- Department of Gynecology and Obstetrics, Gansu Key Laboratory of Gynecological Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Rui Chen
- Department of Gynecology, East Hospital Affiliated to Tongji University, Shanghai, 200120, China
| | - Yongxiu Yang
- Department of Gynecology and Obstetrics, Gansu Key Laboratory of Gynecological Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Juan Jiang
- Department of Gynecology, People's Hospital of Jingjiang, No. 28, Zhongzhou Road, Jingjiang, 214500, Jiangsu, China.
| |
Collapse
|
14
|
Huang Z, Zhang S, Du J, Zhang X, Zhang W, Huang Z, Ouyang P. Cyclin-Dependent Kinase 1 (CDK1) is Co-Expressed with CDCA5: Their Functions in Gastric Cancer Cell Line MGC-803. Med Sci Monit 2020; 26:e923664. [PMID: 32759885 PMCID: PMC7431384 DOI: 10.12659/msm.923664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background Gastric cancer (GC) is a worldwide malignancy and the molecular mechanism of the GC carcinogenesis has not been fully elucidated. Our previous study suggested CDCA5 played a role in GC development via regulating cell proliferation, migration, and apoptosis in GC cells. Material/Methods Here, we first carried out bioinformatics analysis and found cyclin-dependent kinase 1 (CDK1) was possibly associated with CDCA5 using STRING. Then, the expression levels of CDK1 and CDCA5 in cancer tissues were estimated through Oncomine and The Cancer Genome Atlas (TCGA) database. After that, functional experiments were exerted to detect the association of CDK1 and CDCA5. Finally, cell proliferation assay, colon formation assay, cell scratch assay, transwell migration and invasion assays were applied to explore the roles of CDK1 and CDCA5 in GC cells MGC-803. Results CDK1 and CDCA5 were both upregulated and co-expressed in GC tissues. The expression of CDK1 and CDCA5 in MGC-803 was positively related. CDK1 or CDCA5 inhibition can suppress the proliferation, colon formation, migration, and invasion abilities of GC cells. Conclusions Co-expression of CDK1 and CDCA5 might confer cell proliferation, migration, and invasion abilities in GC cells, and this can provide some clues for further therapies of gastric tumors.
Collapse
Affiliation(s)
- Zhigang Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Shizhuo Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Jinlin Du
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Xing Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Weijian Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Zhaowei Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| | - Ping Ouyang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan, Guangdong, China (mainland)
| |
Collapse
|
15
|
Lin H, Zhang R, Wu W, Lei L. Comprehensive network analysis of the molecular mechanisms associated with sorafenib resistance in hepatocellular carcinoma. Cancer Genet 2020; 245:27-34. [PMID: 32559715 DOI: 10.1016/j.cancergen.2020.04.076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/28/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is an intractable disease because patients with HCC frequently develop sorafenib resistance after long-term chemotherapy. Although studies has demonstrated the availability of cumulative information on drug-resistant patients, little is known about the strategies and molecular mechanisms to reverse sorafenib resistance. Here, the present study identified critical mRNAs and transcription factors (TFs) associated with sorafenib resistance of HCC and evaluated the significance correlation between drug-resistant genes and TFs in comprehensive network for HCC xenografts mice. METHODS The expression profiles of mRNAs were compared between sorafenib-acquired resistant tissue and sorafenib sensitive tissue utilizing RNA-Seq data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Gene Ontology and KEGG pathway analysis were performed to investigate the biological function of significantly dysregulated mRNA. Furthermore, the Kaplan-Meier survival analyses were performed to evaluate the effect of mRNA on over survival. Subsequently, TFs were predicted using TRANSFAC and TF-mRNA regulatory networks were visualized using cytoscape software. RESULTS A total of 827 mRNAs were found to be differentially expressed in sorafenib-acquired resistant tissue compared with control. Thereafter, the results of functional enrichment analysis showed the dysregulated mRNAs involved in drug-resistant signaling pathway, including MAPK, JAK-STAT, TGF-β and drug-metabolism cytochrome P450 signaling pathway. CDK1, CDKN1A and TAPBP might serve as prognostic signature of resistance of HCC to sorafenib according to the survival analysis. Furthermore, TF-mRNA networks were constructed. There were 18 TFs were predicted to regulate differentially expressed mRNAs, which play an essential role in the regulation of dysfunctional gene networks. NFKB1 was presented in the TF-mRNA networks as the node with the highest degree and MYC was predicted as prognostic TF in drug resistance of HCC CONCLUSIONS: Taken together, our findings showed that novel mRNAs and TFs, which served as critical biomarkers to predict survival and therapeutic targets of resistance to sorafenib in HCC. Furthermore, we constructed the TF-mRNA networks, which provides valuable theoretical references to further evaluate the molecular mechanisms of resistance to sorafenib in HCC.
Collapse
Affiliation(s)
- Haoming Lin
- Department of Pancreto-biliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
| | - Rui Zhang
- Department of Pancreto-biliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
| | - Wenrui Wu
- Department of Pancreto-biliary Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510120, China.
| | - Liming Lei
- Department of Intensive Care Unit of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Laboratory of South China Structural Heart Disease, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
16
|
Jakkampudi S, Konda S, Arman H, Zhao JC. Diastereodivergent Synthesis of Bridged Tetrahydroisoquinoline Derivatives Catalyzed by Modularly Designed Organocatalysts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Satish Jakkampudi
- Department of Chemistry University of Texas at San Antonio, One UTSA Circle San Antonio Texas 78249-0698 USA
| | - Swapna Konda
- Department of Chemistry University of Texas at San Antonio, One UTSA Circle San Antonio Texas 78249-0698 USA
| | - Hadi Arman
- Department of Chemistry University of Texas at San Antonio, One UTSA Circle San Antonio Texas 78249-0698 USA
| | - John C.‐G. Zhao
- Department of Chemistry University of Texas at San Antonio, One UTSA Circle San Antonio Texas 78249-0698 USA
| |
Collapse
|
17
|
Xiang Y, Tian Q, Guan L, Niu SS. The Dual Role of miR-186 in Cancers: Oncomir Battling With Tumor Suppressor miRNA. Front Oncol 2020; 10:233. [PMID: 32195180 PMCID: PMC7066114 DOI: 10.3389/fonc.2020.00233] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which regulate gene expression at post-transcriptional level. Alterations of miR-186 expression were demonstrated in numerous cancers, shown to play a vital role in oncogenesis, invasion, metastasis, apoptosis, and drug resistance. MiR-186 was documented as a tumor suppressor miRNA in the majority of studies, while conflicting reports verified miR-186 as an oncomir. The contradictory role in cancers may impede the application of miR-186, as well as other dual-functional miRNAs, as a diagnostic and therapeutic target. This review emphasizes the alterations and functions of miR-186 in cancers and discusses the mechanisms behind the contradictory findings. Among these, target abundance and dose-dependent effects of miR-186 are highlighted. The paper aims to review the challenges involved in developing diagnostic and therapeutic strategies for cancer treatment based on dual-functional miRNAs.
Collapse
Affiliation(s)
- Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China.,Department of Cell Biology and Genetics, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Qing Tian
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Li Guan
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China
| | - Shuai-Shuai Niu
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Hubei, China.,The First School of Clinical Medicine, Health Science Center, Yangtze University, Hubei, China
| |
Collapse
|
18
|
Amaryllidaceae Alkaloids of Different Structural Types from Narcissus L. cv. Professor Einstein and Their Cytotoxic Activity. PLANTS 2020; 9:plants9020137. [PMID: 31978967 PMCID: PMC7076679 DOI: 10.3390/plants9020137] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 12/05/2022]
Abstract
In this detailed phytochemical study of Narcissus cv. Professor Einstein, we isolated 23 previously known Amaryllidaceae alkaloids (1–23) of several structural types and one previously undescribed alkaloid, 7-oxonorpluviine. The chemical structures were identified by various spectroscopic methods (GC-MS, LC-MS, 1D, and 2D NMR spectroscopy) and were compared with literature data. Alkaloids which had not previously been isolated and studied for cytotoxicity before and which were obtained in sufficient amounts were assayed for their cytotoxic activity on a panel of human cancer cell lines of different histotype. Above that, MRC-5 human fibroblasts were used as a control noncancerous cell line to determine the general toxicity of the tested compounds. The cytotoxicity of the tested alkaloids was evaluated using the WST-1 metabolic activity assay. The growth of all studied cancer cell lines was inhibited by pancracine (montanine-type alkaloid), with IC50 values which were in the range of 2.20 to 5.15 µM.
Collapse
|
19
|
Xie H, Chen J, Lv X, Zhang L, Wu J, Ge X, Yang Q, Zhang D, Chen J. Clinical Value of Serum and Exhaled Breath Condensate miR-186 and IL-1β Levels in Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2020; 19:1533033820947490. [PMID: 32851926 PMCID: PMC7457640 DOI: 10.1177/1533033820947490] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE Our study aimed to investigate the expression level and clinical significance of serum and exhaled breath condensate miR-186 and IL-1β in non-small cell lung cancer patients. METHODS The serum and exhaled breath condensate specimens of 62 non-small cell lung cancer patients and 60 healthy controls were collected to detect miR-186 expression levels by real-time fluorescent quantitative PCR. Enzyme linked immunosorbent assay was applied to examine IL-1β concentration. Statistical analyses were used to evaluate the correlation between miR-186 and IL-1β in serum and clinicopathological features, traditional serum tumor markers, and inflammatory markers. The diagnostic efficacy of miR-186 and IL-1β for non-small cell lung cancer was evaluated by receiver operating characteristic curve analysis. The correlation between miR-186 and IL-1β was determined. RESULTS ① The relative expression level of miR-186 was greatly reduced in the serum and EBC of patients with non-small cell lung cancer, and the miR-186 expression level was reduced in different TNM stages of non-small cell lung cancer, from the early to later stages. ② The IL-1β concentration in serum and exhaled breath condensate of patients with non-small cell lung cancer was increased. ③ Serum miR-186 and IL-1β levels were closely related to lymph node metastasis, and the low expression of serum miR-186 and the high concentration of IL-1β were associated with higher serum carcinoembryonic antigen, C-reactive protein, and erythrocyte sedimentation rate levels. ④ ROC curve analysis showed that exhaled breath condensate miR-186 had higher area under the curve than serum miR-186, and the combined detection showed higher diagnostic efficacy than the separate detection. In addition, the combined detection of IL-1β and miR-186 has a larger AUC than the separate detection of both. ⑤ The correlation between serum miR-186 and IL-1β was negative. CONCLUSION miR-186 and IL-1β are expected to be potential diagnostic biomarkers for non-small cell lung cancer.
Collapse
Affiliation(s)
- Haiqin Xie
- Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong
University, Nantong, China
| | - Jinliang Chen
- Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong
University, Nantong, China
| | - Xuedong Lv
- Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong
University, Nantong, China
| | - Lu Zhang
- Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong
University, Nantong, China
| | - Jinnan Wu
- Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong
University, Nantong, China
| | - Xin Ge
- Medical Research Center, Affiliated Hospital 2 of Nantong
University, Nantong, China
| | - Qichang Yang
- Department of Pathology, Affiliated Hospital 2 of Nantong
University, Nantong, China
| | - Dongmei Zhang
- Medical Research Center, Affiliated Hospital 2 of Nantong
University, Nantong, China
| | - Jianrong Chen
- Department of Respiratory Medicine, Affiliated Hospital 2 of Nantong
University, Nantong, China
- Medical Research Center, Affiliated Hospital 2 of Nantong
University, Nantong, China
| |
Collapse
|