1
|
Yao Y, Wang B, Yu K, Song J, Wang L, Yang X, Zhang X, Li Y, Ma X. Nur77 ameliorates cyclophosphamide-induced ovarian insufficiency in mice by inhibiting oxidative damage and cell senescence. J Ovarian Res 2024; 17:203. [PMID: 39407305 PMCID: PMC11476119 DOI: 10.1186/s13048-024-01532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024] Open
Abstract
Premature ovarian failure (POF) is among the primary causes of ovarian dysfunction that severely affects women's physical and mental health. The main purpose of this study was to explore the expression level of Nerve growth factor-induced protein B (Nur77/NR4A1) in cyclophosphamide (CTX)-induced POF. We then tested whether Nur77 can exert a protective effect after CTX treatment and investigated the mechanism of Nur77's role during ovarian injury. CTX promotes follicular atresia by inducing redox imbalance, apoptosis, and senescence, thereby causing direct toxicity to gonads. Additionally, CTX decreases ovarian reserve consumption by stimulating the excessive activation of primordial follicles. Nur77 can be stimulated by oxidative stress, DNA damage, metabolism, inflammation, etc. However, its relationship with POF remains unelucidated. We here found that Nur77 is expressed at low levels in POF ovaries. Therefore, Nur77 was identified as a regulator of ovarian injury and follicular development. According to the results, Nur77 overexpression alleviated redox imbalances, reduced cell senescence and apoptosis, and improved follicular reserve. Nur77 protects ovarian function by restoring disordered sex hormone levels and estrus cycles and promoting follicle growth and development at all levels. Moreover, the rapamycin protein kinase (AKT)/mammalian target of the rapamycin (mTOR) is a crucial regulator of the primordial follicle pool and follicular development. A relationship was observed between Nur77 and AKT through string and molecular docking. Experiments confirmed the involvement of the AKT/mTOR signaling pathway in the regulatory role of Nur77 in ovarian function. Thus, Nur77 is a critical target for POF prevention and treatment.
Collapse
Affiliation(s)
- Ying Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Bin Wang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Kaihua Yu
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Ji Song
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Liyan Wang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Xia Yang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Xuehong Zhang
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China
| | - Yulan Li
- Department of Anesthesiology, The First Hospital of Lanzhou University, Lanzhou, China.
- , No. 1, Donggang West Road, Chengguan District, Lanzhou City, Gansu Province, China.
| | - Xiaoling Ma
- Reproductive Medicine Center, The First Hospital of Lanzhou University, Lanzhou, China.
- Key Laboratory for Reproductive Medicine and Embryo of Gansu, Lanzhou, China.
- , No. 1, Donggang West Road, Chengguan District, Lanzhou City, Gansu Province, China.
| |
Collapse
|
2
|
Markowska A, Antoszczak M, Markowska J, Huczyński A. Gynotoxic Effects of Chemotherapy and Potential Protective Mechanisms. Cancers (Basel) 2024; 16:2288. [PMID: 38927992 PMCID: PMC11202309 DOI: 10.3390/cancers16122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy is one of the leading cancer treatments. Unfortunately, its use can contribute to several side effects, including gynotoxic effects in women. Ovarian reserve suppression and estrogen deficiency result in reduced quality of life for cancer patients and are frequently the cause of infertility and early menopause. Classic alkylating cytostatics are among the most toxic chemotherapeutics in this regard. They cause DNA damage in ovarian follicles and the cells they contain, and they can also induce oxidative stress or affect numerous signaling pathways. In vitro tests, animal models, and a few studies among women have investigated the effects of various agents on the protection of the ovarian reserve during classic chemotherapy. In this review article, we focused on the possible beneficial effects of selected hormones (anti-Müllerian hormone, ghrelin, luteinizing hormone, melatonin), agents affecting the activity of apoptotic pathways and modulating gene expression (C1P, S1P, microRNA), and several natural (quercetin, rapamycin, resveratrol) and synthetic compounds (bortezomib, dexrazoxane, goserelin, gonadoliberin analogs, imatinib, metformin, tamoxifen) in preventing gynotoxic effects induced by commonly used cytostatics. The presented line of research appears to provide a promising strategy for protecting and/or improving the ovarian reserve in the studied group of cancer patients. However, well-designed clinical trials are needed to unequivocally assess the effects of these agents on improving hormonal function and fertility in women treated with ovotoxic anticancer drugs.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
3
|
Huang J, Feng Q, Zou L, Liu Y, Bao M, Xia W, Zhu C. [Gly14]-humanin exerts a protective effect against D-galactose-induced primary ovarian insufficiency in mice. Reprod Biomed Online 2024; 48:103330. [PMID: 38163419 DOI: 10.1016/j.rbmo.2023.103330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 01/03/2024]
Abstract
RESEARCH QUESTION Is there a protective effect of the humanin derivative [Gly14]-humanin (HNG) on a D-gal-induced mouse model of primary ovarian insufficiency (POI), and what is the underlying mechanism? DESIGN D-gal (200 mg/kg/day) was injected subcutaneously for 6 weeks to induce the mouse POI model. Mice treated with HNG were injected intraperitoneally with different concentrations for 6 weeks. Ovarian morphology, function, levels of sex hormones and states of oxidative stress in the ovary and body were evaluated. RESULTS Compared with the D-gal group, 10 mg/kg HNG improved the abnormal ovarian morphology and oestrous cycle (P = 0.0036), increased the number of ovarian follicles (P = 0.0016) and litters (P = 0.0127), and increased the levels of oestrogen (P = 0.0043) and AMH (P = 0.0147). Antioxidant indicators in the ovaries and serum of mice, including total antioxidant capacity (P = 0.0004 and P = 0.0032, respectively), catalase (P = 0.0173 and P = 0.0103, respectively) and glutathione (both P < 0.0001) were significantly increased. The oxidation indicator malondialdehyde decreased significantly (all P < 0.01). Apoptosis of ovarian granulosa cells was significantly reduced (P = 0.0140) as was the expression of senescence-related proteins p53, p21 and p16 (all P < 0.01). The level of autophagy in ovarian tissue of mice treated with high increased (significantly increased LC3 protein [P < 0.0001] and significantly reduced p62 protein [P = 0.0007]). CONCLUSIONS HNG inhibited D-gal-induced oxidative stress, apoptosis and ovarian damage, promoting ovarian autophagy. HNG may be a potential prophylactic agent against POI.
Collapse
Affiliation(s)
- Jin Huang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Qiwen Feng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Liping Zou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Yumeng Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Meng Bao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China
| | - Wei Xia
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China..
| | - Changhong Zhu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, People's Republic of China..
| |
Collapse
|
4
|
Shi J, Zhao J, Zhang Y, Wang Y, Tan CP, Xu YJ, Liu Y. Windows Scanning Multiomics: Integrated Metabolomics and Proteomics. Anal Chem 2023; 95:18793-18802. [PMID: 38095040 DOI: 10.1021/acs.analchem.3c03785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Metabolomics and proteomics offer significant advantages in understanding biological mechanisms at two hierarchical levels. However, conventional single omics analysis faces challenges due to the high demand for specimens and the complexity of intrinsic associations. To obtain comprehensive and accurate system biological information, we developed a multiomics analytical method called Windows Scanning Multiomics (WSM). In this method, we performed simultaneous extraction of metabolites and proteins from the same sample, resulting in a 10% increase in the coverage of the identified biomolecules. Both metabolomics and proteomics analyses were conducted by using ultrahigh-performance liquid chromatography mass spectrometry (UPLC-MS), eliminating the need for instrument conversions. Additionally, we designed an R-based program (WSM.R) to integrate mathematical and biological correlations between metabolites and proteins into a correlation network. The network created from simultaneously extracted biomolecules was more focused and comprehensive compared to those from separate extractions. Notably, we excluded six pairs of false-positive relationships between metabolites and proteins in the network established using simultaneously extracted biomolecules. In conclusion, this study introduces a novel approach for multiomics analysis and data processing that greatly aids in bioinformation mining from multiomics results. This method is poised to play an indispensable role in systems biology research.
Collapse
Affiliation(s)
- Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Jialiang Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yanan Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, People's Republic of China
| |
Collapse
|
5
|
Qin Y, Wen C, Wu H. CXCL10-based gene cluster model serves as a potential diagnostic biomarker for premature ovarian failure. PeerJ 2023; 11:e16659. [PMID: 38107572 PMCID: PMC10725173 DOI: 10.7717/peerj.16659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/21/2023] [Indexed: 12/19/2023] Open
Abstract
Objective Premature ovarian failure (POF) is a disease with high clinical heterogeneity. Subsequently, its diagnosis is challenging. CXCL10 which is a small signaling protein involved in immune response and inflammation may have diagnostic potential in detection of premature ovarian insufficiency. Therefore, this study aimed to investigate CXCL10 based diagnostic biomarkers for POF. Methods Transcriptome data for POF was obtained from the Gene Expression Omnibus (GEO) database (GSE39501). Principal component analysis (PCA) assessed CXCL10 expression in patients with POF. The receiver operating characteristic (ROC) curve, analyzed using PlotROC, demonstrated the diagnostic potential of CXCL10 and CXCL10-based models for POF. Differentially expressed genes (DEGs) in the control group of POF were identified using DEbylimma. PlotVenn was used to determine the overlap between the POF-control group and the high-/low-expression CXCL10 groups. QuadrantPlot was employed to detect CXCL10-dysregulated genes in POF. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were conducted on DEGs using RunMulti Group cluster Profiler. A POF model was induced with cisplatin (DDP) using KGN cells. RT-qPCR and Western blot were used to measure the expression of CXCL10, apoptosis-related proteins, and peroxisome proliferator-activated receptor (PPAR) signaling pathway-related proteins in this model, following siRNA-mediated silencing of CXCL10. Flow cytometry was employed to assess the apoptosis of KGN cells after CXCL10 downregulation. Results The expression of CXCL10 is dysregulated in POF, and it shows promising diagnostic potential for POF, as evidenced by an area under the curve value of 1. In POF, we found 3,362 up-regulated and 3,969 down-regulated DEGs compared to healthy controls, while the high- and low-expression groups of POF (comprising samples above and below the median CXCL10 expression) exhibited 1,304 up-regulated and 1,315 down-regulated DEGs. Among these, 786 DEGs consistently displayed dysregulation in POF due to CXCL10 influence. Enrichment analysis indicated that the PPAR signaling pathway was activated by CXCL10 in POF. The CXCL10-based model (including CXCL10, Itga2, and Raf1) holds potential as a diagnostic biomarker for POF. Additionally, in the DDP-induced KGN cell model, interfering with CXCL10 expression promoted the secretion of estradiol, and reduced apoptosis. Furthermore, CXCL10 silencing led to decreased expression levels of PPARβ and long-chain acyl-CoA synthetase 1 compared to the Si-NC group. These results suggest that CXCL10 influences the progression of POF through the PPAR signaling pathway. Conclusion The CXCL10-based model, demonstrating perfect diagnostic accuracy for POF and comprising CXCL10, Itga2, and Raf1, holds potential as a valuable diagnostic biomarker. Thus, the expression levels of these genes may collectively provide valuable diagnostic information for POF.
Collapse
Affiliation(s)
- Ying Qin
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
- Reproductive Medicine Center, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Canliang Wen
- Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Huijiao Wu
- Reproductive Medicine Center, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| |
Collapse
|
6
|
Hu YY, Zhong RH, Guo XJ, Li GT, Zhou JY, Yang WJ, Ren BT, Zhu Y. Jinfeng pills ameliorate premature ovarian insufficiency induced by cyclophosphamide in rats and correlate to modulating IL-17A/IL-6 axis and MEK/ERK signals. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116242. [PMID: 36775079 DOI: 10.1016/j.jep.2023.116242] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jinfeng Pill (JFP) is a classical Chinese medicine formula and composed of 9 herbs, including Epimedium brevicornu Maxim (Yinyanghuo), Cervus elaphus Linnaeus (Lurong), Panax ginseng C.A.Mey. (Renshen), Equus asinus (EJiao), Ligustrum lucidum W.T.Aiton (Nvzhenzi), Reynoutria multiflora (Thunb.) Moldenke (Heshouwu), Curculigo orchioides Gaertn (Xianmao), Neolitsea cassia (L.) Kosterm. (Rougui) and Leonurus japonicus Houtt. (Yimucao). The formula is clinically used to regulate menstrual cycle and alleviate polycystic ovarian syndrome due to its capabilities of ovulation induction. It is therefore presumed that JFP could be used for the therapy of premature ovarian insufficiency (POI) but the assumed efficacy has not been fully substantiated in experiment. AIM OF STUDY To evaluate the effectiveness of JFP on cyclophosphamide (CTX)-induced POI and preliminarily explore its potential mechanisms of action. MATERIAL AND METHODS An experimental rat model of POI was established by using CTX induction to assess the efficacy of JFP. The potential targets of action for JFP alleviating POI were predicted by the combination of network pharmacology and transcriptomics and finally validating by RT-qPCR and Western blot. RESULTS JFP alleviated the damages of ovarian tissue induced by CTX in the rat model of POI via significantly decreasing serum levels of FSH and LH and the ratio of FSH/LH and increasing the levels of E2 and AMH, accompanied with promoting ovarian folliculogenesis and follicle maturity and reversing the depletion of follicle pool. With the analysis of network pharmacology, pathways in cancer, proteoglycans in cancer, PI3K-AKT, TNF and FoxO signaling pathways were predicted to be influenced by JFP. The results of RNA-seq further revealed that IL-17 signaling pathway was the most important pathway regulated by both CTX and JFP, following by transcriptional misregulation in cancer and proteoglycans in cancer. Combining the two analytical methods, JFP likely targeted genes associated with immune regulation, including COX-2, HSP90AA1, FOS, MMP3 and MAPK11 and pathways, including IL-17,Th17 cell differentiation and TNF signaling pathway. Finally, JFP was validated to regulate the mRNA expression of FOS, FOSB, FOSL1, MMP3, MMP13 and COX-2 and decrease the release of IL-17A and the protein expression of IL-6 and suppress the phosphorylation of MEK1/2 and ERK1/2 in CTX induced POI rats. CONCLUSION Jinfeng Pill is effective to ameliorate the symptoms of POI induced by CTX in the model of rats and its action is likely associated with suppressing IL-17A/IL-6 axis and the activity of MEK1/2-ERK1/2 signaling.
Collapse
Affiliation(s)
- Ying-Yi Hu
- Pharmacy School, Fudan University, Shanghai, 200032, China; Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Rui-Hua Zhong
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Xiang-Jie Guo
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Guo-Ting Li
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Jie-Yun Zhou
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Wen-Jie Yang
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Bing-Tao Ren
- Pharmacy School, Fudan University, Shanghai, 200032, China; Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China
| | - Yan Zhu
- Lab of Reproductive Pharmacology, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Liu X, Song Y, Zhou F, Zhang C, Li F, Hu R, Ma W, Song K, Tang Z, Zhang M. Network and experimental pharmacology on mechanism of Si-Wu-tang improving ovarian function in a mouse model of premature ovarian failure induced by cyclophosphamide. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115842. [PMID: 36265674 DOI: 10.1016/j.jep.2022.115842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Si-Wu-Tang (SWT) has become a common basic prescription for supplementing blood and regulating menstruation, and enjoys the reputation of "the first prescription in gynecology". It is often reported in the treatment of premature ovarian failure (POF). However, knowledge of its specific mechanism is still limited. AIM OF THE STUDY This study aimed to identify the potential effects and underlying mechanisms of SWT on POF. MATERIALS AND METHODS After confirming the therapeutic effect of SWT on POF mice induced by cyclophosphamide, we further clarified the promoting effect of SWT on ovarian follicle development by detecting the expression of key factors related to follicle development in the ovary in different ways.Then, network pharmacology and gene expression profiling of POF from the GEO database were used to clarify the underlying mechanisms. Molecular biology and molecular docking analysis were applied for final mechanism verification. RESULTS Our results showed that SWT increased body weight, ovarian index, reversed disordered serum hormone levels, and menstrual cycle in POF mice. After SWT treatment, the number of follicles at all levels in mice with POF also recovered. Using molecular biology techniques, it was proven that SWT can improve follicle development and angiogenesis in the microenvironment. The network pharmacology and gene expression profiling from the GEO database indicated that the PI3K/Akt signaling pathway may be the reason why SWT improves ovarian function in mice with POF. Subsequently, further Western blot and immunoprecipitation indicated that SWT indeed inhibited the PI3K/Akt signaling pathway in mice with POF. In addition, this conclusion was further confirmed by molecular docking experiments. CONCLUSIONS SWT can improve ovarian function in POF mice induced by cyclophosphamide, and its mechanism is related to the inhibition of the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Xia Liu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yufan Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fanru Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Chu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Fan Li
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Runan Hu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Zhang L, Sun Y, Zhang XX, Liu YB, Sun HY, Wu CT, Xiao FJ, Wang LS. Comparison of CD146 +/- mesenchymal stem cells in improving premature ovarian failure. Stem Cell Res Ther 2022; 13:267. [PMID: 35729643 PMCID: PMC9209844 DOI: 10.1186/s13287-022-02916-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 04/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are a heterogeneous group of subpopulations with differentially expressed surface markers. CD146 + MSCs correlate with high therapeutic and secretory potency. However, their therapeutic efficacy and mechanisms in premature ovarian failure (POF) have not been explored. METHODS The umbilical cord (UC)-derived CD146 +/- MSCs were sorted using magnetic beads. The proliferation of MSCs was assayed by dye670 staining and flow cytometry. A mouse POF model was established by injection of cyclophosphamide and busulfan, followed by treatment with CD146 +/- MSCs. The therapeutic effect of CD146 +/- MSCs was evaluated based on body weight, hormone levels, follicle count and reproductive ability. Differential gene expression was identified by mRNA sequencing and validated by RT-PCR. The lymphocyte percentage was detected by flow cytometry. RESULTS CD146 +/- MSCs had similar morphology and surface marker expression. However, CD146 + MSCs exhibited a significantly stronger proliferation ability. Gene profiles revealed that CD146 + MSCs had a lower levels of immunoregulatory factor expression. CD146 + MSCs exhibited a stronger ability to inhibit T cell proliferation. CD146 +/- MSCs treatment markedly restored FSH and E2 hormone secretion level, reduced follicular atresia, and increased sinus follicle numbers in a mouse POF model. The recovery function of CD146 + MSCs in a reproductive assay was slightly improved than that of CD146 - MSCs. Ovary mRNA sequencing data indicated that UC-MSCs therapy improved ovarian endocrine locally, which was through PPAR and cholesterol metabolism pathways. The percentages of CD3, CD4, and CD8 lymphocytes were significantly reduced in the POF group compared to the control group. CD146 + MSCs treatment significantly reversed the changes in lymphocyte percentages. Meanwhile, CD146 - MSCs could not improve the decrease in CD4/8 ratio induced by chemotherapy. CONCLUSION UC-MSCs therapy improved premature ovarian failure significantly. CD146 +/- MSCs both had similar therapeutic effects in repairing reproductive ability. CD146 + MSCs had advantages in modulating immunology and cell proliferation characteristics.
Collapse
Affiliation(s)
- Lin Zhang
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.,Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, The Affiliate Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Yang Sun
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, The Affiliate Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Xiao-Xu Zhang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, The Affiliate Hospital of Qingdao University, Qingdao, 266000, People's Republic of China
| | - Yu-Bin Liu
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China
| | - Hui-Yan Sun
- Yanda Medical Research Institute, Hebei Yanda Hospital, Sanhe, 065201, Hebei Province, People's Republic of China
| | - Chu-Tse Wu
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Feng-Jun Xiao
- Beijing Institute of Radiation Medicine, Beijing, 100850, People's Republic of China.
| | - Li-Sheng Wang
- Laboratory of Molecular Diagnosis and Regenerative Medicine, Medical Research Center, The Affiliate Hospital of Qingdao University, Qingdao, 266000, People's Republic of China.
| |
Collapse
|
9
|
Luo X, Xu J, Zhao R, Qin J, Wang X, Yan Y, Wang LJ, Wang G, Yang X. The Role of Inactivated NF-κB in Premature Ovarian Failure. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:468-483. [PMID: 34971586 DOI: 10.1016/j.ajpath.2021.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Premature ovarian failure (POF) is defined as deployment of amenorrhea due to the cessation of ovarian function in a woman younger than 40 years old. The pathologic mechanism of POF is not yet well understood, although genetic aberrations, autoimmune damage, and environmental factors have been identified. The current study demonstrated that NF-κB inactivation is closely associated with the development of POF based on the data from literature and cyclophosphamide (Cytoxan)-induced POF mouse model. In the successfully established NF-κB-inactivated mouse model, the results showed the reduced expression of nuclear p65 and the increased expression of IκBα in ovarian granulosa cells; the reduced numbers of antral follicles; the reduction of Ki-67/proliferating cell nuclear antigen-labeled cell proliferation and enhanced Fas/FasL-dependent apoptosis in granulosa cells; the reduced level of E2 and anti-Müllerian hormone; the decreased expression of follicle-stimulating hormone receptor and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) in granulosa cells, which was reversed in the context of blocking NF-κB signaling with BAY 11-7082; and the decreased expressions of glucose-regulated protein 78 (GRP78), activating transcription factor 6, protein kinase R-like endoplasmic reticulum kinase, and inositol-requiring enzyme 1 in granulosa cells. Dual-luciferase reporter assay demonstrated that p50 stimulated the transcription of GRP78, and NF-κB affected the expression of follicle-stimulating hormone receptor and promoted granulosa cell proliferation through GRP78-mediated endoplasmic reticulum stress. Taken together, these data indicate, for the first time, that the inactivation of NF-κB signaling plays an important role in POF.
Collapse
Affiliation(s)
- Xin Luo
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Junjie Xu
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Ran Zhao
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Jiajia Qin
- Gynecology, Chinese Medicine College, Jinan University, Guangzhou, China
| | - Xiaoyu Wang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Yu Yan
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China
| | - Li-Jing Wang
- Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Guang Wang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China; Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China.
| | - Xuesong Yang
- International Joint Laboratory for Embryonic Development and Prenatal Medicine, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China; Guangdong-Hong Kong Metabolism and Reproduction Joint Laboratory, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou, China.
| |
Collapse
|
10
|
Bian X, Xie Q, Zhou Y, Wu H, Cui J, Jia L, Suo L. Transcriptional changes of mouse ovary during follicle initial or cyclic recruitment mediated by extra hormone treatment. Life Sci 2021; 264:118654. [PMID: 33141043 DOI: 10.1016/j.lfs.2020.118654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/15/2020] [Accepted: 10/21/2020] [Indexed: 11/17/2022]
Abstract
AIMS Folliculogenesis contains gonadotropin-independent and -dependent stage. Disruption in any of this process would induce failure in retrieving capable oocytes during clinical treatment. However, there is still limited understanding of the molecular components specifically regulating this process. MATERIAL AND METHODS Ovaries of P3, P20 and exogenous gonadotropin-treated P22 mice were sampled and underwent RNA-seq to investigate the transcriptome variance during mouse folliculogenesis. KEY FINDINGS In our dataset, 1883 and 626 DEGs were captured for each stage respectively, which were further clustered into eight expression patterns. Pathway enrichment analysis identified distinct biological processes enriched in two stages, with the most prominent being the pathways related to metabolism, gene expression, cell cycle, immune system and DNA methylation. Transcriptional regulator inference yielded eight master transcription factors (i.e. Runx1, Stat3, Sox3, Pou5f1, Gata4, Foxl2, Cebpb, and Esr1) driving folliculogenesis. SIGNIFICANCE Our study revealed the temporal transcriptional reprogramming and gene expression dynamics during folliculogenesis mediated by extra hormone treatment, which could provide novel insights to controlled ovarian stimulation in future infertility treatment.
Collapse
Affiliation(s)
- Xuejiao Bian
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Qin Xie
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuxiao Zhou
- Institute of Systems Biomedicine, SCSB, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Haibo Wu
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Junqi Cui
- Department of Pathology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Liling Jia
- Institute of Systems Biomedicine, SCSB, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lun Suo
- Department of Assisted Reproduction, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|