1
|
Wang X, Tian S, Qu Z, Meng R, Ni G, Liu M, Cao H. Investigating the protective effect of hydroxylated fullerenes on cognitive function in rats with temporal lobe epilepsy. Sci Rep 2025; 15:14142. [PMID: 40269130 PMCID: PMC12019555 DOI: 10.1038/s41598-025-99259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 04/18/2025] [Indexed: 04/25/2025] Open
Abstract
The objective of this study was to explore the protective effects of hydroxy fullerenes (HFs) on cognitive function in rats with temporal lobe epilepsy (TLE) and to elucidate the underlying mechanisms. Eighteen Sprague-Dawley (SD) rats were randomly selected and administered pilocarpine (50 mg/kg) intraperitoneally to establish a TLE model, and were then randomly assigned to the TLE group and the TLE + HFs group. An additional nine SD rats were served as a normal control group (CON group). The Morris water maze (MWM) test was utilized to assess the spatial learning and memory capabilities of the rats. Nissl staining was employed to observe the survival neurons in the CA1 and CA3 regions. In addition, the ultrastructure of synapses in the CA1 region was examined using transmission electron microscopy (TEM). The expressions of postsynaptic densitin-95 (PSD-95) and synaptophysin (SYP) in the hippocampus were detected via western blotting. The findings revealed that compared to the CON group, the TLE group exhibited significantly prolonged escape latency, reduced platform crossing frequency, and shortened time spent in the target quadrant. The number of surviving neurons in the CA1 and CA3 regions and the expression of PSD95 and SYP protein were significantly decreased (P < 0.05 or P < 0.001). However, these alterations were reversed in the TLE + HFs group. It is suggested that HFs may enhance the spatial learning and memory ability of TLE rats by preserving the integrity of hippocampal neurons, up-regulating the expression of SYP and PSD95 in hippocampus.
Collapse
Affiliation(s)
- Xiaoqing Wang
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Shuang Tian
- The Department of Neurology, Shijiazhuang People's Hospital, Shijiazhuang, Hebei, People's Republic of China
| | - Zhenzhen Qu
- The Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Ran Meng
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Guangxiao Ni
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Min Liu
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China
| | - Huifang Cao
- The Department of Rehabilitation, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, People's Republic of China.
| |
Collapse
|
2
|
Li S, Lin X, Duan L. Harnessing the power of natural alkaloids: the emergent role in epilepsy therapy. Front Pharmacol 2024; 15:1418555. [PMID: 38962319 PMCID: PMC11220463 DOI: 10.3389/fphar.2024.1418555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024] Open
Abstract
The quest for effective epilepsy treatments has spotlighted natural alkaloids due to their broad neuropharmacological effects. This review provides a comprehensive analysis of the antiseizure properties of various natural compounds, with an emphasis on their mechanisms of action and potential therapeutic benefits. Our findings reveal that bioactive substances such as indole, quinoline, terpenoid, and pyridine alkaloids confer medicinal benefits by modulating synaptic interactions, restoring neuronal balance, and mitigating neuroinflammation-key factors in managing epileptic seizures. Notably, these compounds enhance GABAergic neurotransmission, diminish excitatory glutamatergic activities, particularly at NMDA receptors, and suppress proinflammatory pathways. A significant focus is placed on the strategic use of nanoparticle delivery systems to improve the solubility, stability, and bioavailability of these alkaloids, which helps overcome the challenges associated with crossing the blood-brain barrier (BBB). The review concludes with a prospective outlook on integrating these bioactive substances into epilepsy treatment regimes, advocating for extensive research to confirm their efficacy and safety. Advancing the bioavailability of alkaloids and rigorously assessing their toxicological profiles are essential to fully leverage the therapeutic potential of these compounds in clinical settings.
Collapse
Affiliation(s)
- Siyu Li
- Department of Neurosurgery, Clinical Trial Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyu Lin
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijuan Duan
- Department of Neurosurgery, Clinical Trial Center, West China School of Nursing, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Guarino A, Pignata P, Lovisari F, Asth L, Simonato M, Soukupova M. Cognitive comorbidities in the rat pilocarpine model of epilepsy. Front Neurol 2024; 15:1392977. [PMID: 38872822 PMCID: PMC11171745 DOI: 10.3389/fneur.2024.1392977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Patients with epilepsy are prone to cognitive decline, depression, anxiety and other behavioral disorders. Cognitive comorbidities are particularly common and well-characterized in people with temporal lobe epilepsy, while inconsistently addressed in epileptic animals. Therefore, the aim of this study was to ascertain whether there is good evidence of cognitive comorbidities in animal models of epilepsy, in particular in the rat pilocarpine model of temporal lobe epilepsy. We searched the literature published between 1990 and 2023. The association of spontaneous recurrent seizures induced by pilocarpine with cognitive alterations has been evaluated by using various tests: contextual fear conditioning (CFC), novel object recognition (NOR), radial and T-maze, Morris water maze (MWM) and their variants. Combination of results was difficult because of differences in methodological standards, in number of animals employed, and in outcome measures. Taken together, however, the analysis confirmed that pilocarpine-induced epilepsy has an effect on cognition in rats, and supports the notion that this is a valid model for assessment of cognitive temporal lobe epilepsy comorbidities in preclinical research.
Collapse
Affiliation(s)
- Annunziata Guarino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Paola Pignata
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Francesca Lovisari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Salem AM, Mostafa NM, Al-Sayed E, Fawzy IM, Singab ANB. Insights into the Role of Erythrina corallodendron L. in Alzheimer's Disease: in Vitro and in Silico Approach. Chem Biodivers 2023; 20:e202300200. [PMID: 37329524 DOI: 10.1002/cbdv.202300200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/19/2023]
Abstract
Alzheimer's disease (AD) is a major health problem. Cholinergic transmission is greatly affected in AD. Phytochemical investigation of the alkaloid rich fraction (AF) of Erythrina corallodendron L leaves resulted in isolation of five known alkaloids: erysodine, erythrinine, 8-oxoerythrinine, erysovine N-oxide and erythrinine N-oxide. In this study, eysovine N-oxide was reported for the second time in nature. AF was assayed for cholinesterase inhibition at the concentration of 100 μg mL-1 . AF showed a higher percent inhibition for butyrylcholinesterase enzyme (BuChE) (83.28 %) compared to acetylcholinesterase enzyme (AChE) (64.64 %). The isolated alkaloids were also assayed for their anti-BuChE effect. In-silico docking study was done for the isolated compounds at the binding sites of AChE and BuChE to determine their binding pattern and interactions, also molecular dynamics were estimated for the compound displaying the best fit for AChE and BuChE. In addition, ADME parameters and toxicity were predicted for the isolated alkaloids compared to donepezil.
Collapse
Affiliation(s)
- Ahmed M Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Nada M Mostafa
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Eman Al-Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Iten M Fawzy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University, Cairo, 11835, Egypt
| | - Abdel Nasser B Singab
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
- Center for Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
5
|
Fang Q, Zheng S, Chen Q, Chen L, Yang Y, Wang Y, Zhang H, Chen J. The protective effect of inhibiting mitochondrial fission on the juvenile rat brain following PTZ kindling through inhibiting the BCL2L13/LC3 mitophagy pathway. Metab Brain Dis 2023; 38:453-466. [PMID: 36094724 DOI: 10.1007/s11011-022-01077-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023]
Abstract
Maintaining the balance of mitochondrial fission and mitochondrial autophagy on seizures is helpful to find a solution to control seizures and reduce brain injuries. The present study is to investigate the protective effect of inhibiting mitochondrial fission on brain injury in juvenile rat epilepsy induced by pentatetrazol (PTZ) by inhibiting the BCL2L13/LC3-mediated mitophagy pathway. PTZ was injected (40 mg/kg) to induce kindling once every other day, for a total of 15 times. In the PTZ + DMSO (DMSO), PTZ + Mdivi-1 (Mdivi-1), and PTZ + WY14643 (WY14643) groups, rats were pretreated with DMSO, Mdivi-1 and WY14643 for half an hour prior to PTZ injection. The seizure attacks of young rats were observed for 30 min after model establishment. The Morris water maze (MWM) was used to test the cognition of experimental rats. After the test, the numbers of NeuN(+) neurons and GFAP(+) astrocytes were observed and counted by immunofluorescence (IF). The protein expression levels of Drp1, BCL2L13, LC3 and caspase 3 in the hippocampus of young rats were detected by immunohistochemistry (IHC) and Western blotting (WB). Compared with the PTZ and DMSO groups, the seizure latency in the Mdivi-1 group was longer (P < 0.01), and the severity degree and frequency of seizures were lower (P < 0.01). The MWM test showed that the incubation periods of crossing the platform in the Mdivi-1 group was significantly shorter. The number of platform crossings, the platform stay time, and the ratio of residence time/total stay time were significantly increased in the Mdivi-1 group (P < 0.01). The IF results showed that the number of NeuN(+) neurons in the Mdivi-1 group was greater, while the number of GFAP(+) astrocytes was lower. IHC and WB showed that the average optical density (AOD) and relative protein expression levels of Drp1, BCL2L13, LC3 and caspase 3 in the hippocampi of rats in the Mdivi-1 group were higher (P < 0.05). The above results in the WY14643 group were opposite to those in the Mdivi-1 group. Inhibition of mitochondrial fission could reduce seizure attacks, protect injured neurons, and improve cognition following PTZ-induced epilepsy by inhibiting mitochondrial autophagy mediated by the BCL2L13/LC3 mitophagy pathway.
Collapse
Affiliation(s)
- Qiong Fang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China.
| | - Shaojuan Zheng
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Qiaobin Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China.
| | - Lang Chen
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Yating Yang
- Department of Pediatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Ying Wang
- Department of clinical medicine, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Huixia Zhang
- Department of clinical medicine, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jiafan Chen
- Department of clinical medicine, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| |
Collapse
|
6
|
Dos Reis SL, Gelfuso EA, Fachin AL, Pereira AMS, Beleboni RO. Pharmacological characterisation of anticonvulsant effects elicited by erythrartine. J Pharm Pharmacol 2021; 73:93-97. [PMID: 33791806 DOI: 10.1093/jpp/rgaa024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/15/2020] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The erythrinan alkaloids erythravine and 11α-hydroxy-erythravine from Erythrina verna (Vell.) have been extensively investigated for their anxiolytic and anticonvulsant effects. Both are structurally similar to the erythrartine that also exhibit anxiolytic effects, but there is no report on its anticonvulsant potential. Since some anxiolytic drugs can be useful in the management of epileptic seizures, we investigated whether erythrartine could prevent seizures induced by different chemoconvulsants. METHODS Experiments were performed using different concentrations of erythrartine injected via intracerebroventricular in rats submitted to pilocarpine, kainic acid, pentylenetetrazol or picrotoxin-induced seizures. Moreover, the rotarod test was performed to verify the effects of erythrartine on animal motor coordination. RESULTS Our data showed for the first time that erythrartine prevented the occurrence of seizures induced by all of the chemoconvulsants tested and did not affect locomotor performance neither produced sedative effect on animals. CONCLUSION Obtained results validate the ethnopharmacological significance of E. verna and provide new information on erythrartine, another erythrinian alkaloid of biotechnological and medicinal interest.
Collapse
Affiliation(s)
| | - Erica A Gelfuso
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
- CHU Rennes, Inserm, LTSI (Laboratoire de Traitement du Signal de l'Image), France
| | - Ana Lúcia Fachin
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
- School of Medicine, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | | | - Renê O Beleboni
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
- School of Medicine, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
7
|
Gelfuso EA, Reis SL, Aguiar DSR, Faggion SA, Gomes FMM, Galan DT, Peigneur S, Pereira AMS, Mortari MR, Cunha AOS, Tytgat J, Beleboni RO. New insights in the mode of action of (+)-erythravine and (+)-11α-hydroxy-erythravine alkaloids. Eur J Pharmacol 2020; 885:173390. [PMID: 32735983 DOI: 10.1016/j.ejphar.2020.173390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 11/28/2022]
Abstract
Erythrinian alkaloids ((+)-erythravine and (+)-11-α-hydroxy-erythravine) have been pointed as the main responsible agents for the anticonvulsant and anxiolytic properties of Erythrina mulungu Mart ex Benth. The present work provides a new set of information about the mode of action of these alkaloids by the use of a complementary approach of neurochemical and electrophysiological assays. We propose here that the antiepileptic and anxiolytic properties exhibited by both alkaloids appear not to be related to the inhibition of glutamate binding or GABA uptake, or even to the increase of glutamate uptake or GABA binding, as investigated here by the use of rat cortical synaptosomes. Similarly, and even in a high concentration, (+)-erythravine and (+)-11-α-hydroxy-erythravine did not modulate the main sodium and potassium channel isoforms checked by the use of voltage-clamp studies on Xenopus laevis oocytes. However, unlike (+)-11-α-hydroxy-erythravine, which presented a little effect, it was possible to observe that the (+)-erythravine alkaloid produced a significant inhibitory modulation on α4β2, α4β4 and α7 isoforms of nicotinic acetylcholine receptors also checked by the use of voltage-clamp studies, which could explain at least partially its anxiolytic and anticonvulsant properties. Since (+)-11-α-hydroxy-erythravine and (+)-erythravine modulated nicotinic acetylcholine receptors to different extents, it is possible to reinforce that small differences between the chemical structure of these alkaloids can affect the selectivity and affinity of target-ligand interactions, conferring distinct potency and/or pharmacological properties to them, as previously suggested by differential experimental comparison between different erythrinian alkaloids.
Collapse
Affiliation(s)
- Erica A Gelfuso
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil; Univ Rennes, CHU Rennes, Inserm, LTSI (Laboratoire de Traitement du Signal et de l'Image), UMR-1099, F-35000, Rennes, France
| | - Suelen L Reis
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Daiane S R Aguiar
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Silmara A Faggion
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Flávia M M Gomes
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Diogo T Galan
- Toxicology and Pharmacology - University of Leuven (KU Leuven), Leuven, Belgium
| | - Steve Peigneur
- Toxicology and Pharmacology - University of Leuven (KU Leuven), Leuven, Belgium
| | - Ana M S Pereira
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília, DF, Brazil
| | - Alexandra O S Cunha
- Department of Physiology, FMRP, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jan Tytgat
- Toxicology and Pharmacology - University of Leuven (KU Leuven), Leuven, Belgium.
| | - Renê O Beleboni
- Department of Biotechnology, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil; School of Medicine, University of Ribeirão Preto, Ribeirão Preto, SP, Brazil.
| |
Collapse
|