1
|
He R, Zuo Y, Li Q, Yan Q, Huang L. Cooperative mechanisms of LexA and HtpG in the regulation of virulence gene expression in Pseudomonas plecoglossicida. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100351. [PMID: 39980631 PMCID: PMC11840546 DOI: 10.1016/j.crmicr.2025.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025] Open
Abstract
LexA is a well-known transcriptional repressor of DNA repair genes induced by DNA damage in Escherichia coli and other bacterial species. Recently, this paradigm-that LexA solely regulates the SOS response-has been challenged as studies reveal its involvement in various biological functions linked to virulence. Pseudomonas plecoglossicida, a major pathogen in mariculture, causes substantial economic losses annually in China. Our previous research suggested that LexA might collaboratively regulate virulence gene expression with HtpG during infection. This study aims to elucidate the molecular mechanism by which LexA controls virulence gene expression. We employed an array of methods including molecular dynamics simulations, molecular docking, ChIP-seq, RNA-seq, mass spectrometry, gene mutagenesis, LacZ reporter assays, electrophoretic mobility shift assays, co-immunoprecipitation, and in vitro LexA degradation experiments. Our findings identified 36 downstream virulence genes regulated by LexA, define three critical LexA binding motifs, and provide an in-depth analysis of LexA's recognition and binding to promoters, thereby regulating virulence gene expression. Additionally, we confirm the cooperative regulatory roles of HtpG, RecA, and LexA in virulence gene modulation. This is the first report of an endogenous accessory factor aiding in the binding of LexA to DNA. This study enhances our understanding of LexA's role in virulence regulation and offers a valuable theoretical and practical foundation for disease prevention and control.
Collapse
Affiliation(s)
- Rongchao He
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
| | - Yanfei Zuo
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
| | - Qiu Li
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
| | - Qingpi Yan
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
- State Key Laboratory of Mariculture Breeding, Fisheries college of Jimei university, Xiamen, Fujian, PR China
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, PR China
| | - Lixing Huang
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen, Fujian, PR China
- State Key Laboratory of Mariculture Breeding, Fisheries college of Jimei university, Xiamen, Fujian, PR China
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian 361021, PR China
| |
Collapse
|
2
|
Chatterjee C, Mohan GR, Chinnasamy HV, Biswas B, Sundaram V, Srivastava A, Matheshwaran S. Anti-mutagenic agent targeting LexA to combat antimicrobial resistance in mycobacteria. J Biol Chem 2024; 300:107650. [PMID: 39122002 PMCID: PMC11408154 DOI: 10.1016/j.jbc.2024.107650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Antimicrobial resistance (AMR) is a serious global threat demanding innovations for effective control of pathogens. The bacterial SOS response, regulated by the master regulators, LexA and RecA, contributes to AMR through advantageous mutations. Targeting the LexA/RecA system with a novel inhibitor could suppress the SOS response and potentially reduce the occurrence of AMR. RecA presents a challenge as a therapeutic target due to its conserved structure and function across species, including humans. Conversely, LexA which is absent in eukaryotes, can be potentially targeted, due to its involvement in SOS response which is majorly responsible for adaptive mutagenesis and AMR. Our studies combining bioinformatic, biochemical, biophysical, molecular, and cell-based assays present a unique inhibitor of mycobacterial LexA, wherein we show that the inhibitor interacts directly with the catalytic site residues of LexA of Mycobacterium tuberculosis (Mtb), consequently hindering its cleavage, suppressing SOS response thereby reducing mutation frequency and AMR.
Collapse
Affiliation(s)
- Chitral Chatterjee
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Gokul Raj Mohan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Hariharan V Chinnasamy
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Bhumika Biswas
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Vidya Sundaram
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Ashutosh Srivastava
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
| | - Saravanan Matheshwaran
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India; Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India; Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, India; Kotak School of Sustainability, Indian Institute of Technology, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
3
|
Cheng K, Sun Y, Yu H, Hu Y, He Y, Shen Y. Staphylococcus aureus SOS response: Activation, impact, and drug targets. MLIFE 2024; 3:343-366. [PMID: 39359682 PMCID: PMC11442139 DOI: 10.1002/mlf2.12137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/17/2024] [Accepted: 04/10/2024] [Indexed: 10/04/2024]
Abstract
Staphylococcus aureus is a common cause of diverse infections, ranging from superficial to invasive, affecting both humans and animals. The widespread use of antibiotics in clinical treatments has led to the emergence of antibiotic-resistant strains and small colony variants. This surge presents a significant challenge in eliminating infections and undermines the efficacy of available treatments. The bacterial Save Our Souls (SOS) response, triggered by genotoxic stressors, encompasses host immune defenses and antibiotics, playing a crucial role in bacterial survival, invasiveness, virulence, and drug resistance. Accumulating evidence underscores the pivotal role of the SOS response system in the pathogenicity of S. aureus. Inhibiting this system offers a promising approach for effective bactericidal treatments and curbing the evolution of antimicrobial resistance. Here, we provide a comprehensive review of the activation, impact, and key proteins associated with the SOS response in S. aureus. Additionally, perspectives on therapeutic strategies targeting the SOS response for S. aureus, both individually and in combination with traditional antibiotics are proposed.
Collapse
Affiliation(s)
- Kaiying Cheng
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of MedicineZhejiang UniversityHangzhouChina
| | - Yukang Sun
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Huan Yu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yingxuan Hu
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yini He
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| | - Yuanyuan Shen
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Immunology and Pathogen Biology, School of Basic Medical Sciences, Affiliated Hospital of Hangzhou Normal UniversityHangzhou Normal UniversityHangzhouChina
| |
Collapse
|
4
|
Shi X, Yan H, Yuan F, Li G, Liu J, Li C, Yu X, Li Z, Zhu Y, Wang W. LexA, an SOS response repressor, activates TGase synthesis in Streptomyces mobaraensis. Front Microbiol 2024; 15:1397314. [PMID: 38855760 PMCID: PMC11157053 DOI: 10.3389/fmicb.2024.1397314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/13/2024] [Indexed: 06/11/2024] Open
Abstract
Transglutaminase (EC 2.3.2.13, TGase), an enzyme that catalyzes the formation of covalent cross-links between protein or peptide molecules, plays a critical role in commercial food processing, medicine, and textiles. TGase from Streptomyces is the sole commercial enzyme preparation for cross-linking proteins. In this study, we revealed that the SOS response repressor protein LexA in Streptomyces mobaraensis not only triggers morphological development but also enhances TGase synthesis. The absence of lexA significantly diminished TGase production and sporulation. Although LexA does not bind directly to the promoter region of the TGase gene, it indirectly stimulates transcription of the tga gene, which encodes TGase. Furthermore, LexA directly enhances the expression of genes associated with protein synthesis and transcription factors, thus favorably influencing TGase synthesis at both the transcriptional and posttranscriptional levels. Moreover, LexA activates four crucial genes involved in morphological differentiation, promoting spore maturation. Overall, our findings suggest that LexA plays a dual role as a master regulator of the SOS response and a significant contributor to TGase regulation and certain aspects of secondary metabolism, offering insights into the cellular functions of LexA and facilitating the strategic engineering of TGase overproducers.
Collapse
Affiliation(s)
- Xinyu Shi
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Hao Yan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Fang Yuan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing, China
| | - Guoying Li
- Jiangsu Yiming Biological Technology Co., Ltd., Taixing, China
| | - Jingfang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chunli Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiaobin Yu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zilong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yunping Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Xie Y, Gong L, Liu S, Yan J, Zhao S, Xia C, Li K, Liu G, Mazhar MW, Zhao J. Antioxidants improve β-cypermethrin degradation by alleviating oxidative damage and increasing bioavailability by Bacillus cereus GW-01. ENVIRONMENTAL RESEARCH 2023; 236:116680. [PMID: 37500036 DOI: 10.1016/j.envres.2023.116680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Microbial degradation of pesticide residues has the potential to reduce their hazards to human and environmental health. However, in some cases, degradation can activate pesticides, making them more toxic to microbes. Here we report on the β-cypermethrin (β-CY) toxicity to Bacillus cereus GW-01, a recently described β-CY degrader, and effects of antioxidants on β-CY degradation. GW-01 exposed to β-CY negatively affected the growth rate. The highest maximum specific growth rate (μm) appeared at 25 mg/L β-CY. β-CY induced the oxidative stress in GW-01. The activities of superoxide dismutase (SOD), catalyse (CAT), and glutathione-S-transferase (GST) were significantly higher than that in control (p < 0.01); but they are decreased as growth phase pronged, which is contrary to the β-CY degradation by GW-01 cells obtaining from various growth phase. Ascorbic acid (Vc), tea polyphenols (TP), and adenosine monophosphate (AMP) improved the degradation through changing the physiological property of GW-01. TP and AMP prompted the expression of gene encoding β-CY degradation in GW-01, while Vc does the opposite. Biofilm formation was significantly inhibited by β-CY, while was significantly enhanced by certain concentrations of TP and AMP (p < 0.05); while cell surface hydrophobicity (CSH) was negatively associated with β-CY concentrations from 25 to 100 mg/L, and these 4 antioxidants all boosted the CSH. Cells grown with β-CY had lower levels of saturated fatty acids but increased levels of some unsaturated and branched fatty acids, and these antioxidants alleviated the FA composition changes and gene expression related with FA metabolism. We also mined transcriptome analyses at lag, logarithmic, and stationary phases, and found that β-CY induced oxidative stress. The objective of this study was to elaborate characteristics in relation to the microbial resistance of pesticide poisoning and the efficiency of pesticide degradation, and to provide a promising method for improving pesticide degradation by microbes.
Collapse
Affiliation(s)
- Yuxuan Xie
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Lanmin Gong
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China
| | - Shan Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Jisha Yan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Sijia Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Chen Xia
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 610066, Chengdu, Sichuan, PR China
| | - Ke Li
- Institute of Agro-products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, 610066, Chengdu, Sichuan, PR China
| | - Gang Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China
| | - Muhammad Waqar Mazhar
- Department of Bioinformatics and Biotechnology, Government College University, 38000, Faisalabad, Pakistan; Institute for Research in Molecular Medicine (INFORMM), Health Campus, Universiti Sains Malaysia, Kubang Kerian, 16150, Kelantan, Malaysia
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal Universty), Ministry of Education, 610101, Chengdu, Sichuan, PR China; College of Life Science, Sichuan Normal University, 610101, Chengdu, Sichuan, PR China.
| |
Collapse
|
6
|
Schuurs ZP, McDonald JP, Croft LV, Richard DJ, Woodgate R, Gandhi NS. Integration of molecular modelling and in vitro studies to inhibit LexA proteolysis. Front Cell Infect Microbiol 2023; 13:1051602. [PMID: 36936756 PMCID: PMC10020695 DOI: 10.3389/fcimb.2023.1051602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction As antibiotic resistance has become more prevalent, the social and economic impacts are increasingly pressing. Indeed, bacteria have developed the SOS response which facilitates the evolution of resistance under genotoxic stress. The transcriptional repressor, LexA, plays a key role in this response. Mutation of LexA to a non-cleavable form that prevents the induction of the SOS response sensitizes bacteria to antibiotics. Achieving the same inhibition of proteolysis with small molecules also increases antibiotic susceptibility and reduces drug resistance acquisition. The availability of multiple LexA crystal structures, and the unique Ser-119 and Lys-156 catalytic dyad in the protein enables the rational design of inhibitors. Methods We pursued a binary approach to inhibit proteolysis; we first investigated β-turn mimetics, and in the second approach we tested covalent warheads targeting the Ser-119 residue. We found that the cleavage site region (CSR) of the LexA protein is a classical Type II β-turn, and that published 1,2,3-triazole compounds mimic the β-turn. Generic covalent molecule libraries and a β-turn mimetic library were docked to the LexA C-terminal domain using molecular modelling methods in FlexX and CovDock respectively. The 133 highest-scoring molecules were screened for their ability to inhibit LexA cleavage under alkaline conditions. The top molecules were then tested using a RecA-mediated cleavage assay. Results The β-turn library screen did not produce any hit compounds that inhibited RecA-mediated cleavage. The covalent screen discovered an electrophilic serine warhead that can inhibit LexA proteolysis, reacting with Ser-119 via a nitrile moiety. Discussion This research presents a starting point for hit-to-lead optimisation, which could lead to inhibition of the SOS response and prevent the acquisition of antibiotic resistance.
Collapse
Affiliation(s)
- Zachariah P. Schuurs
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - John P. McDonald
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Laura V. Croft
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Derek J. Richard
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
| | - Roger Woodgate
- Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Neha S. Gandhi, ; Roger Woodgate,
| | - Neha S. Gandhi
- Cancer and Ageing Research Program, Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Translational Research Institute (TRI), Brisbane, QLD, Australia
- School of Chemistry and Physics, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- *Correspondence: Neha S. Gandhi, ; Roger Woodgate,
| |
Collapse
|
7
|
Nanobodies targeting LexA autocleavage disclose a novel suppression strategy of SOS-response pathway. Structure 2022; 30:1479-1493.e9. [DOI: 10.1016/j.str.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/29/2022] [Accepted: 09/18/2022] [Indexed: 11/05/2022]
|
8
|
Lima-Noronha MA, Fonseca DLH, Oliveira RS, Freitas RR, Park JH, Galhardo RS. Sending out an SOS - the bacterial DNA damage response. Genet Mol Biol 2022; 45:e20220107. [PMID: 36288458 PMCID: PMC9578287 DOI: 10.1590/1678-4685-gmb-2022-0107] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/15/2022] [Indexed: 11/04/2022] Open
Abstract
The term “SOS response” was first coined by Radman in 1974, in an intellectual effort to put together the data suggestive of a concerted gene expression program in cells undergoing DNA damage. A large amount of information about this cellular response has been collected over the following decades. In this review, we will focus on a few of the relevant aspects about the SOS response: its mechanism of control and the stressors which activate it, the diversity of regulated genes in different species, its role in mutagenesis and evolution including the development of antimicrobial resistance, and its relationship with mobile genetic elements.
Collapse
Affiliation(s)
- Marco A. Lima-Noronha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Douglas L. H. Fonseca
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Renatta S. Oliveira
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rúbia R. Freitas
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Jung H. Park
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Rodrigo S. Galhardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
9
|
Khan F, Jeong GJ, Tabassum N, Mishra A, Kim YM. Filamentous morphology of bacterial pathogens: regulatory factors and control strategies. Appl Microbiol Biotechnol 2022; 106:5835-5862. [PMID: 35989330 DOI: 10.1007/s00253-022-12128-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
Several studies have demonstrated that when exposed to physical, chemical, and biological stresses in the environment, many bacteria (Gram-positive and Gram-negative) change their morphology from a normal cell to a filamentous shape. The formation of filamentous morphology is one of the survival strategies against environmental stress and protection against phagocytosis or protist predators. Numerous pathogenic bacteria have shown filamentous morphologies when examined in vivo or in vitro. During infection, certain pathogenic bacteria adopt a filamentous shape inside the cell to avoid phagocytosis by immune cells. Filamentous morphology has also been seen in biofilms formed on biotic or abiotic surfaces by certain bacteria. As a result, in addition to protecting against phagocytosis by immune cells or predators, the filamentous shape aids in biofilm adhesion or colonization to biotic or abiotic surfaces. Furthermore, these filamentous morphologies of bacterial pathogens lead to antimicrobial drug resistance. Clinically, filamentous morphology has become one of the most serious challenges in treating bacterial infection. The current review went into great detail about the various factors involved in the change of filamentous morphology and the underlying mechanisms. In addition, the review discussed a control strategy for suppressing filamentous morphology in order to combat bacterial infections. Understanding the mechanism underlying the filamentous morphology induced by various environmental conditions will aid in drug development and lessen the virulence of bacterial pathogens. KEY POINTS: • The bacterial filamentation morphology is one of the survival mechanisms against several environmental stress conditions and protection from phagocytosis by host cells and protist predators. • The filamentous morphologies in bacterial pathogens contribute to enhanced biofilm formation, which develops resistance properties against antimicrobial drugs. • Filamentous morphology has become one of the major hurdles in treating bacterial infection, hence controlling strategies employed for inhibiting the filamentation morphology from combating bacterial infections.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Akanksha Mishra
- Department of Biotechnology, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
10
|
Danchin A. In vivo, in vitro and in silico: an open space for the development of microbe-based applications of synthetic biology. Microb Biotechnol 2022; 15:42-64. [PMID: 34570957 PMCID: PMC8719824 DOI: 10.1111/1751-7915.13937] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/24/2022] Open
Abstract
Living systems are studied using three complementary approaches: living cells, cell-free systems and computer-mediated modelling. Progresses in understanding, allowing researchers to create novel chassis and industrial processes rest on a cycle that combines in vivo, in vitro and in silico studies. This design-build-test-learn iteration loop cycle between experiments and analyses combines together physiology, genetics, biochemistry and bioinformatics in a way that keeps going forward. Because computer-aided approaches are not directly constrained by the material nature of the entities of interest, we illustrate here how this virtuous cycle allows researchers to explore chemistry which is foreign to that present in extant life, from whole chassis to novel metabolic cycles. Particular emphasis is placed on the importance of evolution.
Collapse
Affiliation(s)
- Antoine Danchin
- Kodikos LabsInstitut Cochin24 rue du Faubourg Saint‐JacquesParis75014France
| |
Collapse
|
11
|
Sheng DH, Wang Y, Wu SG, Duan RQ, Li YZ. The Regulation of LexA on UV-Induced SOS Response in Myxococcus xanthus Based on Transcriptome Analysis. J Microbiol Biotechnol 2021; 31:912-920. [PMID: 34024894 PMCID: PMC9705874 DOI: 10.4014/jmb.2103.03047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/15/2022]
Abstract
SOS response is a conserved response to DNA damage in prokaryotes and is negatively regulated by LexA protein, which recognizes specifically an "SOS-box" motif present in the promoter region of SOS genes. Myxococcus xanthus DK1622 possesses a lexA gene, and while the deletion of lexA had no significant effect on either bacterial morphology, UV-C resistance, or sporulation, it did delay growth. UV-C radiation resulted in 651 upregulated genes in M. xanthus, including the typical SOS genes lexA, recA, uvrA, recN and so on, mostly enriched in the pathways of DNA replication and repair, secondary metabolism, and signal transduction. The UV-irradiated lexA mutant also showed the induced expression of SOS genes and these SOS genes enriched into a similar pathway profile to that of wild-type strain. Without irradiation treatment, the absence of LexA enhanced the expression of 122 genes that were not enriched in any pathway. Further analysis of the promoter sequence revealed that in the 122 genes, only the promoters of recA2, lexA and an operon composed of three genes (pafB, pafC and cyaA) had SOS box sequence to which the LexA protein is bound directly. These results update our current understanding of SOS response in M. xanthus and show that UV induces more genes involved in secondary metabolism and signal transduction in addition to DNA replication and repair; and while the canonical LexA-dependent regulation on SOS response has shrunk, only 5 SOS genes are directly repressed by LexA.
Collapse
Affiliation(s)
- Duo-hong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China,
D-h. Sheng Phone: +86-532-58631538 E-mail:
| | - Ye Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Shu-ge Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Rui-qin Duan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, P.R. China,Corresponding authors Y.Z. Li Phone: +86-532-58631539 E-mail:
| |
Collapse
|
12
|
Computational analysis of LexA regulons in Proteus species. 3 Biotech 2021; 11:131. [PMID: 33680696 DOI: 10.1007/s13205-021-02683-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/08/2021] [Indexed: 10/22/2022] Open
Abstract
To gain a general understanding of the SOS system in Proteus species, in this study LexA-binding sites and the LexA regulons in 23 Proteus genomes were first predicted by phylogenetic footprinting server, then with Proteus vulgaris as an example, the expression of LexA regulon in iron limitation was investigated by proteomic analysis and quantitative reverse transcription polymerase chain reaction (RT-qPCR) method. The results showed that LexA proteins were highly conserved in Proteus species, and were in a close phylogenetic relationship with those in Gram-negative bacteria; the core SOS response genes lexA and recA were found in all the 23 genomes, indicating that this system was widely distributed in this genus; besides that, putative LexA-binding sites were also found in the upstream sequences of some genes involved in other biological processes such as biosynthesis, drug resistance, and stress response. Proteomic and RT-qPCR analyses showed that under iron deficient condition, the expression of lexA, recA and sulA was transcriptionally upregulated (p < 0.05), lexA was also translationally upregulated but recA was on the contrary (p < 0.05), whereas another SOS response gene dinI was transcriptionally downregulated (p < 0.01). These results indicated that in response to iron deficiency, the members of LexA regulon were not regulated by the same way, suggesting the existence of a precise regulation mechanism of SOS response in P. vulgaris. In conclusion, this study provided a preliminary understanding of the SOS system in Proteus species, which laid the foundation for further investigation of its roles in SOS response and other biological processes.
Collapse
|
13
|
Yakimov A, Bakhlanova I, Baitin D. Targeting evolution of antibiotic resistance by SOS response inhibition. Comput Struct Biotechnol J 2021; 19:777-783. [PMID: 33552448 PMCID: PMC7843400 DOI: 10.1016/j.csbj.2021.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
Antibiotic resistance is acquired in response to antibiotic therapy by activating SOS-depended mutagenesis and horizontal gene transfer pathways. Compounds able to inhibit SOS response are extremely important to develop new combinatorial strategies aimed to block mutagenesis. The regulators of homologous recombination involved in the processes of DNA repair should be considered as potential targets for blocking. This review highlights the current knowledge of the protein targets for the evolution of antibiotic resistance and the inhibitory effects of some new compounds on this pathway.
Collapse
Affiliation(s)
- Alexander Yakimov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russian Federation
| | - Irina Bakhlanova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russian Federation.,Kurchatov Genome Center - PNPI, Gatchina, Russian Federation
| | - Dmitry Baitin
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Gatchina, Russian Federation.,Kurchatov Genome Center - PNPI, Gatchina, Russian Federation
| |
Collapse
|
14
|
Targeting the bacterial SOS response for new antimicrobial agents: drug targets, molecular mechanisms and inhibitors. Future Med Chem 2021; 13:143-155. [PMID: 33410707 DOI: 10.4155/fmc-2020-0310] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance is a pressing threat to global health, with multidrug-resistant pathogens becoming increasingly prevalent. The bacterial SOS pathway functions in response to DNA damage that occurs during infection, initiating several pro-survival and resistance mechanisms, such as DNA repair and hypermutation. This makes SOS pathway components potential targets that may combat drug-resistant pathogens and decrease resistance emergence. This review discusses the mechanism of the SOS pathway; the structure and function of potential targets AddAB, RecBCD, RecA and LexA; and efforts to develop selective small-molecule inhibitors of these proteins. These inhibitors may serve as valuable tools for target validation and provide the foundations for desperately needed novel antibacterial therapeutics.
Collapse
|
15
|
Memar MY, Yekani M, Celenza G, Poortahmasebi V, Naghili B, Bellio P, Baghi HB. The central role of the SOS DNA repair system in antibiotics resistance: A new target for a new infectious treatment strategy. Life Sci 2020; 262:118562. [PMID: 33038378 DOI: 10.1016/j.lfs.2020.118562] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/15/2020] [Accepted: 10/01/2020] [Indexed: 01/19/2023]
Abstract
Bacteria have a considerable ability and potential to acquire resistance against antimicrobial agents by acting diverse mechanisms such as target modification or overexpression, multidrug transporter systems, and acquisition of drug hydrolyzing enzymes. Studying the mechanisms of bacterial cell physiology is mandatory for the development of novel strategies to control the antimicrobial resistance phenomenon, as well as for the control of infections in clinics. The SOS response is a cellular DNA repair mechanism that has an essential role in the bacterial biologic process involved in resistance to antibiotics. The activation of the SOS network increases the resistance and tolerance of bacteria to stress and, as a consequence, to antimicrobial agents. Therefore, SOS can be an applicable target for the discovery of new antimicrobial drugs. In the present review, we focus on the central role of SOS response in bacterial resistance mechanisms and its potential as a new target for control of resistant pathogens.
Collapse
Affiliation(s)
- Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mina Yekani
- Department of Microbiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran; Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Vahdat Poortahmasebi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrooz Naghili
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Hossein Bannazadeh Baghi
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Xu J, Yang Z. Risk factors and pathogenic microorganism characteristics for pneumonia in convalescent patients with stroke: A retrospective study of 380 patients from a rehabilitation hospital. J Stroke Cerebrovasc Dis 2020; 29:104955. [PMID: 32689631 PMCID: PMC7221409 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/23/2020] [Accepted: 05/10/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pneumonia is a major complication leading to death after stroke. The risk factors of pneumonia in convalescent patients who have experienced stroke remain poorly defined. METHODS To identify the risk factors of pneumonia, we applied logistic regression as a statistical method using SPSS23.0 statistical software, based on a sample of 380 patients. And statistical description method was used to analyze pathogens' characteristics and drug resistance. RESULTS Ultimately, the obtained logistic model has statistical significance (χ2(13) = 91.560, P <0.0005). The sensitivity of the model is 41.7%, the specificity is 97.6%, the positive predictive value is 76.9%, and the negative predictive value is 89.8%. The Barthel index (BI) (OR=1.97, 95% CI: 1.01-3.87), basic lung diseases (OR=4.24, 95% CI: 1.02-17.61), trachea ventilation (OR=6.56, 95% CI: 1.18-36.34), feeding tube (OR=6.06, 95% CI: 2.59-14.18), and hypoproteinemia (OR=3.97, 95% CI: 1.56-10.10) were statistically significant (P<0.05). Among patients who have pneumonia, the proportion of gram-positive bacteria, gram-negative bacteria and fungal infection is 10.00%, 54.29%, 5.71% respectively. The study most frequently isolated Pseudomonas aeruginosa (18.57%), followed by Acinetobacter baumannii (10.00%,) and Klebsiella pneumoniae (10.00%). The drug resistance rate of Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae to different antibiotics ranged from 0.00-37.77%, 0.00-85.71% and 0.00-57.14%, respectively. CONCLUSIONS The lower BI scores, basic lung diseases, trachea ventilation, tube feeding, and hypoproteinemia are independent risk factors of pneumonia among convalescent patients with stroke. The main pathogens that caused pneumonia were gram-negative bacteria, and such organisms have different degrees of resistance to drugs.
Collapse
Affiliation(s)
- Jia Xu
- Department of pharmacy, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.89 Guhan Road, Furong district, Changsha, Hunan 410016, China
| | - Zhiling Yang
- Department of pharmacy, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), No.89 Guhan Road, Furong district, Changsha, Hunan 410016, China.
| |
Collapse
|
17
|
Ferrand A, Vergalli J, Pagès JM, Davin-Regli A. An Intertwined Network of Regulation Controls Membrane Permeability Including Drug Influx and Efflux in Enterobacteriaceae. Microorganisms 2020; 8:E833. [PMID: 32492979 PMCID: PMC7355843 DOI: 10.3390/microorganisms8060833] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/19/2022] Open
Abstract
The transport of small molecules across membranes is a pivotal step for controlling the drug concentration into the bacterial cell and it efficiently contributes to the antibiotic susceptibility in Enterobacteriaceae. Two types of membrane transports, passive and active, usually represented by porins and efflux pumps, are involved in this process. Importantly, the expression of these transporters and channels are modulated by an armamentarium of tangled regulatory systems. Among them, Helix-turn-Helix (HTH) family regulators (including the AraC/XylS family) and the two-component systems (TCS) play a key role in bacterial adaptation to environmental stresses and can manage a decrease of porin expression associated with an increase of efflux transporters expression. In the present review, we highlight some recent genetic and functional studies that have substantially contributed to our better understanding of the sophisticated mechanisms controlling the transport of small solutes (antibiotics) across the membrane of Enterobacteriaceae. This information is discussed, taking into account the worrying context of clinical antibiotic resistance and fitness of bacterial pathogens. The localization and relevance of mutations identified in the respective regulation cascades in clinical resistant strains are discussed. The possible way to bypass the membrane/transport barriers is described in the perspective of developing new therapeutic targets to combat bacterial resistance.
Collapse
Affiliation(s)
| | | | | | - Anne Davin-Regli
- UMR_MD1, U-1261, Aix-Marseille University, INSERM, SSA, IRBA, MCT, Faculté de Pharmacie, 27 Bd Jean Moulin, 13385 Marseille CEDEX 05, France; (A.F.); (J.V.); (J.-M.P.)
| |
Collapse
|
18
|
Danchin A. Isobiology: A Variational Principle for Exploring Synthetic Life. Chembiochem 2020; 21:1781-1792. [DOI: 10.1002/cbic.202000060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Antoine Danchin
- Stellate TherapeuticsInstitut Cochin 24 rue du Faubourg Saint-Jacques 75014 Paris France
| |
Collapse
|