1
|
Doktor F, Antounians L, Figueira RL, Khalaj K, Duci M, Zani A. Amniotic fluid stem cell extracellular vesicles as a novel fetal therapy for pulmonary hypoplasia: a review on mechanisms and translational potential. Stem Cells Transl Med 2025; 14:szae095. [PMID: 39823257 PMCID: PMC11740888 DOI: 10.1093/stcltm/szae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/30/2024] [Indexed: 01/30/2025] Open
Abstract
Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development. Hypoplastic lungs have impaired growth (arrested branching morphogenesis), maturation (decreased epithelial/mesenchymal differentiation), and vascularization (endothelial dysfunction and vascular remodeling leading to postnatal pulmonary hypertension). Herein, we discuss the pathogenesis of pulmonary hypoplasia and the role of microRNAs (miRNAs) during normal and pathological lung development. Since multiple cells and pathways are altered, the ideal strategy for hypoplastic lungs is to deliver a therapy that addresses all aspects of abnormal lung development. In this review, we report on a novel regenerative approach based on the administration of extracellular vesicles derived from amniotic fluid stem cells (AFSC-EVs). Specifically, we describe the effects of AFSC-EVs in rodent and human models of pulmonary hypoplasia, their mechanism of action via release of their cargo, including miRNAs, and their anti-inflammatory properties. We also compare cargo contents and regenerative effects of EVs from AFSCs and mesenchymal stromal cells (MSCs). Overall, there is compelling evidence that antenatal administration of AFSC-EVs rescues multiple features of fetal lung development in experimental models of pulmonary hypoplasia. Lastly, we discuss the steps that need to be taken to translate this promising EV-based therapy from the bench to the bedside. These include strategies to overcome barriers commonly associated with EV therapeutics and specific challenges related to stem cell-based therapies in fetal medicine.
Collapse
Affiliation(s)
- Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Miriam Duci
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
- Department of Surgery, University of Toronto, Toronto, ON, Canada M5T 1P5
| |
Collapse
|
2
|
Antounians L, Figueira RL, Kukreja B, Litvack ML, Zani-Ruttenstock E, Khalaj K, Montalva L, Doktor F, Obed M, Blundell M, Wu T, Chan C, Wagner R, Lacher M, Wilson MD, Post M, Kalish BT, Zani A. Fetal hypoplastic lungs have multilineage inflammation that is reversed by amniotic fluid stem cell extracellular vesicle treatment. SCIENCE ADVANCES 2024; 10:eadn5405. [PMID: 39058789 PMCID: PMC11277482 DOI: 10.1126/sciadv.adn5405] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/21/2024] [Indexed: 07/28/2024]
Abstract
Antenatal administration of extracellular vesicles from amniotic fluid stem cells (AFSC-EVs) reverses features of pulmonary hypoplasia in models of congenital diaphragmatic hernia (CDH). However, it remains unknown which lung cellular compartments and biological pathways are affected by AFSC-EV therapy. Herein, we conducted single-nucleus RNA sequencing (snRNA-seq) on rat fetal CDH lungs treated with vehicle or AFSC-EVs. We identified that intra-amniotically injected AFSC-EVs reach the fetal lung in rats with CDH, where they promote lung branching morphogenesis and epithelial cell differentiation. Moreover, snRNA-seq revealed that rat fetal CDH lungs have a multilineage inflammatory signature with macrophage enrichment, which is reversed by AFSC-EV treatment. Macrophage enrichment in CDH fetal rat lungs was confirmed by immunofluorescence, flow cytometry, and inhibition studies with GW2580. Moreover, we validated macrophage enrichment in human fetal CDH lung autopsy samples. Together, this study advances knowledge on the pathogenesis of pulmonary hypoplasia and further evidence on the value of an EV-based therapy for CDH fetuses.
Collapse
Affiliation(s)
- Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Bharti Kukreja
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Michael L. Litvack
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Louise Montalva
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Fabian Doktor
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Mikal Obed
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Matisse Blundell
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Taiyi Wu
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Cadia Chan
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Richard Wagner
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Martin Lacher
- Department of Pediatric Surgery, Leipzig University, Leipzig 04109, Germany
| | - Michael D. Wilson
- Genetics and Genome Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Martin Post
- Translational Medicine Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto M5T 1P5, Canada
| | - Brian T. Kalish
- Neurosciences and Mental Health Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Division of Neonatology, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto M5G 0A4, Canada
- Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto M5G 1X8, Canada
- Department of Surgery, University of Toronto, Toronto M5T 1P5, Canada
| |
Collapse
|
3
|
Jin C, Chen Y, Wang Y, Li J, Liang J, Zheng S, Zhang L, Li Q, Wang Y, Ling F, Li Y, Zheng Y, Nie Q, Feng Q, Wang J, Yang H. Single-cell RNA sequencing reveals special basal cells and fibroblasts in idiopathic pulmonary fibrosis. Sci Rep 2024; 14:15778. [PMID: 38982264 PMCID: PMC11233624 DOI: 10.1038/s41598-024-66947-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most predominant type of idiopathic interstitial pneumonia and has an increasing incidence, poor prognosis, and unclear pathogenesis. In order to investigate the molecular mechanisms underlying IPF further, we performed single-cell RNA sequencing analysis on three healthy controls and five IPF lung tissue samples. The results revealed a significant shift in epithelial cells (ECs) phenotypes in IPF, which may be attributed to the differentiation of alveolar type 2 cells to basal cells. In addition, several previously unrecognized basal cell subtypes were preliminarily identified, including extracellular matrix basal cells, which were increased in the IPF group. We identified a special population of fibroblasts that highly expressed extracellular matrix-related genes, POSTN, CTHRC1, COL3A1, COL5A2, and COL12A1. We propose that the close interaction between ECs and fibroblasts through ligand-receptor pairs may have a critical function in IPF development. Collectively, these outcomes provide innovative perspectives on the complexity and diversity of basal cells and fibroblasts in IPF and contribute to the understanding of possible mechanisms in pathological lung fibrosis.
Collapse
Affiliation(s)
- Chengji Jin
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Yahong Chen
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Yujie Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Jia Li
- The Second Affiliated Clinical College, Hainan Medical University, Haikou, 570100, China
| | - Jin Liang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Shaomao Zheng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Lipeng Zhang
- The Second Affiliated Clinical College, Hainan Medical University, Haikou, 570100, China
| | - Qiaoyu Li
- The Second Affiliated Clinical College, Hainan Medical University, Haikou, 570100, China
| | - Yongchao Wang
- Singleron Biotechnologies, Yaogu Avenue 11, Nanjing, 211800, China
| | - Fayu Ling
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Yongjie Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Yu Zheng
- The Second Affiliated Clinical College, Hainan Medical University, Haikou, 570100, China
| | - Qiuli Nie
- The Second Affiliated Clinical College, Hainan Medical University, Haikou, 570100, China
| | - Qiong Feng
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China
| | - Jing Wang
- Department of Respiratory Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, 570100, China.
- NHC Key Laboratory of Tropical Disease Control, Hainan Medical University, Haikou, 571199, China.
| | - Huiling Yang
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
4
|
Li JL, Han YB, Yang GY, Tian M, Shi CS, Tian D. Inflammation in Hernia and the epigenetic control. Semin Cell Dev Biol 2024; 154:334-339. [PMID: 37080853 DOI: 10.1016/j.semcdb.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/13/2023] [Accepted: 04/01/2023] [Indexed: 04/22/2023]
Abstract
Inflammation is much more intrinsic to hernia then is what is generally appreciated. The occurrence of hernias is associated with swelling, stress and inflammation. Surgery remains an important intervention to treat hernias and for many years, post-surgical levels of inflammatory cytokines have been evaluated to compare the different strategies for their comparative advantages. All surgical procedures elicit some sort of inflammatory response and moreover the meshes used for hernia repair are also associated with elevated inflammatory response, although some favor predominantly a pro-inflammatory response while the other meshes favor anti-inflammatory response. An estimated more than 90% of hernia repairs involve some meshes with polypropylene considered as the gold standard. Efforts are underway to modulate polypropylene meshes associated inflammation through use of alternative materials as well as modifications to polypropylene meshes themselves. In the last one decade, miRNAs have entered hernia research and the data on a role of miRNAs in different hernias is slowly emerging, providing the first evidence of epigenetics in hernia. Some reports are connecting miRNAs with inflammation in hernia. All these aspects, such as, surgery-related to mesh-related inflammation as well as miRNA-related inflammation, are discussed in this article to present an up-to-date information on the topic.
Collapse
Affiliation(s)
- Jin-Long Li
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Ying-Bo Han
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Gui-Yun Yang
- Department of Operating Room, The Second Hospital of Jilin University, Changchun, China
| | - Miao Tian
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun, China
| | - Chang-Sai Shi
- Department of Gastrointestinal Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dan Tian
- Department of Anesthesiology, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Shi L, Zhao Y, Liu X, Qian J, Yang X, Li W. Circular RNA circWHSC1 facilitates colorectal cancer cell proliferation by targeting miR-130a-5p/zeb1 signaling in vitro and in vivo. Heliyon 2023; 9:e20176. [PMID: 37810854 PMCID: PMC10556587 DOI: 10.1016/j.heliyon.2023.e20176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Colorectal cancer is a prevalent cancer globally and has become a threaten of human health. Recently, circular RNAs (circRNAs) have been widely studied in the cancer area, and the function of circular RNA circWHSC1 has been identified in several cancers. However, the role of circWHSC1 in colorectal cancer remains elusive. In this study, we were interested in the effects of circWHSC1 on colorectal cancer progression. We found that level of circWHSC1 was elevated in colorectal cancer cells compared with normal colon epithelial cells. FISH assay further confirmed that circWHSC1 was mainly localized in cytoplasm. CircWHSC1 depletion repressed the viability of colorectal cancer cells. The colony formation number and Edu-positive colorectal cancer cells were inhibited by the depletion of circWHSC1, respectively. The knockdown of circWHSC1 promoted the apoptosis of colorectal cancer cells. The tumor growth of colorectal cancer cells in nude mice was attenuated by circWHSC1 silencing. Meanwhile, the invasion and migration ability of colorectal cancer cells was suppressed by circWHSC1 depletion. Mechanically, circWHSC1 targets miR-130a-5p to promote zeb1 expression in colorectal cancer cell. The depletion of circWHSC1 remarkably reduced the cell viability and Edu-positive colorectal cancer cells, and the miR-130a-5p inhibitor or zeb1 overexpression could restore the phenotypes. Furthermore, the tumor growth of colorectal cancer cells in nude mice was attenuated by circWHSC1 knockdown, while miR-130a-5p depletion or zeb1 overexpression reversed the effect in the model. Therefore, we concluded that Circular RNA circWHSC1 facilitated colorectal cancer cell proliferation by targeting miR-130a-5p/zeb1 signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Lei Shi
- Department of Endoscopy, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Yuanshun Zhao
- Department of Endoscopy, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Xu Liu
- Department of Endoscopy, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Jingyao Qian
- Department of Endoscopy, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Xiao Yang
- Department of Endoscopy, Tianjin Union Medical Center, Tianjin, 300121, China
| | - Wen Li
- Department of Endoscopy, Tianjin Union Medical Center, Tianjin, 300121, China
| |
Collapse
|
6
|
Tong Y, Zhang S, Riddle S, Song R, Yue D. Circular RNAs in the Origin of Developmental Lung Disease: Promising Diagnostic and Therapeutic Biomarkers. Biomolecules 2023; 13:biom13030533. [PMID: 36979468 PMCID: PMC10046088 DOI: 10.3390/biom13030533] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/11/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Circular RNA (circRNA) is a newly discovered noncoding RNA that regulates gene transcription, binds to RNA-related proteins, and encodes protein microRNAs (miRNAs). The development of molecular biomarkers such as circRNAs holds great promise in the diagnosis and prognosis of clinical disorders. Importantly, circRNA-mediated maternal-fetus risk factors including environmental (high altitude), maternal (preeclampsia, smoking, and chorioamnionitis), placental, and fetal (preterm birth and low birth weight) factors are the early origins and likely to contribute to the occurrence and progression of developmental and pediatric cardiopulmonary disorders. Although studies of circRNAs in normal cardiopulmonary development and developmental diseases have just begun, some studies have revealed their expression patterns. Here, we provide an overview of circRNAs’ biogenesis and biological functions. Furthermore, this review aims to emphasize the importance of circRNAs in maternal-fetus risk factors. Likewise, the potential biomarker and therapeutic target of circRNAs in developmental and pediatric lung diseases are explored.
Collapse
Affiliation(s)
- Yajie Tong
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuqing Zhang
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Rui Song
- Lawrence D. Longo MD Center for Perinatal Biology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
- Correspondence: (R.S.); (D.Y.); Tel.: +01-909-558-4325 (R.S.); +86-24-9661551125 (D.Y.)
| | - Dongmei Yue
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Correspondence: (R.S.); (D.Y.); Tel.: +01-909-558-4325 (R.S.); +86-24-9661551125 (D.Y.)
| |
Collapse
|
7
|
De Leon N, Tse WH, Ameis D, Keijzer R. Embryology and anatomy of congenital diaphragmatic hernia. Semin Pediatr Surg 2022; 31:151229. [PMID: 36446305 DOI: 10.1016/j.sempedsurg.2022.151229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Prenatal and postnatal treatment modalities for congenital diaphragmatic hernia (CDH) continue to improve, however patients still face high rates of morbidity and mortality caused by severe underlying persistent pulmonary hypertension and pulmonary hypoplasia. Though the majority of CDH cases are idiopathic, it is believed that CDH is a polygenic developmental defect caused by interactions between candidate genes, as well as environmental and epigenetic factors. However, the origin and pathogenesis of these developmental insults are poorly understood. Further, connections between disrupted lung development and the failure of diaphragmatic closure during embryogenesis have not been fully elucidated. Though several animal models have been useful in identifying candidate genes and disrupted signalling pathways, more studies are required to understand the pathogenesis and to develop effective preventative care. In this article, we summarize the most recent litterature on disrupted embryological lung and diaphragmatic development associated with CDH.
Collapse
Affiliation(s)
- Nolan De Leon
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Wai Hei Tse
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin Ameis
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada
| | - Richard Keijzer
- Departments of Surgery, Division of Pediatric Surgery, Pediatrics & Child Health and Physiology and Pathophysiology, University of Manitoba and Biology of Breathing Theme, Children's Hospital Research Institute of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
8
|
Ghafouri-Fard S, Khoshbakht T, Hussen BM, Taheri M, Samsami M. Emerging role of non-coding RNAs in the regulation of Sonic Hedgehog signaling pathway. Cancer Cell Int 2022; 22:282. [PMID: 36100906 PMCID: PMC9469619 DOI: 10.1186/s12935-022-02702-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 09/04/2022] [Indexed: 12/04/2022] Open
Abstract
Sonic Hedgehog (Shh) signaling cascade is one of the complex signaling pathways that control the accurately organized developmental processes in multicellular organisms. This pathway has fundamental roles in the tumor formation and induction of resistance to conventional therapies. Numerous non-coding RNAs (ncRNAs) have been found to interact with Shh pathway to induce several pathogenic processes, including malignant and non-malignant disorders. Many of the Shh-interacting ncRNAs are oncogenes whose expressions have been increased in diverse malignancies. A number of Shh-targeting miRNAs such as miR-26a, miR-1471, miR-129-5p, miR-361-3p, miR-26b-5p and miR-361-3p have been found to be down-regulated in tumor tissues. In addition to malignant conditions, Shh-interacting ncRNAs can affect tissue regeneration and development of neurodegenerative disorders. XIST, LOC101930370, lncRNA-Hh, circBCBM1, SNHG6, LINC‐PINT, TUG1 and LINC01426 are among long non-coding RNAs/circular RNAs that interact with Shh pathway. Moreover, miR-424, miR-26a, miR-1471, miR-125a, miR-210, miR-130a-5p, miR-199b, miR-155, let-7, miR-30c, miR-326, miR-26b-5p, miR-9, miR-132, miR-146a and miR-425-5p are among Shh-interacting miRNAs. The current review summarizes the interactions between ncRNAs and Shh in these contexts.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayyebeh Khoshbakht
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Kurdistan Region,, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Samsami
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
MicroRNA-629-3p Promotes Interleukin-13-Induced Bronchial Epithelial Cell Injury and Inflammation by Targeting FOXA2. Cell Biochem Biophys 2022; 80:457-466. [DOI: 10.1007/s12013-022-01072-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 02/14/2022] [Indexed: 11/03/2022]
|
10
|
Figueira RL, Antounians L, Zani-Ruttenstock E, Khalaj K, Zani A. Fetal lung regeneration using stem cell-derived extracellular vesicles: A new frontier for pulmonary hypoplasia secondary to congenital diaphragmatic hernia. Prenat Diagn 2022; 42:364-372. [PMID: 35191057 DOI: 10.1002/pd.6117] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/12/2022]
Abstract
The poor outcomes of babies with congenital diaphragmatic hernia (CDH) are directly related to pulmonary hypoplasia, a cosndition characterized by impaired lung development. Although the pathogenesis of pulmonary hypoplasia is not fully elucidated, there is now evidence that CDH patients have missing or dysregulated microRNAs (miRNAs) that regulate lung development. A prenatal therapy that supplements these missing/dysregulated miRNAs could be a strategy to rescue normal lung development. Extracellular vesicles (EVs), also known as exosomes when of small dimensions, are lipid-bound nanoparticles that can transfer their heterogeneous cargo (proteins, lipids, small RNAs) to target cells to induce biological responses. Herein, we review all studies that show evidence for stem cell-derived EVs as a regenerative therapy to rescue normal development in CDH fetal lungs. Particularly, we report studies showing that administration of EVs derived from amniotic fluid stem cells (AFSC-EVs) to models of pulmonary hypoplasia promotes fetal lung growth and maturation via transfer of miRNAs that are known to regulate lung developmental processes. We also describe that stem cell-derived EVs exert effects on vascular remodeling, thus possibly preventing postnatal pulmonary hypertension. Finally, we discuss future perspectives and challenges to translate this promising stem cell EV-based therapy to clinical practice. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Rebeca Lopes Figueira
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Lina Antounians
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Elke Zani-Ruttenstock
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Kasra Khalaj
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Augusto Zani
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada.,Division of General and Thoracic Surgery, The Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada.,Department of Surgery, University of Toronto, Toronto, M5T 1P5, Canada
| |
Collapse
|
11
|
Kotulak-Chrząszcz A, Kmieć Z, Wierzbicki PM. Sonic Hedgehog signaling pathway in gynecological and genitourinary cancer (Review). Int J Mol Med 2021; 47:106. [PMID: 33907821 PMCID: PMC8057295 DOI: 10.3892/ijmm.2021.4939] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/10/2021] [Indexed: 01/07/2023] Open
Abstract
Cancers of the urinary tract, as well as those of the female and male reproductive systems, account for a large percentage of malignancies worldwide. Mortality is frequently affected by late diagnosis or therapeutic difficulties. The Sonic Hedgehog (SHH) pathway is an evolutionary conserved molecular cascade, which is mainly associated with the development of the central nervous system in fetal life. The present review aimed to provide an in‑depth summary of the SHH signaling pathway, including the characterization of its major components, the mechanism of its upstream regulation and non‑canonical activation, as well as its interactions with other cellular pathways. In addition, the three possible mechanisms of the cellular SHH cascade in cancer tissue are discussed. The aim of the present review was to summarize significant findings with regards to the expression of the SHH pathway components in kidney, bladder, ovarian, cervical and prostate cancer. Reports associated with common deficits and de‑regulations of the SHH pathway were summarized, despite the differences in molecular and histological patterns among these malignancies. However, currently, neither are SHH pathway elements included in panels of prognostic/therapeutic molecular patterns in any of the discussed cancers, nor have the drugs targeting SMO or GLIs been approved for therapy. The findings of the present review may support future studies on the treatment of and/or molecular targets for gynecological and genitourinary cancers.
Collapse
Affiliation(s)
| | | | - Piotr M. Wierzbicki
- Correspondence to: Dr Piotr M. Wierzbicki, Department of Histology, Faculty of Medicine, Medical University of Gdansk, ul. Debinki 1, 80211 Gdansk, Poland, E-mail:
| |
Collapse
|
12
|
Li L, He K, Chen S, Wei W, Tian Z, Tang Y, Xiao C, Xiang G. Circ_0001175 Promotes Hepatocellular Carcinoma Cell Proliferation and Metastasis by Regulating miR-130a-5p. Onco Targets Ther 2020; 13:13315-13327. [PMID: 33408482 PMCID: PMC7781360 DOI: 10.2147/ott.s262408] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Objective Many aberrantly expressed circular RNAs (circRNAs) play important roles in the development and progression of hepatocellular carcinoma (HCC). However, the exact function of circ_0001175 in HCC cells is unknown. Our study aimed to investigate the expression characteristics of circ_0001175 in HCC and its effects on the proliferation, migration and invasion of HCC cells, and to explore the potential mechanism. Materials and Methods Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were carried out to detect circ_0001175, microRNA-130a-5p (miR-130a-5p) and sorting nexin 5 (SNX5) expressions in HCC tissues and cells; cell counting kit-8 (CCK-8), BrdU and Transwell assays were conducted to detect the proliferation, migration and invasion of HCC cells. A lung metastasis model in nude mice was used to examine the effect of circ_0001175 on the metastasis of HCC cells in vivo. Bioinformatics prediction, luciferase reporter gene experiment, Ago2-RIP experiment and RNA pull-down assay were adopted to identify the binding relationships among circ_0001175, miR-130a-5p and SNX5. Results Circ_0001175 and SNX5 expressions were up-regulated in HCC tissues and cell lines, while miR-130a-5p expression was down-regulated. Abnormal expressions of circ_0001175, miR-130a-5p and SNX5 were associated with poor clinicopathological features of HCC patients; circ_0001175 facilitated HCC cell proliferation, migration and invasion in vitro and promoted lung metastasis in vivo; miR-130a-5p inhibited the above malignant biological behaviors of HCC cells, and it could reverse the function of circ_0001175. SNX5 was identified as a target gene of miR-130a-5p, and circ_0001175 could sponge miR-130a-5p and up-regulate the expression of SNX5 in HCC cells. Conclusion Circ_0001175 is highly expressed in HCC and facilitates HCC progression through regulating miR-130a-5p/SNX5 axis.
Collapse
Affiliation(s)
- Liheng Li
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Ke He
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Siliang Chen
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Wenjiang Wei
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Zuofu Tian
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yinghong Tang
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Chengjiang Xiao
- Department of Interventional Radiology, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Guoan Xiang
- Department of General Surgery, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
13
|
Zhao X, Sun W, Jia JA, Wei Z, Li X, Liao W, Wu J, Wang Y, Tian R. Prenatal ultrasound-assisted identification of multiple malformations caused by a deletion in the long-arm end of chromosome 7 and review of the literature. J Matern Fetal Neonatal Med 2020; 35:4268-4272. [PMID: 33213225 DOI: 10.1080/14767058.2020.1849104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Clinical cases of chromosome 7 long-arm end deletion are rare. Generally, 7q terminal deletion syndrome results in complex clinical phenotypes, such as microcephaly, growth and development retardation, holoprosencephaly, and sacral hypoplasia. Herein, we report the genetic and clinical features of a fetus with multiple malformations observed by prenatal ultrasound. The results showed that there was a large fragment deletion of approximately 27.7 Mb in 7q32.3-qter. The induced fetus showed facial abnormalities of cleft lip and palate, and some organ structural abnormalities (such as diaphragmatic hernia and polycystic renal dysplasia) were observed by autopsy and pathology. To provide more reliable information for disease diagnosis and genetic counseling, we reviewed and analyzed the reported cases of isolated 7q terminal syndrome.
Collapse
Affiliation(s)
- Xuliang Zhao
- Department of Clinical Laboratory, The No. 901 Hospital of the Joint Service of the People's Liberation Army, Hefei, P.R. China
| | - Weiwei Sun
- Beijing Chigene Translational Medicine Research Center, Beijing, P. R. China
| | - Jian-An Jia
- Department of Clinical Laboratory, The No. 901 Hospital of the Joint Service of the People's Liberation Army, Hefei, P.R. China
| | - Zhuojun Wei
- Department of Obstetrics and Gynecology, The No. 901 Hospital of the Joint Service of the People's Liberation Army, Hefei, P. R. China
| | - Xu Li
- Department of Radiology, Anhui Provincial Children's Hospital, Hefei, P. R. China
| | - Wenbin Liao
- Department of Radiology, The No. 901 Hospital of the Joint Service of the People's Liberation Army, Hefei, P. R. China
| | - Juanshu Wu
- Department of Clinical Laboratory, The No. 901 Hospital of the Joint Service of the People's Liberation Army, Hefei, P.R. China
| | - Yajian Wang
- Beijing Chigene Translational Medicine Research Center, Beijing, P. R. China
| | - Ruixia Tian
- Department of Obstetrics and Gynecology, The No. 901 Hospital of the Joint Service of the People's Liberation Army, Hefei, P. R. China
| |
Collapse
|
14
|
Fang QL, Li KC, Wang L, Gu XL, Song RJ, Lu S. Targeted Inhibition of CCL22 by miR-130a-5p Can Enhance the Sensitivity of Cisplatin-Resistant Gastric Cancer Cells to Chemotherapy. Cancer Manag Res 2020; 12:3865-3875. [PMID: 32547223 PMCID: PMC7263884 DOI: 10.2147/cmar.s249738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/23/2020] [Indexed: 12/11/2022] Open
Abstract
Objective This study set out to explore the regulatory mechanism of miR-130a-5p in cisplatin (DDP)-resistant gastric cancer (GC) cells. Materials and Methods Forty cases of GC and paracancerous tissues were collected, and the miR-130a-5p and CCL22 levels were detected by qRT-PCR. DDP-resistant cell lines of GC cells were established. Cell viability, invasion, and apoptosis were measured by CCK-8, Transwell, and flow cytometry, respectively. The relationship between miR-130a-5p and CCL22 was verified by dual-luciferase reporter enzyme, and the protein levels of caspase-3, bax, bcl-2, and CCL22 were determined by Western blot. Results miR-130a-5p was low expressed in GC tissues and cells, while CCL22 showed marked negative correlation, and the area under the curve (AUC) for diagnosing GC was not less than 0.850. Up-regulating miR-130a-5p or knocking down CCL22 expression can inhibit the proliferation and invasion of GC cells and promote their apoptosis, reverse the resistance of NCI-N87/DDP to DDP, and also enhance the chemosensitivity of GC cells. Dual-luciferase reporter enzyme identified that there was a targeted relationship between miR-130a-5p and CCL22. At the same time, miR-130a-5p and CCL22 were up-regulated or down-regulated, and the malignant proliferation, invasion, apoptosis, and DDP chemotherapy resistance of the cells had no difference compared with miR-NC with transfection-unrelated sequences. Conclusion Up-regulating miR-130a-5p can enhance the sensitivity of DDP-resistant GC cells to chemotherapy and regulate their biological function by targeted inhibition of CCL22.
Collapse
Affiliation(s)
- Qing-Liang Fang
- Department of Radiation Oncology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Kai-Chun Li
- Department of Oncology, Tianyou Hospital Affiliated to Tongji University, Shanghai, People's Republic of China
| | - Lei Wang
- Department of Radiation Oncology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Xiang-Lian Gu
- Department of Radiation Oncology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ren-Jie Song
- Department of Radiation Oncology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Song Lu
- Department of Radiation Oncology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|