1
|
Kamelnia R, Ahmadi-Hamedani M, Darroudi M, Kamelnia E. Improving the stability of insulin through effective chemical modifications: A Comprehensive review. Int J Pharm 2024; 661:124399. [PMID: 38944170 DOI: 10.1016/j.ijpharm.2024.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Insulin, an essential peptide hormone, conjointly regulates blood glucose levels by its receptor and it is used as vital drug to treat diabetes. This therapeutic hormone may undergo different chemical modifications during industrial processes, pharmaceutical formulation, and through its endogenous storage in the pancreatic β-cells. Insulin is highly sensitive to environmental stresses and readily undergoes structural changes, being also able to unfold and aggregate in physiological conditions. Even; small changes altering the structural integrity of insulin may have significant impacts on its biological efficacy to its physiological and pharmacological activities. Insulin analogs have been engineered to achieve modified properties, such as improved stability, solubility, and pharmacokinetics, while preserving the molecular pharmacology of insulin. The casually or purposively strategies of chemical modifications of insulin occurred to improve its therapeutic and pharmaceutical properties. Knowing the effects of chemical modification, formation of aggregates, and nanoparticles on protein can be a new look at the production of protein analogues drugs and its application in living system. The project focused on effects of chemical modifications and nanoparticles on the structure, stability, aggregation and their results in effective drug delivery system, biological activity, and pharmacological properties of insulin. The future challenge in biotechnology and pharmacokinetic arises from the complexity of biopharmaceuticals, which are often molecular structures that require formulation and delivery strategies to ensure their efficacy and safety.
Collapse
Affiliation(s)
- Reyhane Kamelnia
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
| | - Mahmood Ahmadi-Hamedani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran.
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elahe Kamelnia
- Department of biology, Faculty of sciences, Mashhad branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
2
|
Mukherjee A, Debbarman T, Siddiqi SS, Islam SN, Ahmad A, Mujahid M, Banerjee BD. Assessment of Biotransformed Silica Nanoparticle on Blood Glucose Level in Human: An In Vitro Investigation. Indian J Clin Biochem 2024; 39:83-91. [PMID: 38223015 PMCID: PMC10784254 DOI: 10.1007/s12291-022-01084-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/12/2022] [Indexed: 11/27/2022]
Abstract
Diabetes has affected nearly half a billion people worldwide. According to current guidelines, glycemic control is essential to mitigate diabetic complications. The antihyperglycemic effects of various chemically synthesized nanoparticles have been reported in animal models. However, their impact on humans has not been previously reported. This study was conducted to biosynthesize and assess the antihyperglycemic property of silica nanoparticles (SiO2-NPs) since they are non-toxic and biocompatible. SiO2-NPs biosynthesized using the endophytic fungus Fusarium oxysporum. In this collaborative study, 26 people, either hyperglycemic or euglycemic, diagnosed at the Endocrinology Outpatients, according to the American Diabetes Association, USA, were recruited. Silica nanoparticles were characterized and assessed for in vitro antihyperglycemic property using blood samples. Particle size distribution based on TEM images confirms that the average size of silica nanoparticle is 25 nm and is monodispersed in nature. The XRD pattern shows that only one broad peak at 2θ = 220 corresponds to the plane (101) of silica nanoparticles. UV Visible spectra show the λmax at 270 nm, peaks in FTIR at 1536 cm-1, 1640 cm-1, and 3420 cm-1 for the protein cap. The mean blood glucose was 120.2 mg/dL in the 'SiO2-NP untreated' group and decreased to 97.24 mg/dL in the 'SiO2-NP treated' group. A paired t-test (P-value < 0.0001) indicates a strong relationship between antihyperglycemia and silica NP. In our study, it has been observed that the biosynthesized silica nanoparticles using the endophytic fungus Fusarium oxysporum show antihyperglycemic property in vitro. Graphical Abstract
Collapse
Affiliation(s)
- Amit Mukherjee
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Tanusree Debbarman
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Sheelu Shafiq Siddiqi
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J N Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Sk Najrul Islam
- Interdisciplinary Nanotechnology Centre (INC), Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre (INC), Zakir Husain College of Engineering & Technology, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - M. Mujahid
- Physics Section, SHSSSB, Aligarh Muslim University, Aligarh, Uttar Pradesh India
| | - Basu Dev Banerjee
- Formerly: Environmental Biochemistry and Molecular Biology Laboratory, Department of Biochemistry, University College of Medical Sciences and GTB Hospital, University of Delhi, Dilshad Garden, Delhi, 110095 India
| |
Collapse
|
3
|
Ruan S, Guo X, Ren Y, Cao G, Xing H, Zhang X. Nanomedicines based on trace elements for intervention of diabetes mellitus. Biomed Pharmacother 2023; 168:115684. [PMID: 37820567 DOI: 10.1016/j.biopha.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Epidemiology shows that the incidence of diabetes mellitus (DM) is increasing year by year globally. Proper interventions are highly aspired for diabetics to improve the quality of life and prevent development of chronic complications. Trace elements, also known as microelements, are chemical substances that are present in our body in minute amounts. They are necessitated by the body for growth, development and functional metabolism. For the past few years, trace element nanoparticles have aroused considerable interest as a burgeoning form of nanomedicines in antidiabetic applications. These microelement-based nanomedicines can regulate glucose metabolism in several ways, showing great potential for diabetes management. Starting from the pathophysiology of diabetes, the state-of-the-art of diabetes treatment, the physiological roles of trace elements, various emerging trace element nanoparticles specific for diabetes were comprehensively reviewed in this work. Our findings disclose that trace element nanoparticles can fight against diabetes by lowering blood glucose, promoting insulin secretion, alleviating glucose intolerance, improving insulin sensitivity, ameliorating lipid profile, anti-inflammation and anti-oxidant stress, and other mechanisms. In conclusion, trace element nanoparticles can be applied as nanomedicines or dietary modifiers for effective intervention for diabetes.
Collapse
Affiliation(s)
- Shuxian Ruan
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaolei Guo
- Office of Academic Research, Binzhou Polytechnic, Binzhou, China
| | - Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Guangshang Cao
- Department of Pharmaceutics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Huijie Xing
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China.
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
4
|
Lu Z, Yu D, Nie F, Wang Y, Chong Y. Iron Nanoparticles Open Up New Directions for Promoting Healing in Chronic Wounds in the Context of Bacterial Infection. Pharmaceutics 2023; 15:2327. [PMID: 37765295 PMCID: PMC10537899 DOI: 10.3390/pharmaceutics15092327] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Metal nanoparticles play an outstanding role in the field of wound healing due to their excellent properties, and the significance of iron, one of the most widely used metals globally, cannot be overlooked. The purpose of this review is to determine the importance of iron nanoparticles in wound-healing dressings. Prolonged, poorly healing wounds may induce infections; wound infections are a major cause of chronic wound formation. The primary components of iron nanoparticles are iron oxide nanoparticles, which promote wound healing by being antibacterial, releasing metal ions, and overcoming bacterial resistance. The diameter of iron oxide nanoparticles typically ranges between 1 and 100 nm. Magnetic nanoparticles with a diameter of less than 30 nm are superparamagnetic and are referred to as superparamagnetic iron oxide nanoparticles. This subset of iron oxide nanoparticles can use an external magnetic field for novel functions such as magnetization and functionalization. Iron nanoparticles can serve clinical purposes not only to enhance wound healing through the aforementioned means but also to ameliorate anemia and glucose irregularities, capitalizing on iron's properties. Iron nanoparticles positively impact the healing process of chronic wounds, potentially extending beyond wound management.
Collapse
Affiliation(s)
- Zhaoyu Lu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China; (Z.L.); (D.Y.); (F.N.)
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Dong Yu
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China; (Z.L.); (D.Y.); (F.N.)
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Fengsong Nie
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China; (Z.L.); (D.Y.); (F.N.)
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225000, China
| | - Yang Chong
- Department of Traditional Chinese Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China; (Z.L.); (D.Y.); (F.N.)
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225000, China
| |
Collapse
|
5
|
Hernández ÁP, Iglesias-Anciones L, Vaquero-González JJ, Piñol R, Criado JJ, Rodriguez E, Juanes-Velasco P, García-Vaquero ML, Arias-Hidalgo C, Orfao A, Millán Á, Fuentes M. Enhancement of Tumor Cell Immunogenicity and Antitumor Properties Derived from Platinum-Conjugated Iron Nanoparticles. Cancers (Basel) 2023; 15:3204. [PMID: 37370813 DOI: 10.3390/cancers15123204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
From chemistry design to clinical application, several approaches have been developed to overcome platinum drawbacks in antitumoral therapies. An in-depth understanding of intracellular signaling may hold the key to the relationship of both conventional drugs and nanoparticles. Within these strategies, first, nanotechnology has become an essential tool in oncotherapy, improving biopharmaceutical properties and providing new immunomodulatory profiles to conventional drugs mediated by activation of endoplasmic reticulum (ER) stress. Secondly, functional proteomics techniques based on microarrays have proven to be a successful method for high throughput screening of proteins and profiling of biomolecule mechanisms of action. Here, we conducted a systematic characterization of the antitumor profile of a platinum compound conjugated with iron oxide nanoparticles (IONPs). As a result of the nano-conjugation, cytotoxic and proteomics profiles revealed a significant improvement in the antitumor properties of the starting material, providing selectivity in certain tumor cell lines tested. Moreover, cell death patterns associated with immunogenic cell death (ICD) response have also been identified when ER signaling pathways have been triggered. The evaluation in several tumor cell lines and the analysis by functional proteomics techniques have shown novel perspectives on the design of new cisplatin-derived conjugates, the high value of IONPs as drug delivery systems and ICD as a rewarding approach for targeted oncotherapy and onco-immunotherapies.
Collapse
Affiliation(s)
- Ángela-Patricia Hernández
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), IBSAL, University of Salamanca-CSIC, Campus Miguel de Unamuno, s/n, 37007 Salamanca, Spain
- Department of Pharmaceutical Sciences, Organic Chemistry Section, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno, s/n, 37007 Salamanca, Spain
| | - Laura Iglesias-Anciones
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), IBSAL, University of Salamanca-CSIC, Campus Miguel de Unamuno, s/n, 37007 Salamanca, Spain
| | - José Javier Vaquero-González
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), IBSAL, University of Salamanca-CSIC, Campus Miguel de Unamuno, s/n, 37007 Salamanca, Spain
| | - Rafael Piñol
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-University of Zaragoza, 50009 Zaragoza, Spain
| | - Julio J Criado
- Department of Inorganic Chemistry, Faculty of Chemical Sciences, Plaza de los Caídos, s/n, 37008 Salamanca, Spain
| | - Emilio Rodriguez
- Department of Inorganic Chemistry, Faculty of Chemical Sciences, Plaza de los Caídos, s/n, 37008 Salamanca, Spain
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), IBSAL, University of Salamanca-CSIC, Campus Miguel de Unamuno, s/n, 37007 Salamanca, Spain
| | - Marina L García-Vaquero
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), IBSAL, University of Salamanca-CSIC, Campus Miguel de Unamuno, s/n, 37007 Salamanca, Spain
| | - Carlota Arias-Hidalgo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), IBSAL, University of Salamanca-CSIC, Campus Miguel de Unamuno, s/n, 37007 Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), IBSAL, University of Salamanca-CSIC, Campus Miguel de Unamuno, s/n, 37007 Salamanca, Spain
| | - Ángel Millán
- Institute of Nanoscience and Materials of Aragon (INMA), CSIC-University of Zaragoza, 50009 Zaragoza, Spain
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), IBSAL, University of Salamanca-CSIC, Campus Miguel de Unamuno, s/n, 37007 Salamanca, Spain
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
6
|
Hilo DH, Ismail AH, Al-Garawi ZS. Green Synthesis of Α-Fe2O3 from Ginger Extract Enhanced the Potential Antioxidant Activity Against DPPH. AL-MUSTANSIRIYAH JOURNAL OF SCIENCE 2022. [DOI: 10.23851/mjs.v33i4.1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthesis of nano-oxides in an easy and environmentally friendly way using simple and green materials is one of the hot interests of sustainable chemistry for lots of pharmaceutical and medical applications. Herein, we synthesized α-Fe2O3 nanoparticles (α-Fe2O3 NPs) using ginger extract after that calcination at 400 C° for 4 h. The prepared α-Fe2O3 nanoparticles were examined using ultraviolet-visible reflection spectroscopy (UV-VIS), Fourier Transform Infrared Spectroscopy (FTIR), photoluminescence spectroscopy (PL), X-ray diffraction (XRD), field emission scanning microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, and zeta potential. After well characterizations, the potency of the prepared α-Fe2O3 nanoparticles to monitor some scavenging activity was explored against DPPH. Results revealed that PL intensity has one peak in the UV region between (480-490) nm of the spectrum depending on the geometric shape and size of the α-Fe2O3 NPS. The UV-visible spectra showed a peak at 296.0 nm, which represented the α-Fe2O3 NPs. The EDX micrograph confirmed pure oxide and the XRD pattern showed that the α-Fe2O3 NPs had an average crystal size (19.3) nm. SEM images of α-Fe2O3 NPs revealed spherical, rod, and irregular shapes and sizes ranging from (15 to 60) nm. Moreover, the antioxidant activity of α-Fe2O3 NPs against DPPH showed 51.8% free radical scavenging ability at 360 μg/mL, which approved good evidence of the antioxidant activity of α-Fe2O3 NPs.
Collapse
|
7
|
Alsenousy AHA, El-Tahan RA, Ghazal NA, Piñol R, Millán A, Ali LMA, Kamel MA. The Anti-Obesity Potential of Superparamagnetic Iron Oxide Nanoparticles against High-Fat Diet-Induced Obesity in Rats: Possible Involvement of Mitochondrial Biogenesis in the Adipose Tissues. Pharmaceutics 2022; 14:pharmaceutics14102134. [PMID: 36297569 PMCID: PMC9607364 DOI: 10.3390/pharmaceutics14102134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Obesity is a pandemic disease that is rapidly growing into a serious health problem and has economic impact on healthcare systems. This bleak image has elicited creative responses, and nanotechnology is a promising approach in obesity treatment. This study aimed to investigate the anti-obesity effect of superparamagnetic iron oxide nanoparticles (SPIONs) on a high-fat-diet rat model of obesity and compared their effect to a traditional anti-obesity drug (orlistat). METHODS The obese rats were treated daily with orlistat and/or SPIONs once per week for 8 weeks. At the end of the experiment, blood samples were collected for biochemical assays. Then, the animals were sacrificed to obtain white adipose tissues (WAT) and brown adipose tissues (BAT) for assessment of the expression of thermogenic genes and mitochondrial DNA copy number (mtDNA-CN). RESULTS For the first time, we reported promising ameliorating effects of SPIONs treatments against weight gain, hyperglycemia, adiponectin, leptin, and dyslipidemia in obese rats. At the molecular level, surprisingly, SPIONs treatments markedly corrected the disturbed expression and protein content of inflammatory markers and parameters controlling mitochondrial biogenesis and functions in BAT and WAT. CONCLUSIONS SPIONs have a powerful anti-obesity effect by acting as an inducer of WAT browning and activator of BAT functions.
Collapse
Affiliation(s)
- Aisha H. A. Alsenousy
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
- Correspondence: (A.H.A.A.); (M.A.K.)
| | - Rasha A. El-Tahan
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
| | - Nesma A. Ghazal
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
| | - Rafael Piñol
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Angel Millán
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Lamiaa M. A. Ali
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
- IBMM, University Montpellier, CNRS, ENSCM, 34093 Montpellier, France
| | - Maher A. Kamel
- Department of Biochemistry, Medical Research Institute, Alexandria University, 165 El-Horeya Rd, Alexandria 21561, Egypt
- Correspondence: (A.H.A.A.); (M.A.K.)
| |
Collapse
|
8
|
Daniel AI, Umar MB, Tijani OJ, Muhammad R. Antidiabetic potentials of green-synthesized alpha iron oxide nanoparticles using stem extract of Securidaca longipedunculata. INTERNATIONAL NANO LETTERS 2022. [DOI: 10.1007/s40089-022-00377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Hernández ÁP, Micaelo A, Piñol R, García-Vaquero ML, Aramayona JJ, Criado JJ, Rodriguez E, Sánchez-Gallego JI, Landeira-Viñuela A, Juanes-Velasco P, Díez P, Góngora R, Jara-Acevedo R, Orfao A, Miana-Mena J, Muñoz MJ, Villanueva S, Millán Á, Fuentes M. Comprehensive and systematic characterization of multi-functionalized cisplatin nano-conjugate: from the chemistry and proteomic biocompatibility to the animal model. J Nanobiotechnology 2022; 20:341. [PMID: 35858906 PMCID: PMC9301860 DOI: 10.1186/s12951-022-01546-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background Nowadays, nanoparticles (NPs) have evolved as multifunctional systems combining different custom anchorages which opens a wide range of applications in biomedical research. Thus, their pharmacological involvements require more comprehensive analysis and novel nanodrugs should be characterized by both chemically and biological point of view. Within the wide variety of biocompatible nanosystems, iron oxide nanoparticles (IONPs) present mostly of the required features which make them suitable for multifunctional NPs with many biopharmaceutical applications. Results Cisplatin-IONPs and different functionalization stages have been broadly evaluated. The potential application of these nanodrugs in onco-therapies has been assessed by studying in vitro biocompatibility (interactions with environment) by proteomics characterization the determination of protein corona in different proximal fluids (human plasma, rabbit plasma and fetal bovine serum),. Moreover, protein labeling and LC–MS/MS analysis provided more than 4000 proteins de novo synthetized as consequence of the nanodrugs presence defending cell signaling in different tumor cell types (data available via ProteomeXchanges with identified PXD026615). Further in vivo studies have provided a more integrative view of the biopharmaceutical perspectives of IONPs. Conclusions Pharmacological proteomic profile different behavior between species and different affinity of protein coating layers (soft and hard corona). Also, intracellular signaling exposed differences between tumor cell lines studied. First approaches in animal model reveal the potential of theses NPs as drug delivery vehicles and confirm cisplatin compounds as strengthened antitumoral agents.
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01546-y.
Collapse
Affiliation(s)
- Ángela-Patricia Hernández
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,Department of Pharmaceutical Sciences. Organic Chemistry Section. Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Ania Micaelo
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Rafael Piñol
- INMA, Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, 50018, Saragossa, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Marina L García-Vaquero
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José J Aramayona
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Julio J Criado
- Department of Inorganic Chemistry, Faculty of Chemical Sciences, Plaza de los Caídos S/N, 37008, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Emilio Rodriguez
- Department of Inorganic Chemistry, Faculty of Chemical Sciences, Plaza de los Caídos S/N, 37008, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - José Ignacio Sánchez-Gallego
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Alicia Landeira-Viñuela
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Pablo Juanes-Velasco
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Paula Díez
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Rafael Góngora
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Ricardo Jara-Acevedo
- ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Alberto Orfao
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Javier Miana-Mena
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - María Jesús Muñoz
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Sergio Villanueva
- Department of Pharmacology and Physiology, University of Zaragoza, Zaragoza, Spain.,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain
| | - Ángel Millán
- INMA, Institute of Nanoscience and Materials of Aragon, CSIC-University of Zaragoza, 50018, Saragossa, Spain. .,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain.
| | - Manuel Fuentes
- Department of Medicine and General Cytometry Service-Nucleus, CIBERONC CB16/12/00400, Cancer Research Centre, (IBMCC/CSIC/USAL/IBSAL), University of Salamanca-CSIC, IBSAL, Campus Miguel de Unamuno s/n, 37007, Salamanca, Spain. .,ImmunoStep, SL, Edificio Centro de Investigación del Cáncer, University of Salamanca, Avda. Coimbra s/n, Campus Miguel de Unamuno, 37007, Salamanca, Spain. .,Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
10
|
Cameron SJ, Sheng J, Hosseinian F, Willmore WG. Nanoparticle Effects on Stress Response Pathways and Nanoparticle-Protein Interactions. Int J Mol Sci 2022; 23:7962. [PMID: 35887304 PMCID: PMC9323783 DOI: 10.3390/ijms23147962] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/01/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are increasingly used in a wide variety of applications and products; however, NPs may affect stress response pathways and interact with proteins in biological systems. This review article will provide an overview of the beneficial and detrimental effects of NPs on stress response pathways with a focus on NP-protein interactions. Depending upon the particular NP, experimental model system, and dose and exposure conditions, the introduction of NPs may have either positive or negative effects. Cellular processes such as the development of oxidative stress, the initiation of the inflammatory response, mitochondrial function, detoxification, and alterations to signaling pathways are all affected by the introduction of NPs. In terms of tissue-specific effects, the local microenvironment can have a profound effect on whether an NP is beneficial or harmful to cells. Interactions of NPs with metal-binding proteins (zinc, copper, iron and calcium) affect both their structure and function. This review will provide insights into the current knowledge of protein-based nanotoxicology and closely examines the targets of specific NPs.
Collapse
Affiliation(s)
- Shana J. Cameron
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - Jessica Sheng
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
| | - Farah Hosseinian
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
| | - William G. Willmore
- Department of Chemistry, Carleton University, Ottawa, ON K1S 5B6, Canada; (S.J.C.); (F.H.)
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada;
- Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
11
|
Metal nanoparticles: biomedical applications and their molecular mechanisms of toxicity. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02351-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Rampin A, Carrabba M, Mutoli M, Eman CL, Testa G, Madeddu P, Spinetti G. Recent Advances in KEAP1/NRF2-Targeting Strategies by Phytochemical Antioxidants, Nanoparticles, and Biocompatible Scaffolds for the Treatment of Diabetic Cardiovascular Complications. Antioxid Redox Signal 2022; 36:707-728. [PMID: 35044251 DOI: 10.1089/ars.2021.0134] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Significance: Modulation of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)-mediated antioxidant response is a key aspect in the onset of diabetes-related cardiovascular complications. With this review, we provide an overview of the recent advances made in the development of Nrf2-targeting strategies for the treatment of diabetes, with particular attention toward the activation of Nrf2 by natural antioxidant compounds, nanoparticles, and oxidative stress-modulating biocompatible scaffolds. Recent Advances: In the past 30 years, studies addressing the use of antioxidant therapies to treat diabetes have grown exponentially, showing promising but yet inconclusive results. Animal studies and clinical trials on the Nrf2 pathway have shown promising results, suggesting that its activation can delay or reverse some of the cardiovascular impairments in diabetes. Critical Issues: Hyperglycemia- and oscillating glucose levels-induced reactive oxygen species (ROS) accumulation is progressively emerging as a central factor in the onset and progression of diabetes-related cardiovascular complications, including endothelial dysfunction, retinopathy, heart failure, stroke, critical limb ischemia, ulcers, and delayed wound healing. In this context, accumulating evidence suggests a central role for Nrf2-mediated antioxidant response, one of the most studied cellular defensive mechanisms against ROS accumulation. Future Directions: Innovative approaches such as tissue engineering and nanotechnology are converging toward targeting oxidative stress in diabetes. Antioxid. Redox Signal. 36, 707-728.
Collapse
Affiliation(s)
- Andrea Rampin
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Michele Carrabba
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Martina Mutoli
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Charlotte L Eman
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| | - Gianluca Testa
- Department of Medicine and Health Sciences, "V. Tiberio" University of Molise, Campobasso, Italy.,Interdepartmental Center for Nanotechnology Research-NanoBem, University of Molise, Campobasso, Italy
| | - Paolo Madeddu
- Laboratory of Experimental Cardiovascular Medicine, University of Bristol, Bristol, England, United Kingdom
| | - Gaia Spinetti
- Laboratory of Cardiovascular Physiopathology-Regenerative Medicine, IRCCS MultiMedica, Milan, Italy
| |
Collapse
|
13
|
Kwizera EA, Stewart S, Mahmud MM, He X. Magnetic Nanoparticle-Mediated Heating for Biomedical Applications. JOURNAL OF HEAT TRANSFER 2022; 144:030801. [PMID: 35125512 PMCID: PMC8813031 DOI: 10.1115/1.4053007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/03/2021] [Indexed: 05/17/2023]
Abstract
Magnetic nanoparticles, especially superparamagnetic nanoparticles (SPIONs), have attracted tremendous attention for various biomedical applications. Facile synthesis and functionalization together with easy control of the size and shape of SPIONS to customize their unique properties, have made it possible to develop different types of SPIONs tailored for diverse functions/applications. More recently, considerable attention has been paid to the thermal effect of SPIONs for the treatment of diseases like cancer and for nanowarming of cryopreserved/banked cells, tissues, and organs. In this mini-review, recent advances on the magnetic heating effect of SPIONs for magnetothermal therapy and enhancement of cryopreservation of cells, tissues, and organs, are discussed, together with the non-magnetic heating effect (i.e., high Intensity focused ultrasound or HIFU-activated heating) of SPIONs for cancer therapy. Furthermore, challenges facing the use of magnetic nanoparticles in these biomedical applications are presented.
Collapse
Affiliation(s)
- Elyahb Allie Kwizera
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Samantha Stewart
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Md Musavvir Mahmud
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742
| | - Xiaoming He
- Fischell Department of Bioengineering, University of Maryland, 8278 Paint Branch Drive, College Park, MD 20742; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
14
|
Therapeutic approaches targeting molecular signaling pathways common to diabetes, lung diseases and cancer. Adv Drug Deliv Rev 2021; 178:113918. [PMID: 34375681 DOI: 10.1016/j.addr.2021.113918] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/23/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM), is the most common metabolic disease and is characterized by sustained hyperglycemia. Accumulating evidences supports a strong association between DM and numerous lung diseases including chronic obstructive pulmonary disease (COPD), fibrosis, and lung cancer (LC). The global incidence of DM-associated lung disorders is rising and several ongoing studies, including clinical trials, aim to elucidate the molecular mechanisms linking DM with lung disorders, in particular LC. Several potential mechanisms, including hyperglycemia, hyperinsulinemia, glycation, inflammation, and hypoxia, are cited as plausible links between DM and LC. In addition, studies also propose a connection between the use of anti-diabetic medications and reduction in the incidence of LC. However, the exact cause for DM associated lung diseases especially LC is not clear and is an area under intense investigation. Herein, we review the biological links reported between DM and lung disorders with an emphasis on LC. Furthermore, we report common signaling pathways (eg: TGF-β, IL-6, HIF-1, PDGF) and miRNAs that are dysregulated in DM and LC and serve as molecular targets for therapy. Finally, we propose a nanomedicine based approach for delivering therapeutics (eg: IL-24 plasmid DNA, HuR siRNA) to disrupt signaling pathways common to DM and LC and thus potentially treat DM-associated LC. Finally, we conclude that the effective modulation of commonly regulated signaling pathways would help design novel therapeutic protocols for treating DM patients diagnosed with LC.
Collapse
|
15
|
Suciu M, Mirescu C, Crăciunescu I, Macavei SG, Leoștean C, Ştefan R, Olar LE, Tripon SC, Ciorîță A, Barbu-Tudoran L. In Vivo Distribution of Poly(ethylene glycol) Functionalized Iron Oxide Nanoclusters: An Ultrastructural Study. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2184. [PMID: 34578500 PMCID: PMC8469409 DOI: 10.3390/nano11092184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/10/2023]
Abstract
The in vivo distribution of 50 nm clusters of polyethylene glycol-conjugated superparamagnetic iron oxide nanoparticles (SPIONs-PEG) was conducted in this study. SPIONs-PEG were synthesized de novo, and their structure and paramagnetic behaviors were analyzed by specific methods (TEM, DLS, XRD, VSM). Wistar rats were treated with 10 mg Fe/kg body weight SPIONs-PEG and their organs and blood were examined at two intervals for short-term (15, 30, 60, 180 min) and long-term (6, 12, 24 h) exposure evaluation. Most exposed organs were investigated through light and transmission electron microscopy, and blood and urine samples were examined through fluorescence spectrophotometry. SPIONs-PEG clusters entered the bloodstream after intraperitoneal and intravenous administrations and ended up in the urine, with the highest clearance at 12 h. The skin and spleen were within normal histological parameters, while the liver, kidney, brain, and lungs showed signs of transient local anoxia or other transient pathological affections. This study shows that once internalized, the synthesized SPIONs-PEG disperse well through the bloodstream with minor to nil induced tissue damage, are biocompatible, have good clearance, and are suited for biomedical applications.
Collapse
Affiliation(s)
- Maria Suciu
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (M.S.); (C.M.); (S.-C.T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| | - Claudiu Mirescu
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (M.S.); (C.M.); (S.-C.T.)
| | - Izabell Crăciunescu
- Physics of Nanostructured Systems Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.C.); (S.G.M.); (C.L.)
| | - Sergiu Gabriel Macavei
- Physics of Nanostructured Systems Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.C.); (S.G.M.); (C.L.)
| | - Cristian Leoștean
- Physics of Nanostructured Systems Department, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania; (I.C.); (S.G.M.); (C.L.)
| | - Rǎzvan Ştefan
- Research Centre for Biophysics, Life Sciences Institute, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania; (R.Ş.); (L.E.O.)
| | - Loredana E. Olar
- Research Centre for Biophysics, Life Sciences Institute, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Manastur St., 400372 Cluj-Napoca, Romania; (R.Ş.); (L.E.O.)
| | - Septimiu-Cassian Tripon
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (M.S.); (C.M.); (S.-C.T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| | - Alexandra Ciorîță
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (M.S.); (C.M.); (S.-C.T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Electron Microscopy Centre, Faculty of Biology and Geology, Babeș-Bolyai University, 44 Republicii St., 400015 Cluj-Napoca, Romania; (M.S.); (C.M.); (S.-C.T.)
- Integrated Electron Microscopy Laboratory, National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat St., 400293 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Metal Oxide Nanoparticles: Evidence of Adverse Effects on the Male Reproductive System. Int J Mol Sci 2021; 22:ijms22158061. [PMID: 34360825 PMCID: PMC8348343 DOI: 10.3390/ijms22158061] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metal oxide nanoparticles (MONPs) are inorganic materials that have become a valuable tool for many industrial sectors, especially in healthcare, due to their versatility, unique intrinsic properties, and relatively inexpensive production cost. As a consequence of their wide applications, human exposure to MONPs has increased dramatically. More recently, their use has become somehow controversial. On one hand, MONPs can interact with cellular macromolecules, which makes them useful platforms for diagnostic and therapeutic interventions. On the other hand, research suggests that these MONPs can cross the blood–testis barrier and accumulate in the testis. Although it has been demonstrated that some MONPs have protective effects on male germ cells, contradictory reports suggest that these nanoparticles compromise male fertility by interfering with spermatogenesis. In fact, in vitro and in vivo studies indicate that exposure to MONPs could induce the overproduction of reactive oxygen species, resulting in oxidative stress, which is the main suggested molecular mechanism that leads to germ cells’ toxicity. The latter results in subsequent damage to proteins, cell membranes, and DNA, which ultimately may lead to the impairment of the male reproductive system. The present manuscript overviews the therapeutic potential of MONPs and their biomedical applications, followed by a critical view of their potential risks in mammalian male fertility, as suggested by recent scientific literature.
Collapse
|
17
|
Szunerits S, Melinte S, Barras A, Pagneux Q, Voronova A, Abderrahmani A, Boukherroub R. The impact of chemical engineering and technological advances on managing diabetes: present and future concepts. Chem Soc Rev 2021; 50:2102-2146. [PMID: 33325917 DOI: 10.1039/c9cs00886a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Monitoring blood glucose levels for diabetic patients is critical to achieve tight glycaemic control. As none of the current antidiabetic treatments restore lost functional β-cell mass in diabetic patients, insulin injections and the use of insulin pumps are most widely used in the management of glycaemia. The use of advanced and intelligent chemical engineering, together with the incorporation of micro- and nanotechnological-based processes have lately revolutionized diabetic management. The start of this concept goes back to 1974 with the description of an electrode that repeatedly measures the level of blood glucose and triggers insulin release from an infusion pump to enter the blood stream from a small reservoir upon need. Next to the insulin pumps, other drug delivery routes, including nasal, transdermal and buccal, are currently investigated. These processes necessitate competences from chemists, engineers-alike and innovative views of pharmacologists and diabetologists. Engineered micro and nanostructures hold a unique potential when it comes to drug delivery applications required for the treatment of diabetic patients. As the technical aspects of chemistry, biology and informatics on medicine are expanding fast, time has come to step back and to evaluate the impact of technology-driven chemistry on diabetics and how the bridges from research laboratories to market products are established. In this review, the large variety of therapeutic approaches proposed in the last five years for diabetic patients are discussed in an applied context. A survey of the state of the art of closed-loop insulin delivery strategies in response to blood glucose level fluctuation is provided together with insights into the emerging key technologies for diagnosis and drug development. Chemical engineering strategies centered on preserving and regenerating functional pancreatic β-cell mass are evoked in addition as they represent a permanent solution for diabetic patients.
Collapse
Affiliation(s)
- Sabine Szunerits
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Sorin Melinte
- Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Alexandre Barras
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Quentin Pagneux
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Anna Voronova
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Amar Abderrahmani
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520-IEMN, F-59000 Lille, France.
| |
Collapse
|
18
|
Norouzi Jobie F, Ranjbar M, Hajizadeh Moghaddam A, Kiani M. Green synthesis of zinc oxide nanoparticles using Amygdalus scoparia Spach stem bark extract and their applications as an alternative antimicrobial, anticancer, and anti-diabetic agent. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Antimicrobial and Wound Healing Properties of FeO Fabricated Chitosan/PVA Nanocomposite Sponge. Antibiotics (Basel) 2021; 10:antibiotics10050524. [PMID: 34063621 PMCID: PMC8147619 DOI: 10.3390/antibiotics10050524] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic and anemia-associated diabetic wounds increase the considerable morbidity and mortality in people, as reported by clinical studies. However, no anemia-associated diabetic wound dressing materials have been developed until now. Hence, this study aimed to develop a nanocomposite scaffold composed of chitosan (CS), poly (vinyl alcohol) (PVA), and phytogenic iron oxide nanoparticles (FeO NPs), for accelerated anemia-associated diabetic wound healing. The aqueous leaves extract of Pinus densiflora (PD) was utilized for the synthesis of iron oxide nanoparticles (FeO NPs). TEM and elemental analysis confirmed smaller size PD-FeO NPs (<50 nm) synthesis with the combination of iron and oxide. In addition, in vitro biological studies displayed the moderate antioxidant, antidiabetic activities, and considerable antibacterial activity of PD-FeO NPs. Further, the different concentrations of PD-FeO NPs (0.01, 0.03, and 0.05%) incorporated CS/PVA nanocomposites sponges were developed by the freeze-drying method. The porous structured morphology and the presence of PD-FeO NPs were observed under FE-SEM. Among nanocomposite sponges, PD-FeO NPs (0.01%) incorporated CS/PVA sponges were further chosen for the in vitro wound-healing assay, based on the porous and water sorption nature. Furthermore, the in vitro wound-healing assay revealed that PD-FeO NPs (0.01%) incorporated CS/PVA has significantly increased the cell proliferation in HEK293 cells. In conclusion, the CS/PVA-PD-FeO NPs (0.01%) sponge would be recommended for diabetic wound dressing after a detailed in vivo evaluation.
Collapse
|
20
|
Eser N, Yoldas A, Turk A, Kalaycı Yigin A, Yalcin A, Cicek M. Ameliorative effects of garlic oil on FNDC5 and irisin sensitivity in liver of streptozotocin-induced diabetic rats. J Pharm Pharmacol 2021; 73:824-834. [PMID: 33739409 DOI: 10.1093/jpp/rgab023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/28/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study was aimed to investigate the effects of garlic oil (GO), an important natural constituent used in alleviating diabetes and its complications, on the expression levels of irisin and related genes. METHODS Thirty-two rats were divided into four groups: Control, Diabetes-Control, Diabetes+GO 100 mg/kg/day and Control+GO 100 mg/kg/day for 45 days. The measurements included: changes in liver Peroxisome proliferator-activated receptor-gamma-coactivator (PGC)-1α, Fibronectin Type-III-Domain-Containing5 (FNDC5), irisin expression, mRNA expression of p38 and TNF-α (Tumour necrosis factor-α), total-antioxidant-status (L-TAS; S-TAS), total-oxidant-status (L-TOS; S-TOS) in liver and serum, respectively. KEY FINDINGS There was a significant reduction in serum levels of irisin and S-TAS and expression of PGC-1α and FNDC5 in liver in Diabetes-control compared to Control-group, while a significant increase in serum levels of fasting blood glucose (FBG) and TOS, also p38 and TNF-α expressions in liver. In Diabetes+GO group, there was a significant increase in serum irisin and S-TAS, also expression of PGC-1α and FNDC5 in liver, while serum FBG, S-TOS levels, and mRNA expression of p38 and TNF-α in liver were decreased compared to Diabetes-control group (P < 0.05). CONCLUSIONS GO alleviated the diabetic liver injury by decreasing Oxidative-Stress parameters and regulation PGC-lα, FNDC5, irisin and P38, keeping the balance of TAS/TOS and TNF-α.
Collapse
Affiliation(s)
- Nadire Eser
- Department of Pharmacology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Atila Yoldas
- Department of Anatomy, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Ahmet Turk
- Department of Histology and Embryology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - Aysel Kalaycı Yigin
- Department of Genetic, Faculty of Medicine, Istanbul Cerrahpasa University, Istanbul, Turkey
| | - Alper Yalcin
- Department of Histology and Embryology, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| | - Mustafa Cicek
- Department of Anatomy, Faculty of Medicine, Kahramanmaras Sutcu Imam University, Kahramanmaras, Turkey
| |
Collapse
|
21
|
Dramou P, Dahn SL, Wang F, Sun Y, Song Z, Liu H, He H. Current review about design's impact on analytical achievements of magnetic graphene oxide nanocomposites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|