1
|
Nascimento AL, Pereira JHS, Caldas BV, Guimarães VHD, Monteiro-Junior RS, Paula AMB, Guimarães ALS, Pereira UA, Santos SHS. Dietary Supplementation with Apis mellifera Wholemeal Flour Reduces Hepatic Steatosis in Obese Mice. J Med Food 2024; 27:545-551. [PMID: 38770674 DOI: 10.1089/jmf.2023.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Affiliation(s)
- Aline L Nascimento
- Instituto de Ciências Agrárias (ICA), Postgraduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Brazil
| | - Joyce H S Pereira
- Laboratory of Health Sciences, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Brazil
| | - Bruna V Caldas
- Instituto de Ciências Agrárias (ICA), Postgraduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Brazil
| | - Victor H D Guimarães
- Laboratory of Health Sciences, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Brazil
| | - Renato S Monteiro-Junior
- Laboratory of Health Sciences, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Brazil
| | - Alfredo M B Paula
- Laboratory of Health Sciences, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Brazil
| | - André L S Guimarães
- Laboratory of Health Sciences, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Brazil
| | - Ulisses A Pereira
- Instituto de Ciências Agrárias (ICA), Postgraduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Brazil
| | - Sérgio H S Santos
- Instituto de Ciências Agrárias (ICA), Postgraduate Program in Food and Health, Universidade Federal de Minas Gerais (UFMG), Montes Claros, Brazil
- Laboratory of Health Sciences, Postgraduate Program in Health Sciences, Universidade Estadual de Montes Claros (UNIMONTES), Montes Claros, Brazil
| |
Collapse
|
2
|
Zhang L, Shi Y, Liang B, Li X. An overview of the cholesterol metabolism and its proinflammatory role in the development of MASLD. Hepatol Commun 2024; 8:e0434. [PMID: 38696365 PMCID: PMC11068152 DOI: 10.1097/hc9.0000000000000434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 05/04/2024] Open
Abstract
Cholesterol is an essential lipid molecule in mammalian cells. It is not only involved in the formation of cell membranes but also serves as a raw material for the synthesis of bile acids, vitamin D, and steroid hormones. Additionally, it acts as a covalent modifier of proteins and plays a crucial role in numerous life processes. Generally, the metabolic processes of cholesterol absorption, synthesis, conversion, and efflux are strictly regulated. Excessive accumulation of cholesterol in the body is a risk factor for metabolic diseases such as cardiovascular disease, type 2 diabetes, and metabolic dysfunction-associated steatotic liver disease (MASLD). In this review, we first provide an overview of the discovery of cholesterol and the fundamental process of cholesterol metabolism. We then summarize the relationship between dietary cholesterol intake and the risk of developing MASLD, and also the animal models of MASLD specifically established with a cholesterol-containing diet. In the end, the role of cholesterol-induced inflammation in the initiation and development of MASLD is discussed.
Collapse
Affiliation(s)
- Linqiang Zhang
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Yongqiong Shi
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| | - Bin Liang
- Center for Life Sciences, Yunnan Key Laboratory of Cell Metabolism and Diseases, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xi Li
- Institute of Life Sciences, School of Basic Medicine, Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Cai Z, Deng L, Fan Y, Ren Y, Ling Y, Tu J, Cai Y, Xu X, Chen M. Dysregulation of Ceramide Metabolism Is Linked to Iron Deposition and Activation of Related Pathways in the Aorta of Atherosclerotic Miniature Pigs. Antioxidants (Basel) 2023; 13:4. [PMID: 38275624 PMCID: PMC10812416 DOI: 10.3390/antiox13010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
The miniature pig is a suitable animal model for investigating human cardiovascular diseases. Nevertheless, the alterations in lipid metabolism within atherosclerotic plaques of miniature pigs, along with the underlying mechanisms, remain to be comprehensively elucidated. In this study, we aim to examine the alterations in lipid composition and associated pathways in the abdominal aorta of atherosclerotic pigs induced by a high-fat, high-cholesterol, and high-fructose (HFCF) diet using lipidomics and RNA-Seq methods. The results showed that the content and composition of aortic lipid species, particularly ceramide, hexosyl ceramide, lysophosphatidylcholine, and triglyceride, were significantly altered in HFCF-fed pigs. Meanwhile, the genes governing sphingolipid metabolism, iron ion homeostasis, apoptosis, and the inflammatory response were significantly regulated by the HFCF diet. Furthermore, C16 ceramide could promote iron deposition in RAW264.7 cells, leading to increased intracellular reactive oxygen species (ROS) production, apoptosis, and activation of the toll-like receptor 4 (TLR4)/nuclear Factor-kappa B (NF-қB) inflammatory pathway, which could be mitigated by deferoxamine. Our study demonstrated that dysregulated ceramide metabolism could increase ROS production, apoptosis, and inflammatory pathway activation in macrophages by inducing iron overload, thus playing a vital role in the pathogenesis of atherosclerosis. This discovery could potentially provide a new target for pharmacological therapy of cardiovascular diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Zhaowei Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Liqun Deng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
| | - Yingying Fan
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
| | - Yujie Ren
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
| | - Yun Ling
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
| | - Jue Tu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
- Key Laboratory of Blood-Stasis-Toxin Syndrome of Zhejiang Province, Hangzhou 310053, China
| | - Yueqin Cai
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
| | - Xiaoping Xu
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
| | - Minli Chen
- Laboratory Animal Research Center, Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.L.); (J.T.); (Y.C.); (X.X.)
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China; (L.D.); (Y.F.); (Y.R.)
| |
Collapse
|
4
|
Shen L, Wang J, Pan Y, Huang J, Zhu K, Tu H, Chen M. Characteristics of Metabolites in the Development of Atherosclerosis in Tibetan Minipigs Determined Using Untargeted Metabolomics. Nutrients 2023; 15:4425. [PMID: 37892500 PMCID: PMC10609677 DOI: 10.3390/nu15204425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Atherosclerosis (AS) is a chronic progressive disease caused by lipometabolic disorder. However, the pathological characteristics and mechanism of AS have not been fully clarified. Through high-fat and high-cholesterol diet induction, Tibetan minipigs can be used as the AS model animals, as they have a very similar AS pathogenesis to humans. METHODS In this study, we built an AS model of Tibetan minipigs and identified the differential abundance metabolites in the development of AS based on untargeted metabolomics. RESULTS We found that sphingolipid metabolism and glucose oxidation were obviously higher in the AS group and phenylalanine metabolism was reduced in the AS group. Moreover, in the development of AS, gluconolactone was enriched in the late stage of AS whereas biopterin was enriched in the early stage of AS. CONCLUSIONS Our research provides novel clues to investigate the metabolic mechanism of AS from the perspective of metabolomics.
Collapse
Affiliation(s)
- Liye Shen
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310024, China; (L.S.); (Y.P.); (J.H.); (K.Z.); (H.T.)
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Jinlong Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou 310024, China;
| | - Yongming Pan
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310024, China; (L.S.); (Y.P.); (J.H.); (K.Z.); (H.T.)
| | - Junjie Huang
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310024, China; (L.S.); (Y.P.); (J.H.); (K.Z.); (H.T.)
| | - Keyan Zhu
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310024, China; (L.S.); (Y.P.); (J.H.); (K.Z.); (H.T.)
| | - Haiye Tu
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310024, China; (L.S.); (Y.P.); (J.H.); (K.Z.); (H.T.)
| | - Minli Chen
- Academy of Chinese Medicine & Institute of Comparative Medicine, Zhejiang Chinese Medical University, Hangzhou 310024, China; (L.S.); (Y.P.); (J.H.); (K.Z.); (H.T.)
| |
Collapse
|
5
|
Wang H, Fu Y, Gu P, Zhang Y, Tu W, Chao Z, Wu H, Cao J, Zhou X, Liu B, Michal JJ, Fan C, Tan Y. Genome-Wide Characterization and Comparative Analyses of Simple Sequence Repeats among Four Miniature Pig Breeds. Animals (Basel) 2020; 10:ani10101792. [PMID: 33023098 PMCID: PMC7600727 DOI: 10.3390/ani10101792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/15/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Simple sequence repeats (SSRs) are present at high densities in regulatory elements, suggesting that they may affect gene function and phenotypic traits. Therefore, SSRs can be exploited in marker-assisted selection. In addition, they can be widely used as molecular markers to study genetic diversity, population structure, and evolution. While SSRs have been widely studied in many mammalian species, very little research has focused on genome-wide SSRs of miniature pigs, a small but special group of pigs that express the dwarf phenotype. Based on the SSR-enriched library building and sequencing, about 30,000 novel polymorphic SSRs for four miniature pig breeds were mapped to the Duroc pig reference genome. The four miniature pig breeds had different numbers and types of SSRs and distributions of repeat units. There were 2518 polymorphic SSRs in the intron or exon regions that were common to all four breeds and functional analyses revealed 17 genes that were associated with body size and other genes that were associated with growth and development. In conclusion, the SSRs detected in the miniature pigs in this study may provide useful genetic markers for the selection of farm animals and the polymorphic SSRs provide valuable insights into the determination of mature body size, as well as the immunity, growth and development of animals. Abstract Simple sequence repeats (SSRs) are commonly used as molecular markers in research on genetic diversity and discrimination among taxa or breeds because polymorphisms in these regions contribute to gene function and phenotypically important traits. In this study, we investigated genome-wide characteristics, repeat units, and polymorphisms of SSRs using sequencing data from SSR-enriched libraries created from Wuzhishan (WZS), Bama (BM), inbred Luchuan (LC) and Zangxiang (ZX) miniature pig breeds. The numbers and types of SSRs, distributions of repeat units and polymorphic SSRs varied among the four breeds. Compared to the Duroc pig reference genome, 2518 polymorphic SSRs were unique and common to all four breeds and functional annotation revealed that they may affect the coding and regulatory regions of genes. Several examples, such as FGF23, MYF6, IGF1R, and LEPROT, are associated with growth and development in pigs. Three of the polymorphic SSRs were selected to confirm the polymorphism and the corresponding alleles through fluorescence polymerase chain reaction (PCR) and capillary electrophoresis. Together, this study provides useful insights into the discovery, characteristics and distribution of SSRs in four pig breeds. The polymorphic SSRs, especially those common and unique to all four pig breeds, might affect associated genes and play important roles in growth and development.
Collapse
Affiliation(s)
- Hongyang Wang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Yang Fu
- Research Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Peng Gu
- Institute of Comparative Medicine & Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China;
| | - Yingying Zhang
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Weilong Tu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Zhe Chao
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China;
| | - Huali Wu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Jianguo Cao
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (B.L.)
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (B.L.)
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA;
| | - Chun Fan
- Shanghai Laboratory Animal Research Center, Shanghai 201203, China;
| | - Yongsong Tan
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China; (H.W.); (Y.Z.); (W.T.); (H.W.); (J.C.)
- Shanghai Engineering Research Center of Breeding Pig, Shanghai 201302, China
- Correspondence: ; Tel.: +86-021-34505325
| |
Collapse
|