1
|
Wang L, Jia Q, He J, Li Y. Adipose tissue-targeting nanomedicines for obesity pharmacotherapy. Trends Endocrinol Metab 2025:S1043-2760(25)00055-4. [PMID: 40234177 DOI: 10.1016/j.tem.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 04/17/2025]
Abstract
The increasing global prevalence of obesity presents a substantial challenge to public health. Current nutrient-stimulated hormone (NuSH)-based therapeutics are hindered by receptor desensitization, muscle loss, and weight regain. The adipose tissue, the primary organ responsible for energy storage and metabolic management, is a promising target for obesity treatment. Nanomedicine holds promise to precisely deliver medication to the adipose tissue to maximize therapeutic efficacy and minimize off-target effects; indeed, various adipose tissue-targeting nanomedicines have shown impressive anti-obesity effects by optimizing drug pharmacokinetic profiles and reducing nonspecific distribution in preclinical studies. Here we examine the current state of the art of adipose tissue-targeting nanomedicines, offering insights into recent advances, future possibilities, and the remaining challenges associated with their application in obesity treatment.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qingyi Jia
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Yanping Li
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
2
|
Fallah A, Imani Fooladi AA, Havaei SA, Mahboobi M, Sedighian H. Recent advances in aptamer discovery, modification and improving performance. Biochem Biophys Rep 2024; 40:101852. [PMID: 39525567 PMCID: PMC11546948 DOI: 10.1016/j.bbrep.2024.101852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/06/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Aptamers are nucleic acid (Ribonucleic acid (RNA) and single strand deoxyribonucleic acid (ssDNA)) with a length of approximately 25-80 bases that can bind to particular target molecules, similar to monoclonal antibodies. Due to their many benefits, which include a long shelf life, minimal batch-to-batch variations, extremely low immunogenicity, the possibility of chemical modifications for improved stability, an extended serum half-life, and targeted delivery, they are receiving a lot of attention in a variety of clinical applications. The development of high-affinity modification approaches has attracted significant attention in aptamer applications. Stable three-dimensional aptamers that have undergone chemical modification can engage firmly with target proteins through improved non-covalent binding, potentially leading to hundreds of affinity improvements. This review demonstrates how cutting-edge methodologies for aptamer discovery are being developed to consistently and effectively construct high-performing aptamers that need less money and resources yet have a high chance of success. Also, High-affinity aptamer modification techniques were discussed.
Collapse
Affiliation(s)
- Arezoo Fallah
- Department of Bacteriology and Virology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Seyed Asghar Havaei
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdieh Mahboobi
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Zhang Y, Pu Y, Deng Y, Liu B, Chen K, Xu Y, Tan W, Liu H, Wang J. Therapeutic of a white adipose tissue-specific bivalent aptamer in obesity. Biochem Pharmacol 2024; 227:116452. [PMID: 39059772 DOI: 10.1016/j.bcp.2024.116452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The white adipose tissue-specific aptamer Adipo8 can specificity bindwith mature adipocytes or tissues and inhibit adipogenesis.In this research, we exploredthe effect of Adipo8 intervention on the transcriptome in the process of adipogenesis using mRNA-level sequencing,analyzed the mechanism ofAdipo8 ininhibiting adipogenesis. The results showed that Adipo8 can inhibit lipid formation and downregulate PPARγ and C/EBPα in differentiated 3 T3-L1 cells. Transcriptome mRNA sequencing of 3 T3-L1 cells after Adipo8 interventionrevealed that Adipo8 might inhibit the biological function of adipogenesis by downregulating Acsl1 and Plin1 to inhibit fatty acid metabolism and PPAR signaling pathways.After that, using Spacer18 to connect the optimized and truncated Adipo8, we constructed a bivalent aptamer Adipo8cBand compared the affinity, biological effects, and biological stability between the aptamers in differentiated and mature 3 T3-L1 cells. At the cellular level,the affinity, biological effects, and serum stability of Adipo8cB were verified to be superior to those of Adipo8in 3 T3-L1 cells.We then investigated the biological properties of Adipo8cB as a lipid-inhibiting drug invivo, using C57BL/6J mice with diet-induced obesity. The body weight, blood sugar, lipid levels, liver function, glucose tolerance, and other related indicators in each group of mice were observed and compared after intervention with the bivalent aptamers Adipo8cB and Adipo8. Both Adipo8cB and Adipo8 effectively prevented weight gain caused by fat accumulation in micewith diet induced obesity, while also reducing blood lipid levels, improving glucose tolerance, and protecting against liver steatosis, moreover, Adipo8cB has a better effect than Adipo8.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Ying Pu
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Yuanyuan Deng
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Bo Liu
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Ke Chen
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Yiling Xu
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan, 410082, China; The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Huixia Liu
- Department of Geriatric Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China
| | - Jinwei Wang
- Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, 410008, China.
| |
Collapse
|
4
|
Abbas MA, Al-Saigh NN, Saqallah FG. Regulation of adipogenesis by exosomal milk miRNA. Rev Endocr Metab Disord 2023; 24:297-316. [PMID: 36692804 DOI: 10.1007/s11154-023-09788-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Milk is a rich source of miRNA packaged in exosomes. Evidence for the systemic uptake and tissue distribution of milk exosomes was reported in newborn and adult humans and animals. Breastfeeding in infants was associated with a reduced risk of obesity. Numerous adipogenesis-related miRNAs have been detected in human milk exosomes. It has been demonstrated that ingested exosomal milk miRNAs may alter gene expression in offspring to regulate their metabolism and growth. In humans, consumption of other species' milk, such as cows and goats, is continued through adulthood. Since miRNAs are conserved, the concern of cross-species transfer of adipogenic miRNA has been raised in recent years, and the increase in obesity worldwide was attributed partially to dairy milk consumption by humans. However, evidence is still weak. Research emphasizes the need for an adequate number of exosomal milk's miRNAs to reach the target cell for biological action to be achieved. It was reported that obese women's milk had less miRNA-148a and miRNA-30b, which may affect the fat acquisition of their babies. Some exosomal milk miRNAs, such as miRNA-29, miRNA-148, miRNA-30b and miRNA-125b, may have epigenetic effects on milk recipients. Moreover, the ability of milk exosomes to cross the gastrointestinal barrier makes them a promising oral drug delivery tool. Yet, exosomes may also be tagged with specific ligands which target certain tissues. Thus, milk exosomes can be engineered and loaded with certain miRNAs responsible for adipocyte differentiation, conversion, or browning. Modifications in the miRNA cargo of exosomes can benefit human health and be an alternative to traditional drugs.
Collapse
Affiliation(s)
- Manal A Abbas
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, 19328, Jordan.
- Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, 19328, Jordan.
| | - Noor Nadhim Al-Saigh
- Department of Basic Medical Sciences, Faculty of Medicine, Ibn Sina University for Medical Siences, Amman, 11104, Jordan
| | - Fadi G Saqallah
- Discipline of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
5
|
Tian J, He X, Lan X, Liang X, Zhong Z, Zhu L, Chen K, Chang Q, Xu W. One-Pot Controllable Assembly of a Baicalin-Condensed Aptamer Nanodrug for Synergistic Anti-Obesity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205933. [PMID: 36461678 DOI: 10.1002/smll.202205933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Indexed: 06/17/2023]
Abstract
The rapid, simple and low-cost preparation of DNA micro-nano-architectures remain challenging in biosensing and therapy. Polymerase chain reaction (PCR)-driven DNA micro-nano-flowers are used to construct a nanosized baicalin-compressed-aptamer-nanodrug (bcaND) via one-pot assembly for targeted and synergistic anti-obesity. In the design, the tailored Adipo-8 (tAdi-8) overhang in the PCR amplicon displays anti-obesity targeting activity, while the baicalin loaded in the bcaND by embedding the amplicon plays a three-fold role as a lipid-lowering factor, bcaND size compressor, and uncoupling protein-1 (UCP1)-raised thermogenic activator. The ingenious bcaND represents an advanced multifunctional nanomaterial capable of adjusting the morphology at an optimal 400/1 molar ratio of Mg2+ to phosphate groups, compressing the size from 2.699 µm to 214.76 nm using 1 mg/mL baicalin at a temperature of 70 °C, an effective payload with amplicons of up to 98.94%, and a maximum baicalin load of 86.21 g/g DNA. Responsive release in acidic conditions (pH 5.0) occurs within 72 h, accelerating thermogenesis via UCP1 up-regulation by 2.5-fold in 3T3-L1-preadipocytes and 13.7-fold in the white-adipose-tissue (WAT) of mice, targeting adipocytes and visceral white adipose tissue. It plays an efficient synergistic role in obesity therapy in vitro and in vivo, providing a new direction for DNA self-assembly nanotechnology.
Collapse
Affiliation(s)
- Jingjing Tian
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyun He
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xinyue Lan
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Xingxing Liang
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Zhaobin Zhong
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Longjiao Zhu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Keren Chen
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Qiaoying Chang
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Wentao Xu
- Food Laboratory of Zhongyuan, Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety) (MOA), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
6
|
Su J, Li H, Lin B, Li S, Zhou X, Li W, Guo P. Proteomic Analysis of Meibomian Gland Secretions in Patients With Blepharokeratoconjunctivitis. Transl Vis Sci Technol 2022; 11:4. [DOI: 10.1167/tvst.11.12.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Jingjing Su
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Hongwei Li
- Department of Cardiovascular Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baotao Lin
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaoping Zhou
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| | - Wei Li
- Eye Institute of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Ping Guo
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
| |
Collapse
|
7
|
Kornmueller K, Amri EZ, Scheideler M, Prassl R. Delivery of miRNAs to the adipose organ for metabolic health. Adv Drug Deliv Rev 2022; 181:114110. [PMID: 34995679 DOI: 10.1016/j.addr.2021.114110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Despite the increasing prevalence of obesity and diabetes, there is no efficient treatment to combat these epidemics. The adipose organ is the main site for energy storage and plays a pivotal role in whole body lipid metabolism and energy homeostasis, including remodeling and dysfunction of adipocytes and adipose tissues in obesity and diabetes. Thus, restoring and balancing metabolic functions in the adipose organ is in demand. MiRNAs represent a novel class of drugs and drug targets, as they are heavily involved in the regulation of many cellular and metabolic processes and diseases, likewise in adipocytes. In this review, we summarize key regulatory activities of miRNAs in the adipose organ, discuss various miRNA replacement and inhibition strategies, promising delivery systems for miRNAs and reflect the future of novel miRNA-based therapeutics to target adipose tissues with the ultimate goal to combat metabolic disorders.
Collapse
Affiliation(s)
- Karin Kornmueller
- Department of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Austria
| | | | - Marcel Scheideler
- Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Ruth Prassl
- Department of Biophysics, Gottfried Schatz Research Center, Medical University of Graz, Austria.
| |
Collapse
|
8
|
Gong Q, Zhang X, Liang A, Huang S, Tian G, Yuan M, Ke Q, Cai Y, Yan B, Wang J, Wang J. Proteomic screening of potential N-glycoprotein biomarkers for colorectal cancer by TMT labeling combined with LC-MS/MS. Clin Chim Acta 2021; 521:122-130. [PMID: 34242638 DOI: 10.1016/j.cca.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Colorectal cancer (CRC) is part of the most widespread malignant tumors. At present, colonoscopy is a routine procedure in the diagnosis of CRC, but it is traumatic. Carcinoembryonic antigen, CA199, and CA242 are common serum markers for the diagnosis of CRC; however, they do not demonstrate satisfactory specificity and sensitivity for the diagnosis of CRC. Hence, Now it is necessary to screen many valuable serum biomarkers for CRC, proteomics methods have been used to investigate PTMs such as glycosylation of proteins with prominent roles in the occurrence and development of tumors. METHODS This study screens altering glycosylated proteins of CRC tissues using LC-MS/MS quantitative glycoproteomics, and then these candidate biomarkers for CRC are further validated by serum glycoproteomics. RESULTS The results of glycoproteomics in CRC tissues show that the abundance of 160 and 79 glycerogelatin proteins was obviously upregulated and downregulated compared with their adjacent tissues(P < 0.05). Bioinformatics analysis suggests that these molecules are mainly involved in many biological processes, including skeletal system development, collagen fibril organization, and receptor-mediated endocytosis. Results of serum glycoproteomics show that the changing trends of 2 protein glycosylation were consistent with MS results of CRC tissues, including ICAM1and APMAP. Areas under the ROC curve (AUC) results confirm that ICAM1and APMAP as early immune diagnosis markers of CRC has excellent sensitivity and specificity. CONCLUSION The ICAM1 and APMAP may serve as a potential tumor marker for CRC.
Collapse
Affiliation(s)
- Qian Gong
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Xiuming Zhang
- Medical Laboratory of Shenzhen Luohu People's Hospital, Shenzhen, PR China
| | - Aifeng Liang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Sinian Huang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Guangang Tian
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Mengjiao Yuan
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Qing Ke
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Yijun Cai
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Bin Yan
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China
| | - Jin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China; Hebei Key Laboratory for Chronic Diseases, Tangshan Key Laboratory for Preclinical and Basic Research on Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, PR China.
| | - Jinjin Wang
- Department of Clinical Laboratory, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai 201700, PR China.
| |
Collapse
|
9
|
In silico approach for Post-SELEX DNA aptamers: A mini-review. J Mol Graph Model 2021; 105:107872. [PMID: 33765525 DOI: 10.1016/j.jmgm.2021.107872] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023]
Abstract
Aptamers are short oligonucleotides that possess high specificity and affinity against their target. Generated via Systematic Evolution of Ligands by Exponential Enrichment, (SELEX) in vitro, they were screened and enriched. This review covering the study utilizing bioinformatics tools to analyze primary sequence, secondary and tertiary structure prediction, as well as docking simulation for various aptamers and their ligand interaction. Literature was pooled from Web of Science (WoS) and Scopus databases until December 18, 2020 using specific search string related to DNA aptamers, in silico, structure prediction, and docking simulation. Out of 330 published articles, 38 articles were assessed in the analysis based on the predefined inclusion and exclusion criteria. It was found that Mfold and RNA Composer web server is the most popular tool in secondary and tertiary structure prediction of DNA aptamers, respectively. Meanwhile, in docking simulation, ZDOCK and AutoDock are preferred to analyze binding interaction in the aptamer-ligand complex. This review reports a brief framework of recent developments of in silico approaches that provide predictive structural information of ssDNA aptamer.
Collapse
|
10
|
Pu Y, Xiang J, Zhang X, Deng Y, Liu H, Tan W. CD36 as a Molecular Target of Functional DNA Aptamer NAFLD01 Selected against NAFLD Cells. Anal Chem 2021; 93:3951-3958. [PMID: 33596054 DOI: 10.1021/acs.analchem.0c04866] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The aim of this study was to identify the target of nonalcoholic fatty liver disease (NAFLD) cell-specific aptamer NAFLD01 and investigate its effect on lipid metabolism in vitro. A distinct membrane protein of NAFLD cells pulled down by NAFLD01 was analyzed by mass spectrometry to determine target candidates, and affinity of NAFLD01 to target-protein-silent NAFLD cells was detected to validate it. Knockdown of CD36 abolished the binding of NAFLD01, and its binding affinity was associated with membrane-bound CD36. NAFLD01 affinity for NAFLD cells was proportional to the CD36 expression level. Moreover, compared to random sequences, NAFLD01 showed better recognition for both mouse and human tissue sections of NAFLD. Importantly, NAFLD01 could ameliorate liver fat deposition through interaction with CD36 in vitro. Therefore, aptamer NAFLD01 could act as an effective and safe targeted drug for NAFLD. NAFLD01 is the first reported CD36-specific aptamer. This aptamer can improve hepatocyte steatosis via specifically binding to CD36. This study provides a molecular tool to investigate the mechanism of CD36 in NAFLD.
Collapse
Affiliation(s)
- Ying Pu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Juan Xiang
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xinxu Zhang
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuanyuan Deng
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Huixia Liu
- Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,Institute of Molecular Medicine (IMM), Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|