1
|
Liao X, Lu J, Huang Z, Lin J, Zhang M, Chen H, Lin X, Gao X, Gong S. Aminophylline suppresses chronic renal failure progression by activating SIRT1/AMPK/mTOR-dependent autophagy. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1311-1322. [PMID: 38808395 PMCID: PMC11532209 DOI: 10.3724/abbs.2024049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/20/2024] [Indexed: 05/30/2024] Open
Abstract
Chronic renal failure (CRF) is a severe syndrome affecting the urinary system for which there are no effective therapeutics. In this study, we investigate the effects and mechanisms of aminophylline in preventing CRF development. A rat model of chronic renal failure is established by 5/6 nephrectomy. The levels of serum creatinine (SCR), urinary protein (UPR), and blood urea nitrogen (BUN) are detected by ELISA. Histological evaluations of renal tissues are performed by H&E, Masson staining, and PAS staining. Functional protein expression is detected by western blot analysis or immunofluorescence microscopy. Glomerular cell apoptosis is determined using the TUNEL method. Results show that Aminophylline significantly reduces the levels of SCR, UPR, and BUN in the CRF model rats. Histological analyses show that aminophylline effectively alleviates renal tissue injuries in CRF rats. The protein expression levels of nephrin, podocin, SIRT1, p-AMPK, and p-ULK1 are greatly increased, while p-mTOR protein expression is markedly decreased by aminophylline treatment. Additionally, the protein level of LC3B in CRF rats is significantly increased by aminophylline. Moreover, aminophylline alleviates apoptosis in the glomerular tissues of CRF rats. Furthermore, resveratrol promotes SIRT1, p-AMPK, and p-ULK1 protein expressions and reduces p-mTOR and LC3B protein expressions in CRF rats. Selisistat (a SIRT1 inhibitor) mitigates the changes in SIRT1, p-AMPK, p-ULK1, p-mTOR, and LC3B expressions induced by aminophylline. Finally, RAPA alleviates renal injury and apoptosis in CRF rats, and 3-MA eliminates the aminophylline-induced inhibition of renal injury and apoptosis in CRF rats. Aminophylline suppresses chronic renal failure progression by modulating the SIRT1/AMPK/mTOR-mediated autophagy process.
Collapse
Affiliation(s)
- Xin Liao
- Pediatric Departmentthe First Affiliated Hospital of Jinan UniversityGuangzhou510030China
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Jieyi Lu
- Pediatric Departmentthe First Affiliated Hospital of Jinan UniversityGuangzhou510030China
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Zhifeng Huang
- Department of Burns and Wound Repair SurgeryGuangdong Provincial People’s HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Jinai Lin
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Miao Zhang
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Huanru Chen
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Xiaoqing Lin
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Xia Gao
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| | - Sitang Gong
- Department of NephrologyGuangzhou Women and Children’s Medical CenterGuangzhou Medical UniversityGuangzhou510623China
| |
Collapse
|
2
|
Kang JH, Kawano T, Murata M, Toita R. Vascular calcification and cellular signaling pathways as potential therapeutic targets. Life Sci 2024; 336:122309. [PMID: 38042282 DOI: 10.1016/j.lfs.2023.122309] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Increased vascular calcification (VC) is observed in patients with cardiovascular diseases such as atherosclerosis, diabetes, and chronic kidney disease. VC is divided into three types according to its location: intimal, medial, and valvular. Various cellular signaling pathways are associated with VC, including the Wnt, mitogen-activated protein kinase, phosphatidylinositol-3 kinase/Akt, cyclic nucleotide-dependent protein kinase, protein kinase C, calcium/calmodulin-dependent kinase II, adenosine monophosphate-activated protein kinase/mammalian target of rapamycin, Ras homologous GTPase, apoptosis, Notch, and cytokine signaling pathways. In this review, we discuss the literature concerning the key cellular signaling pathways associated with VC and their role as potential therapeutic targets. Inhibitors to these pathways represent good candidates for use as potential therapeutic agents for the prevention and treatment of VC.
Collapse
Affiliation(s)
- Jeong-Hun Kang
- National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan.
| | - Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Riki Toita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan; AIST-Osaka University Advanced Photonics and Biosensing Open Innovation Laboratory, AIST, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Atteia HH, Alamri ES, Sirag N, Zidan NS, Aljohani RH, Alzahrani S, Arafa MH, Mohammad NS, Asker ME, Zaitone SA, Sakr AT. Soluble guanylate cyclase agonist, isoliquiritigenin attenuates renal damage and aortic calcification in a rat model of chronic kidney failure. Life Sci 2023; 317:121460. [PMID: 36716925 DOI: 10.1016/j.lfs.2023.121460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 01/30/2023]
Abstract
AIMS Chronic kidney disease (CKD) is a growing fatal health problem worldwide associated with vascular calcification. Therapeutic approaches are limited with higher costs and poor outcomes. Adenine supplementation is one of the most relevant CKD models to human. Insufficient Nitric Oxide (NO)/ cyclic Guanosine Monophosphate (cGMP) signaling plays a key role in rapid development of renal fibrosis. Natural products display proven protection against CKD. Current study therefore explored isoliquiritigenin, a bioflavonoid extracted from licorice roots, potential as a natural activator for soluble Guanylate Cyclase (sGC) in a CKD rat model. MATERIALS AND METHODS 60 male Wistar rats were grouped into Control group (n = 10) and the remaining rats received adenine (200 mg/kg, p.o) for 2 wk to induce CKD. They were equally sub-grouped into: Adenine untreated group and 4 groups orally treated by isoliquiritigenin low or high dose (20 or 40 mg/kg) with/without a selective sGC inhibitor, ODQ (1-H(1,2,4)oxadiazolo(4,3-a)-quinoxalin-1-one, 2 mg/kg, i.p) for 8 wk. KEY FINDINGS Long-term treatment with isoliquiritigenin dose-dependently and effectively amended adenine-induced chronic renal and endothelial dysfunction. It not only alleviated renal fibrosis and apoptosis markers but also aortic calcification. Additionally, this chalcone neutralized renal inflammatory response and oxidative stress. Isoliquiritigenin beneficial effects were associated with up-regulation of serum NO, renal and aortic sGC, cGMP and its dependent protein kinase (PKG). However, co-treatment with ODQ antagonized isoliquiritigenin therapeutic impact. SIGNIFICANCE Isoliquiritigenin seems to exert protective effects against CKD and vascular calcification by activating sGC, increasing cGMP and its downstream PKG.
Collapse
Affiliation(s)
- Hebatallah Husseini Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Sharkia Gov., Egypt.
| | - Eman Saad Alamri
- Department of Nutrition and Food Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Nizar Sirag
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nahla Salah Zidan
- Department of Nutrition and Food Science, University of Tabuk, Tabuk, Saudi Arabia; Department of Home Economics, Faculty of Specific Education, Kafr ElSheikh University, Kafr ElSheikh, Egypt
| | | | - Sharifa Alzahrani
- Pharmacology Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Manar Hamed Arafa
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia Gov., Egypt
| | - Nanies Sameeh Mohammad
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Zagazig University, Zagazig, Sharkia Gov., Egypt
| | - Mervat Elsayed Asker
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, 44519 Zagazig, Sharkia Gov., Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Amr Tawfik Sakr
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City (USC), Menoufia, Egypt
| |
Collapse
|
4
|
Ren SC, Mao N, Yi S, Ma X, Zou JQ, Tang X, Fan JM. Vascular Calcification in Chronic Kidney Disease: An Update and Perspective. Aging Dis 2022; 13:673-697. [PMID: 35656113 PMCID: PMC9116919 DOI: 10.14336/ad.2021.1024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease is a devastating condition resulting from irreversible loss of nephron numbers and function and leading to end-stage renal disease and mineral disorders. Vascular calcification, an ectopic deposition of calcium-phosphate salts in blood vessel walls and heart valves, is an independent risk factor of cardiovascular morbidity and mortality in chronic kidney disease. Moreover, aging and related metabolic disorders are essential risk factors for chronic kidney disease and vascular calcification. Marked progress has been recently made in understanding and treating vascular calcification in chronic kidney disease. However, there is a paucity of systematic reviews summarizing this progress, and investigating unresolved issues is warranted. In this systematic review, we aimed to overview the underlying mechanisms of vascular calcification in chronic kidney diseases and discuss the impact of chronic kidney disease on the pathophysiology of vascular calcification. Additionally, we summarized potential clinical diagnostic biomarkers and therapeutic applications for vascular calcification with chronic kidney disease. This review may offer new insights into the pathogenesis, diagnosis, and therapeutic intervention of vascular calcification.
Collapse
Affiliation(s)
- Si-Chong Ren
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
- Center for Translational Medicine, Sichuan Academy of Traditional Chinese Medicine, Chengdu, China.
| | - Nan Mao
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Si Yi
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| | - Xin Ma
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Jia-Qiong Zou
- Chengdu Medical College, Chengdu, China.
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, Chengdu, China.
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jun-Ming Fan
- Chengdu Medical College, Chengdu, China.
- Clinical Research Center for Geriatrics of Sichuan Province, Chengdu, China.
| |
Collapse
|
5
|
Sun S, Zheng G, Zhou D, Zhu L, He X, Zhang C, Wang C, Yuan C. Emodin Interferes With Nitroglycerin-Induced Migraine in Rats Through CGMP-PKG Pathway. Front Pharmacol 2021; 12:758026. [PMID: 34744735 PMCID: PMC8563583 DOI: 10.3389/fphar.2021.758026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023] Open
Abstract
The purpose of this research was to explore the effect and mechanism of emodin in interfering with nitroglycerin-induced migraine rats. We carried out behavioral research within 2 h post-nitroglycerin (NTG) injection, and blood samples were collected through the abdominal aorta for measurements of nitric oxide (NO), calcitonin gene-related peptide (CGRP), substance P (SP), tumor necrosis factor (TNF-α) and cyclic guanosine monophosphate (cGMP) levels. Immunohistochemistry was adopted to detect the activation of c-Fos immunoreactive neurons in brain tissues. The number and integrated optical density (IOD) of c-Fos positive cells were measured using Image-Pro Plus. Western blotting was applied to detect the levels of PKG protein in rat brain tissues. The results showed that emodin can alleviate the pain response of migraine rats and significantly reduce the levels of NO, CGRP, SP, TNF-α and cGMP in migraine rats. In addition, emodin can significantly reduce the number of c-Fos positive cells and the IOD value. Moreover, the expression of PKG protein was significantly inhibited by emodin. Therefore, it is inferred that emodin can relieve migraine induced by NTG through the cGMP-PKG pathway, and can be used as a potential botanical medicine for the treatment of migraine.
Collapse
Affiliation(s)
- Shuding Sun
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Guo Zheng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Decui Zhou
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lili Zhu
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xin He
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Chunfeng Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Chongzhi Wang
- Tang Center of Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, United States
| | - Chunsu Yuan
- Tang Center of Herbal Medicine Research and Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, United States
| |
Collapse
|