1
|
Ye Z, Ban H, Li C, Chen S. Advanced NLP-driven predictive modeling for tailored treatment strategies in gastrointestinal cancer. SLAS Technol 2025; 32:100264. [PMID: 40057234 DOI: 10.1016/j.slast.2025.100264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/17/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025]
Abstract
Gastrointestinal cancer represents a significant health burden, necessitating innovative approaches for personalized treatment. This study aims to develop an advanced natural language processing (NLP)-driven predictive modeling framework for tailored treatment strategies in gastrointestinal cancer, leveraging the capabilities of deep learning. The Resilient Adam Algorithm-driven Versatile Long-Short Term Memory (RAA-VLSTM) model is proposed to analyze comprehensive clinical data. The dataset comprises extensive electronic health records (EHRs) from multiple healthcare centers, focusing on patient demographics, clinical history, treatment outcomes, and genetic factors. Data preprocessing employs techniques such as tokenization, normalization, and stop-word removal to ensure effective representation of textual data. For feature extraction, state-of-the-art word embeddings are utilized to enhance model performance. The proposed framework outlines a comprehensive process: data collection from EHRs, preprocessing to prepare the data for analysis, and employing NLP techniques to extract meaningful features. The RAA optimization algorithm significantly improves training efficiency by adapting learning rates for each parameter, addressing common issues in gradient descent. This optimization enhances feature learning from sequential clinical data, enabling accurate predictions of treatment responses and outcomes. The overall performance in terms of F1-score (89.4%), accuracy (92.5%), recall (88.7%), and precision (90.1%). Preliminary results demonstrate the model's strong predictive capabilities, achieving high accuracy in predicting treatment outcomes, thereby suggesting its potential to improve individualized care. In conclusion, this study establishes a robust foundation for employing advanced NLP and machine learning techniques in the management of gastrointestinal cancer, paving the way for future research and clinical applications.
Collapse
Affiliation(s)
- Zhaojun Ye
- Digestive System Department, Dunhuang Hospital, Dunhuang, Gansu,736200, China.
| | - Haibin Ban
- Digestive System Department, Dunhuang Hospital, Dunhuang, Gansu,736200, China.
| | - Cuihua Li
- Digestive System Department, Dunhuang Hospital, Dunhuang, Gansu,736200, China.
| | - Sufang Chen
- Lanzhou xigu district people's hospital Dunhuang, Lanzhou, 736200, China.
| |
Collapse
|
2
|
Pyla M, Kankipati S, Sumithra B, Mishra PK, Mishra B, Mandal SK, Panda J, Chopra H, Avula SK, Attia MS, Mohanta YK, Kamal MA. Bacterial Proteins and Peptides as Potential Anticancer Agents: A Novel Search for Protein-based Therapeutics. Curr Med Chem 2025; 32:1235-1263. [PMID: 38333973 DOI: 10.2174/0109298673253414231127162817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/21/2023] [Accepted: 10/19/2023] [Indexed: 02/10/2024]
Abstract
Tumor diseases remain among the world's primary causes of death despite substantial advances in cancer diagnosis and treatment. The adverse chemotherapy problems and sensitivity towards drugs for some cancer types are among the most promising challenges in modern treatment. Finding new anti-cancer agents and drugs is, therefore, essential. A significant class of biologically active substances and prospective medications against cancer is comprised of bacterial proteins and peptides. Among these bacterial peptides, some of them, such as anti-cancer antibiotics and many toxins like diphtheria are widely being used in the treatment of cancer. In contrast, the remaining bacterial peptides are either in clinical trials or under research in vitro studies. This study includes the most recent information on the characteristics and mechanism of action of the bacterial peptides that have anti-cancer activities, some of which are now being employed in cancer therapy while some are still undergoing research.
Collapse
Affiliation(s)
- Mahitha Pyla
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gardipe, Hyderabad - 500075, Telangana, India
| | - Sanjana Kankipati
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gardipe, Hyderabad - 500075, Telangana, India
| | - Bapatla Sumithra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gardipe, Hyderabad - 500075, Telangana, India
| | | | - Bishwambhar Mishra
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gardipe, Hyderabad - 500075, Telangana, India
| | - Sanjeeb Kumar Mandal
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology (CBIT), Gardipe, Hyderabad - 500075, Telangana, India
| | - Jibanjyoti Panda
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Baridua, 793101, Ri-Bhoi, Meghalaya, India
| | - Hitesh Chopra
- Department of Biosciences, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Satya Kumar Avula
- Natural and Medical Sciences Research Centre, University of Nizwa, Nizwa, 616, Oman
| | - Mohamed Salah Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Yugal Kishore Mohanta
- Nanobiotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya (USTM), Techno City, 9th Mile, Baridua, 793101, Ri-Bhoi, Meghalaya, India
| | - Mohammad Amjad Kamal
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Bangladesh
- Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Novel Global Community Educational Foundation, Australia
| |
Collapse
|
3
|
Shahid GB, Ahan RE, Ostaku J, Seker UOS. Bacterial Living Therapeutics with Engineered Protein Secretion Circuits to Eliminate Breast Cancer Cells. ACS Synth Biol 2024; 13:3150-3162. [PMID: 39367855 DOI: 10.1021/acssynbio.3c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Cancer therapy can be limited by potential side effects, and bacteria-based living cancer therapeutics have gained scientific interest in recent years. However, the full potential of bacteria as therapeutics has yet to be explored due to engineering challenges. In this study, we present a bacterial device designed to specifically target and eliminate breast cancer cells. We have engineered Escherichia coli (E. coli) to bind to HER2 receptors on breast cancer cells while also secreting a toxin, HlyE, which is a pore-forming protein. The binding of E. coli to HER2 is facilitated by a nanobody expressed on the bacteria's surface via the Ag43 autotransporter protein system. Our findings demonstrate that the nanobody efficiently binds to HER2+ cells in vitro, and we have utilized the YebF secretion tag to secrete HlyE and kill the target cancer cells. Overall, our results highlight the potential of our engineered bacteria as an innovative strategy for breast cancer treatment.
Collapse
Affiliation(s)
- Gozeel Binte Shahid
- UNAM─Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Recep Erdem Ahan
- UNAM─Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Julian Ostaku
- UNAM─Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Urartu Ozgur Safak Seker
- UNAM─Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
4
|
Kolahi Sadeghi L, Vahidian F, Eterafi M, Safarzadeh E. Gastrointestinal cancer resistance to treatment: the role of microbiota. Infect Agent Cancer 2024; 19:50. [PMID: 39369252 PMCID: PMC11453072 DOI: 10.1186/s13027-024-00605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/20/2024] [Indexed: 10/07/2024] Open
Abstract
The most common illnesses that adversely influence human health globally are gastrointestinal malignancies. The prevalence of gastrointestinal cancers (GICs) is relatively high, and the majority of patients receive ineffective care since they are discovered at an advanced stage of the disease. A major component of the human body is thought to be the microbiota of the gastrointestinal tract and the genes that make up the microbiome. The gut microbiota includes more than 3000 diverse species and billions of microbes. Each of them has benefits and drawbacks and been demonstrated to alter anticancer medication efficacy. Treatment of GIC with the help of the gut bacteria is effective while changes in the gut microbiome which is linked to resistance immunotherapy or chemotherapy. Despite significant studies and findings in this field, more research on the interactions between microbiota and response to treatment in GIC are needed to help researchers provide more effective therapeutic strategies with fewer treatment complication. In this review, we examine the effect of the human microbiota on anti-cancer management, including chemotherapy, immunotherapy, and radiotherapy.
Collapse
Affiliation(s)
- Leila Kolahi Sadeghi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Vahidian
- Faculty of Medicine, Laval University, Quebec, Canada
- Centre de Recherche de I'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec, Canada
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students' Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology, and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
5
|
Zheng B, Li M, Zhang T, Li B, Li Q, Saiding Q, Chen W, Guo M, Koo S, Ji X, Tao W. Functional modification of gut bacteria for disease diagnosis and treatment. MED 2024; 5:863-885. [PMID: 38964334 DOI: 10.1016/j.medj.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/15/2023] [Accepted: 06/12/2024] [Indexed: 07/06/2024]
Abstract
Intestinal bacteria help keep humans healthy by regulating lipid and glucose metabolism as well as the immunological and neurological systems. Oral treatment using intestinal bacteria is limited by the high acidity of stomach fluids and the immune system's attack on foreign bacteria. Scientists have created coatings and workarounds to overcome these limitations and improve bacterial therapy. These preparations have demonstrated promising outcomes, with advances in synthetic biology and optogenetics improving their focused colonization and controlled release. Engineering bacteria preparations have become a revolutionary therapeutic approach that converts intestinal bacteria into cellular factories for medicinal chemical synthesis. The present paper discusses various aspects of engineering bacteria preparations, including wrapping materials, biomedical uses, and future developments.
Collapse
Affiliation(s)
- Bin Zheng
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Mengyi Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Tiange Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Bowen Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qiuya Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mingming Guo
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, Gyeonggi-do 15588, Republic of Korea.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
7
|
Yarahmadi A, Zare M, Aghayari M, Afkhami H, Jafari GA. Therapeutic bacteria and viruses to combat cancer: double-edged sword in cancer therapy: new insights for future. Cell Commun Signal 2024; 22:239. [PMID: 38654309 PMCID: PMC11040964 DOI: 10.1186/s12964-024-01622-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Cancer, ranked as the second leading cause of mortality worldwide, leads to the death of approximately seven million people annually, establishing itself as one of the most significant health challenges globally. The discovery and identification of new anti-cancer drugs that kill or inactivate cancer cells without harming normal and healthy cells and reduce adverse effects on the immune system is a potential challenge in medicine and a fundamental goal in Many studies. Therapeutic bacteria and viruses have become a dual-faceted instrument in cancer therapy. They provide a promising avenue for cancer treatment, but at the same time, they also create significant obstacles and complications that contribute to cancer growth and development. This review article explores the role of bacteria and viruses in cancer treatment, examining their potential benefits and drawbacks. By amalgamating established knowledge and perspectives, this review offers an in-depth examination of the present research landscape within this domain and identifies avenues for future investigation.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mitra Zare
- Department of Microbiology, Faculty of Sciences, Kerman Branch, Islamic Azad University, Kerman, Iran
| | - Masoomeh Aghayari
- Department of Microbiology, Faculty of Sciences, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Gholam Ali Jafari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
8
|
Zhou T, Wu J, Tang H, Liu D, Jeon BH, Jin W, Wang Y, Zheng Y, Khan A, Han H, Li X. Enhancing tumor-specific recognition of programmable synthetic bacterial consortium for precision therapy of colorectal cancer. NPJ Biofilms Microbiomes 2024; 10:6. [PMID: 38245564 PMCID: PMC10799920 DOI: 10.1038/s41522-024-00479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Probiotics hold promise as a potential therapy for colorectal cancer (CRC), but encounter obstacles related to tumor specificity, drug penetration, and dosage adjustability. In this study, genetic circuits based on the E. coli Nissle 1917 (EcN) chassis were developed to sense indicators of tumor microenvironment and control the expression of therapeutic payloads. Integration of XOR gate amplify gene switch into EcN biosensors resulted in a 1.8-2.3-fold increase in signal output, as confirmed by mathematical model fitting. Co-culturing programmable EcNs with CRC cells demonstrated a significant reduction in cellular viability ranging from 30% to 50%. This approach was further validated in a mouse subcutaneous tumor model, revealing 47%-52% inhibition of tumor growth upon administration of therapeutic strains. Additionally, in a mouse tumorigenesis model induced by AOM and DSS, the use of synthetic bacterial consortium (SynCon) equipped with multiple sensing modules led to approximately 1.2-fold increased colon length and 2.4-fold decreased polyp count. Gut microbiota analysis suggested that SynCon maintained the abundance of butyrate-producing bacteria Lactobacillaceae NK4A136, whereas reducing the level of gut inflammation-related bacteria Bacteroides. Taken together, engineered EcNs confer the advantage of specific recognition of CRC, while SynCon serves to augment the synergistic effect of this approach.
Collapse
Affiliation(s)
- Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jingyuan Wu
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Haibo Tang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Dali Liu
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, USA
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Korea
| | - Weilin Jin
- Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yiqing Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou University, Lanzhou, China
| | | | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Huawen Han
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China.
| |
Collapse
|
9
|
Wankhede NL, Kale MB, Bawankule AK, Taksande BG, Umekar MJ, Upaganlawar AB. Bacteriotherapy in colorectal cancer. COLORECTAL CANCER 2024:307-328. [DOI: 10.1016/b978-0-443-13870-6.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
10
|
Wu J, Nong Y, Chen B, Jiang Y, Chen Y, Wei C, Tao Y, Xie B. Flammutoxin, a Degradation Product of Transepithelial Electrical Resistance-Decreasing Protein, Induces Reactive Oxygen Species and Apoptosis in HepG2 Cells. Foods 2023; 13:66. [PMID: 38201094 PMCID: PMC10778570 DOI: 10.3390/foods13010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Proteins from Flammulina filiformis were prepared by sodium chloride extraction and fractionated by ammonium sulfate precipitation with increasing saturation degrees to obtain the protein fractions Ffsp-30, Ffsp-50, Ffsp-70, Ffsp-90, and Ffp-90. Among these protein fractions, Ffsp-50 possessed the most significant cytotoxic effect against three human gastrointestinal cancer cell lines, viz. HT-29, SGC-7901, and HepG2. SDS-PAGE and MALDI-TOF/TOF MS/MS analyses revealed that flammutoxin (FTX) was present as a dominating protein in Ffsp-50, which was further evidenced by HPLC-MS/MS determination. Furthermore, native FTX was purified from Ffsp-50 with a molecular weight of 26.78 kDa, exhibiting notable cytotoxicity against gastrointestinal cancer cell lines. Both Ffsp-50 and FTX exposure could enhance intercellular reactive oxygen species (ROS) generation and induce significant apoptosis in HepG2 cells. FTX was identified to be relatively conserved in basidiomycetes according to phylogenetic analysis, and its expression was highly upregulated in the primordium as well as the pileus of the fruiting body from the elongation and maturation stages, as compared with that in mycelium. Taken together, FTX could remarkably inhibit cell growth and induce ROS and apoptosis in HepG2 cells, potentially participating in the growth and development of the fruiting body. These findings from our investigation provided insight into the antigastrointestinal cancer activity of FTX, which could serve as a biological source of health-promoting and biomedical applications.
Collapse
Affiliation(s)
- Jianguo Wu
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| | - Yu Nong
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| | - Bingzhi Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Y.J.)
| | - Yuji Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (B.C.); (Y.J.)
| | - Yuanhao Chen
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| | - Chuanzheng Wei
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| | - Yongxin Tao
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baogui Xie
- Mycological Research Center, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (J.W.); (Y.N.); (Y.C.); (C.W.); (Y.T.)
| |
Collapse
|
11
|
Thoda C, Touraki M. Probiotic-Derived Bioactive Compounds in Colorectal Cancer Treatment. Microorganisms 2023; 11:1898. [PMID: 37630458 PMCID: PMC10456921 DOI: 10.3390/microorganisms11081898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease with increased morbidity and mortality rates globally. Despite advanced chemotherapeutic approaches for the treatment of CRC, low survival rates due to the regular occurrence of drug resistance and deleterious side effects render the need for alternative anticancer agents imperative. Accumulating evidence supports that gut microbiota imbalance precedes the establishment of carcinogenesis, subsequently contributing to cancer progression and response to anticancer therapy. Manipulation of the gut microbiota composition via the administration of probiotic-derived bioactive compounds has gradually attained the interest of scientific communities as a novel therapeutic strategy for CRC. These compounds encompass miscellaneous metabolic secreted products of probiotics, including bacteriocins, short-chain fatty acids (SCFAs), lactate, exopolysaccharides (EPSs), biosurfactants, and bacterial peptides, with profound anti-inflammatory and antiproliferative properties. This review provides a classification of postbiotic types and a comprehensive summary of the current state of research on their biological role against CRC. It also describes how their intricate interaction with the gut microbiota regulates the proper function of the intestinal barrier, thus eliminating gut dysbiosis and CRC development. Finally, it discusses the future perspectives in precision-medicine approaches as well as the challenges of their synthesis and optimization of administration in clinical studies.
Collapse
Affiliation(s)
| | - Maria Touraki
- Laboratory of General Biology, Department of Genetics, Development and Molecular Biology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, 54 124 Thessaloniki, Greece;
| |
Collapse
|
12
|
Shi Z, Li H, Song W, Zhou Z, Li Z, Zhang M. Emerging roles of the gut microbiota in cancer immunotherapy. Front Immunol 2023; 14:1139821. [PMID: 36911704 PMCID: PMC9992551 DOI: 10.3389/fimmu.2023.1139821] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Gut microbiota represents a hidden treasure vault encompassing trillions of microorganisms that inhabit the intestinal epithelial barrier of the host. In the past decade, numerous in-vitro, animal and clinical studies have revealed the profound roles of gut microbiota in maintaining the homeostasis of various physiological functions, especially immune modulation, and remarkable differences in the configuration of microbial communities between cancers and healthy individuals. In addition, although considerable efforts have been devoted to cancer treatments, there remain many patients succumb to their disease with the incremental cancer burden worldwide. Nevertheless, compared with the stability of human genome, the plasticity of gut microbiota renders it a promising opportunity for individualized treatment. Meanwhile, burgeoning findings indicate that gut microbiota is involved in close interactions with the outcomes of diverse cancer immunotherapy protocols, including immune checkpoint blockade therapy, allogeneic hematopoietic stem cell transplantation, and chimeric antigen receptor T cell therapy. Here, we reviewed the evidence for the capacity of gut microflora to modulate cancer immunotherapies, and highlighted the opportunities of microbiota-based prognostic prediction, as well as microbiotherapy by targeting the microflora to potentiate anticancer efficacy while attenuating toxicity, which will be pivotal to the development of personalized cancer treatment strategies.
Collapse
Affiliation(s)
- Zhuangzhuang Shi
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongwen Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Wenting Song
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhiyuan Zhou
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China
| | - Zhaoming Li
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Mingzhi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Lymphoma Diagnosis and Treatment Centre of Henan Province, Zhengzhou, China.,State Key Laboratory of Esophageal Cancer Prevention and Treatment and Henan Key Laboratory for Esophageal Cancer Research, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
13
|
Feng N, Wang S, Liu C, Xu Z, Song Z, Li K, Yu Z. A network meta-analysis to evaluate the efficacy of traditional Chinese medicine on intestinal flora in patients with gastrointestinal cancer. Front Genet 2022; 13:1069780. [DOI: 10.3389/fgene.2022.1069780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background and Purpose: Traditional Chinese medicine (TCM) can regulate intestinal flora so as to affect the occurrence, progression, and prognosis of gastrointestinal cancer. According to clinical studies, TCM oral administration, TCM external treatment, and TCM injections, can adjust intestinal flora disorders in patients with gastrointestinal cancer. This network meta-analysis aims to evaluate the effect of three treatments on the intestinal flora in gastrointestinal cancer patients.Methods: This meta-analysis was registered in PROSPERO (CRD42022332553). Six electronic databases, namely CNKI, Wanfang, CSTJ, PubMed, Cochrane Library, and EMBASE, were searched from their inception to 1 April 2022. We identified randomized controlled trials (RCT) used to compare the efficacy of three TCM treatment methods—oral administration, external therapy and injections—on the intestinal flora in gastrointestinal cancer patients. The main outcome indicators were Bifidobacteria, Lactobacilli, Escherichia coli, and Enterococci. Stata (15.1) and the Cochrane risk of bias assessment tool were employed.Results: We identified 20 eligible RCTs with a total of 1,774 patients. According to network meta-analysis results, TCM injection plus common treatment (CT) or oral administration of TCM plus CT was superior to CT alone for supporting Bifidobacterium. In supporting Lactobacillus, TCM injection plus CT demonstrated more obvious effect relative to oral administration of TCM plus CT; TCM injection plus CT was more effective than CT only; and oral administration of TCM plus CT was superior to CT only.The inhibitory effect of TCM injection plus CT on Escherichia coli was better compared with CT only. In terms of inhibiting Enterococci, oral administration of TCM plus CT was superior to CT only.The difference in efficacy among the above treatments was statistically significant. In the SUCRA probability ranking, TCM injection plus CT had the best ranking curve among the three treatments and was the most effective in supporting Bifidobacteria (Sucra = 90.08%), Lactobacilli (Sucra = 96.4%), and regulating Escherichia coli (Sucra = 86.1%) and Enterococci (Sucra = 87.1%).Conclusion: TCM injections plus CT is the most effective therapy in balancing the intestinal flora of gastrointestinal cancer patients. However, the current results deserve further validation through high-quality research.Systematic Review Registration: http://www.prisma-statement.org/, identifier 10.1136/bmj.n71.
Collapse
|
14
|
Mathebela P, Damane BP, Mulaudzi TV, Mkhize-Khwitshana ZL, Gaudji GR, Dlamini Z. Influence of the Microbiome Metagenomics and Epigenomics on Gastric Cancer. Int J Mol Sci 2022; 23:13750. [PMID: 36430229 PMCID: PMC9693604 DOI: 10.3390/ijms232213750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Gastric cancer (GC) is one of the major causes of cancer deaths worldwide. The disease is seldomly detected early and this limits treatment options. Because of its heterogeneous and complex nature, the disease remains poorly understood. The literature supports the contribution of the gut microbiome in the carcinogenesis and chemoresistance of GC. Drug resistance is the major challenge in GC therapy, occurring as a result of rewired metabolism. Metabolic rewiring stems from recurring genetic and epigenetic factors affecting cell development. The gut microbiome consists of pathogens such as H. pylori, which can foster both epigenetic alterations and mutagenesis on the host genome. Most of the bacteria implicated in GC development are Gram-negative, which makes it challenging to eradicate the disease. Gram-negative bacterium co-infections with viruses such as EBV are known as risk factors for GC. In this review, we discuss the role of microbiome-induced GC carcinogenesis. The disease risk factors associated with the presence of microorganisms and microbial dysbiosis are also discussed. In doing so, we aim to emphasize the critical role of the microbiome on cancer pathological phenotypes, and how microbiomics could serve as a potential breakthrough in determining effective GC therapeutic targets. Additionally, consideration of microbial dysbiosis in the GC classification system might aid in diagnosis and treatment decision-making, taking the specific pathogen/s involved into account.
Collapse
Affiliation(s)
- Precious Mathebela
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Zilungile Lynette Mkhize-Khwitshana
- School of Medicine, University of Kwa-Zulu Natal, Durban, KwaZulu-Natal 4013, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 7501, South Africa
| | - Guy Roger Gaudji
- Department of Urology, Level 7, Bridge C, Steve Biko Academic Hospital, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| |
Collapse
|
15
|
Greeson EM, Madsen CS, Makela AV, Contag CH. Magnetothermal Control of Temperature-Sensitive Repressors in Superparamagnetic Iron Nanoparticle-Coated Bacillus subtilis. ACS NANO 2022; 16:16699-16712. [PMID: 36200984 DOI: 10.1021/acsnano.2c06239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Superparamagnetic iron oxide nanoparticles (SPIONs) are used as contrast agents in magnetic resonance imaging (MRI) and magnetic particle imaging (MPI), and resulting images can be used to guide magnetothermal heating. Alternating magnetic fields (AMF) cause local temperature increases in regions with SPIONs, and we investigated the ability of magnetic hyperthermia to regulate temperature-sensitive repressors (TSRs) of bacterial transcription. The TSR, TlpA39, was derived from a Gram-negative bacterium and used here for thermal control of reporter gene expression in Gram-positive, Bacillus subtilis. In vitro heating of B. subtilis with TlpA39 controlling bacterial luciferase expression resulted in a 14.6-fold (12 hours; h) and 1.8-fold (1 h) increase in reporter transcripts with a 10.0-fold (12 h) and 12.1-fold (1 h) increase in bioluminescence. To develop magnetothermal control, B. subtilis cells were coated with three SPION variations. Electron microscopy coupled with energy dispersive X-ray spectroscopy revealed an external association with, and retention of, SPIONs on B. subtilis. Furthermore, using long duration AMF we demonstrated magnetothermal induction of the TSRs in SPION-coated B. subtilis with a maximum of 5.6-fold increases in bioluminescence. After intramuscular injections of SPION-coated B. subtilis, histology revealed that SPIONs remained in the same locations as the bacteria. For in vivo studies, 1 h of AMF is the maximum exposure due to anesthesia constraints. Both in vitro and in vivo, there was no change in bioluminescence after 1 h of AMF treatment. Pairing TSRs with magnetothermal energy using SPIONs for localized heating with AMF can lead to transcriptional control that expands options for targeted bacteriotherapies.
Collapse
Affiliation(s)
- Emily M Greeson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Cody S Madsen
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Ashley V Makela
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | - Christopher H Contag
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
16
|
Engineered endosymbionts that alter mammalian cell surface marker, cytokine and chemokine expression. Commun Biol 2022; 5:888. [PMID: 36042261 PMCID: PMC9427783 DOI: 10.1038/s42003-022-03851-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/16/2022] [Indexed: 11/29/2022] Open
Abstract
Developing modular tools that direct mammalian cell function and activity through controlled delivery of essential regulators would improve methods of guiding tissue regeneration, enhancing cellular-based therapeutics and modulating immune responses. To address this challenge, Bacillus subtilis was developed as a chassis organism for engineered endosymbionts (EES) that escape phagosome destruction, reside in the cytoplasm of mammalian cells, and secrete proteins that are transported to the nucleus to impact host cell response and function. Two synthetic operons encoding either the mammalian transcription factors Stat-1 and Klf6 or Klf4 and Gata-3 were recombined into the genome of B. subtilis expressing listeriolysin O (LLO) from Listeria monocytogenes and expressed from regulated promoters. Controlled expression of the mammalian proteins from B. subtilis LLO in the cytoplasm of J774A.1 macrophage/monocyte cells altered surface marker, cytokine and chemokine expression. Modulation of host cell fates displayed some expected patterns towards anti- or pro-inflammatory phenotypes by each of the distinct transcription factor pairs with further demonstration of complex regulation caused by a combination of the EES interaction and transcription factors. Expressing mammalian transcription factors from engineered intracellular B. subtilis as engineered endosymbionts comprises a new tool for directing host cell gene expression for therapeutic and research purposes. The establishment of non-pathogenic engineered endosymbionts through B. subtilis is presented, with the aim of delivering mammalian transcription factors to the host cell for therapeutics and research.
Collapse
|
17
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
18
|
Burcher KM, Burcher JT, Inscore L, Bloomer CH, Furdui CM, Porosnicu M. A Review of the Role of Oral Microbiome in the Development, Detection, and Management of Head and Neck Squamous Cell Cancers. Cancers (Basel) 2022; 14:4116. [PMID: 36077651 PMCID: PMC9454796 DOI: 10.3390/cancers14174116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The role of the microbiome in the development and propagation of head and neck squamous cell cancer (HNSCC) is largely unknown and the surrounding knowledge lags behind what has been discovered related to the microbiome and other malignancies. In this review, the authors performed a structured analysis of the available literature from several databases. The authors discuss the merits and detriments of several studies discussing the microbiome of the structures of the aerodigestive system throughout the development of HNSCC, the role of the microbiome in the development of malignancies (generally and in HNSCC) and clinical applications of the microbiome in HNSCC. Further studies will be needed to adequately describe the relationship between HNSCC and the microbiome, and to push this relationship into a space where it is clinically relevant outside of a research environment.
Collapse
Affiliation(s)
| | | | - Logan Inscore
- Wake Forest Baptist Medical Center, Winston-Salem, NC 27157, USA
| | | | | | | |
Collapse
|
19
|
Rommasi F. Bacterial-Based Methods for Cancer Treatment: What We Know and Where We Are. Oncol Ther 2022; 10:23-54. [PMID: 34780046 PMCID: PMC9098760 DOI: 10.1007/s40487-021-00177-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/25/2021] [Indexed: 01/10/2023] Open
Abstract
A severe disease, cancer is caused by the exponential and uncontrolled growth of cells, leading to organ dysfunction as well as disorders. This disease has been recognized as one of the significant challenges to health and medicine. Various treatment procedures for cancer are associated with diverse side effects; the most conventional cancer treatments include chemotherapy, surgery, and radiotherapy, among others. Numerous adverse and side effects, low specificity and sensitivity, narrow therapeutic windows, and, recently, the emergence of tumor cells resistant to such treatments have been documented as the shortcomings of conventional treatment strategies. As a group of prokaryotic microorganisms, bacteria have great potential for use in cancer therapy. Currently, utilizing bacteria for cancer treatment has attracted the attention of scientists. The high potential of bacteria to become non-pathogenic by genetic manipulation, their distinguished virulence factors (which can be used as weapons against tumors), their ability to proliferate in tissues, and the contingency to control their population by administrating antibiotics, etc., have made bacteria viable candidates and live micro-medication for cancer therapies. However, the possible cytotoxicity impacts of bacteria, their inability to entirely lyse cancerous cells, as well as the probability of mutations in their genomes are among the significant challenges of bacteria-based methods for cancer treatment. In this article, various available data on bacterial therapeutics, along with their pros and cons, are discussed.
Collapse
Affiliation(s)
- Foad Rommasi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
20
|
Tiwari SK. Bacteriocin-Producing Probiotic Lactic Acid Bacteria in Controlling Dysbiosis of the Gut Microbiota. Front Cell Infect Microbiol 2022; 12:851140. [PMID: 35651753 PMCID: PMC9149203 DOI: 10.3389/fcimb.2022.851140] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 03/16/2022] [Indexed: 11/20/2022] Open
Abstract
Several strains of lactic acid bacteria are potent probiotics and can cure a variety of diseases using different modes of actions. These bacteria produce antimicrobial peptides, bacteriocins, which inhibit or kill generally closely related bacterial strains and other pathogenic bacteria such as Listeria, Clostridium, and Salmonella. Bacteriocins are cationic peptides that kill the target cells by pore formation and the dissipation of cytosolic contents, leading to cell death. Bacteriocins are also known to modulate native microbiota and host immunity, affecting several health-promoting functions of the host. In this review, we have discussed the ability of bacteriocin-producing probiotic lactic acid bacteria in the modulation of gut microbiota correcting dysbiosis and treatment/maintenance of a few important human disorders such as chronic infections, inflammatory bowel diseases, obesity, and cancer.
Collapse
|
21
|
The Implication of Gastric Microbiome in the Treatment of Gastric Cancer. Cancers (Basel) 2022; 14:cancers14082039. [PMID: 35454944 PMCID: PMC9028069 DOI: 10.3390/cancers14082039] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Gastric cancer (GC) represents the fifth most common cancer worldwide. Recent developments in PCR and metagenomics clarify that the stomach contains a powerful microbiota. Conventional treatments for GC that include surgery, chemotherapy, and radiotherapy are not very effective. That’s why new therapeutic strategies are needed. The intestinal microbiota is involved in oncogenesis and cancer prevention, and the effectiveness of chemotherapy. Recent studies have shown that certain bacteria may enhance the effect of some traditional antineoplastic drugs and immunotherapies. Abstract Gastric cancer (GC) is one of the most common and deadly malignancies worldwide. Helicobacter pylori have been documented as a risk factor for GC. The development of sequencing technology has broadened the knowledge of the gastric microbiome, which is essential in maintaining homeostasis. Recent studies have demonstrated the involvement of the gastric microbiome in the development of GC. Therefore, the elucidation of the mechanism by which the gastric microbiome contributes to the development and progression of GC may improve GC’s prevention, diagnosis, and treatment. In this review, we discuss the current knowledge about changes in gastric microbial composition in GC patients, their role in carcinogenesis, the possible therapeutic role of the gastric microbiome, and its implications for current GC therapy.
Collapse
|
22
|
Mueller AL, Brockmueller A, Fahimi N, Ghotbi T, Hashemi S, Sadri S, Khorshidi N, Kunnumakkara AB, Shakibaei M. Bacteria-Mediated Modulatory Strategies for Colorectal Cancer Treatment. Biomedicines 2022; 10:biomedicines10040832. [PMID: 35453581 PMCID: PMC9026499 DOI: 10.3390/biomedicines10040832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors worldwide, with a higher rate of distant metastases than other malignancies and with regular occurrence of drug resistance. Therefore, scientists are forced to further develop novel and innovative therapeutic treatment strategies, whereby it has been discovered microorganisms, albeit linked to CRC pathogenesis, are able to act as highly selective CRC treatment agents. Consequently, researchers are increasingly focusing on bacteriotherapy as a novel therapeutic strategy with less or no side effects compared to standard cancer treatment methods. With multiple successful trials making use of various bacteria-associated mechanisms, bacteriotherapy in cancer treatment is on its way to become a promising tool in CRC targeting therapy. In this study, we describe the anti-cancer effects of bacterial therapy focusing on the treatment of CRC as well as diverse modulatory mechanisms and techniques that bacteriotherapy offers such as bacterial-related biotherapeutics including peptides, toxins, bacteriocins or the use of bacterial carriers and underlying molecular processes to target colorectal tumors.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Niusha Fahimi
- Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia;
| | - Tahere Ghotbi
- Department of Nursing, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Sara Hashemi
- Central Tehran Branch, Islamic Azad University, Tehran 1955847881, Iran;
| | - Sadaf Sadri
- Department of Microbiology, University of Mazandaran, Babolsar 4741613534, Iran;
| | - Negar Khorshidi
- Department of Medicinal Chemistry, Medical Sciences Branch, Islamic Azad University, Tehran 1913674711, Iran;
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, India;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-98-2180-72624
| |
Collapse
|
23
|
Melim C, Lauro MR, Pires IM, Oliveira PJ, Cabral C. The Role of Glucosinolates from Cruciferous Vegetables (Brassicaceae) in Gastrointestinal Cancers: From Prevention to Therapeutics. Pharmaceutics 2022; 14:pharmaceutics14010190. [PMID: 35057085 PMCID: PMC8777706 DOI: 10.3390/pharmaceutics14010190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
The gastrointestinal (GI) tract is composed of rapidly renewing cells, which increase the likelihood of cancer. Colorectal cancer is one of the most frequently diagnosed GI cancers and currently stands in second place regarding cancer-related mortality. Unfortunately, the treatment of GI is limited, and few developments have occurred in the field over the years. With this in mind, new therapeutic strategies involving biologically active phytocompounds are being evaluated as anti-cancer agents. Vegetables such as broccoli, brussels sprouts, cabbage, cauliflower, and radish, all belonging to the Brassicaceae family, are high in dietary fibre, minerals, vitamins, carotenoids, polyphenols, and glucosinolates. The latter compound is a secondary metabolite characteristic of this family and, when biologically active, has demonstrated anti-cancer properties. This article reviews the literature regarding the potential of Cruciferous vegetables in the prevention and/or treatment of GI cancers and the relevance of appropriate compound formulations for improving the stability and bioaccessibility of the major Cruciferous compounds, with a particular focus on glucosinolates.
Collapse
Affiliation(s)
- Catarina Melim
- Faculty of Medicine, Clinic Academic Center of Coimbra (CACC), Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
| | - Maria R. Lauro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy;
| | - Isabel M. Pires
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Hull, Hull HU6 7RX, UK;
| | - Paulo J. Oliveira
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Célia Cabral
- Faculty of Medicine, Clinic Academic Center of Coimbra (CACC), Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal;
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480-066
| |
Collapse
|
24
|
Wang N, Pei B, Yuan X, Yi C, Wiredu Ocansey DK, Qian H, Mao F. Emerging roles of mesenchymal stem cell-derived exosomes in gastrointestinal cancers. Front Bioeng Biotechnol 2022; 10:1019459. [PMID: 36338118 PMCID: PMC9631450 DOI: 10.3389/fbioe.2022.1019459] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal tumours are the most common solid tumours, with a poor prognosis and remain a major challenge in cancer treatment. Mesenchymal stem cells (MSC) are multipotent stromal cells with the potential to differentiate into multiple cell types. Several studies have shown that MSC-derived exosomes have become essential regulators of intercellular communication in a variety of physiological and pathological processes. Notably, MSC-derived exosomes support or inhibit tumour progression in different cancers through the delivery of proteins, RNA, DNA, and bioactive lipids. Herein, we summarise current advances in MSC-derived exosomes in cancer research, with particular reference to their role in gastrointestinal tumour development. MSC-derived exosomes are expected to be a novel potential strategy for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Naijian Wang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Bing Pei
- Department of Clinical Laboratory, The Affiliated Suqian First People’s Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| | - Xinyi Yuan
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Chengxue Yi
- School of Medical Technology, Zhenjiang College, Zhenjiang, Jiangsu, China
| | - Dickson Kofi Wiredu Ocansey
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Ghana
| | - Hua Qian
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, Jiangsu, China
- *Correspondence: Hua Qian,
| | - Fei Mao
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
25
|
Ma S, Wang N, Zhang P, Wu W, Fu L. Fecal microbiota transplantation mitigates bone loss by improving gut microbiome composition and gut barrier function in aged rats. PeerJ 2021; 9:e12293. [PMID: 34721980 PMCID: PMC8542369 DOI: 10.7717/peerj.12293] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022] Open
Abstract
Background Gut microbiota (GM) dysbiosis is closely related to bone loss and the occurrence of osteoporosis in animals and human. However, little is known about the effect and the mechanisms of fecal microbiota transplantation (FMT) on bone in the treatment of senile osteoporosis. Methods Aged female rats were randomly divided into the FMT group and the control group. 3-month-old female rats were used as fecal donors. The rats were sacrificed at 12 and 24 weeks following transplantation and the serum, intestine, bone, and feces were collected for subsequent analyses. Results The bone turnover markers of osteocalcin, procollagen type 1 N-terminal propeptide (P1NP), and carboxy-terminal peptide (CTX) decreased significantly at 12 and 24 weeks following FMT (P < 0.05). At 12 weeks following transplantation, histomorphometric parameters including the bone volume (BV), trabecular bone volume fraction (BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th) of the FMT group were comparable to the control group. However, at 24 weeks following transplantation, these parameters of the FMT group were significantly higher than those of the control group (P < 0.05). Besides, the GM aggregated at 12 and 24 weeks following FMT, and the ecological distance was close between the rats in the FMT group and the donor rats. Alpha diversity, shown by the Shannon index and Simpson index, and the Firmicutes/Bacteroidetes ratio decreased significantly after FMT at 24 weeks. Furthermore, FMT restored the GM composition in aged rats at the phylum and family level, and the intestinal microbiota of the aged rats was similar to that of the donor rats. Correlation network analysis indirectly suggested the causality of FMT on alleviating osteoporosis. FMT improved the intestinal structure and up-regulated the expression of tight junction proteins of occludin, claudin, and ZO-1, which might be associated with the protective effects of FMT on bone. Conclusions GM transplanted from young rats alleviated bone loss in aged rats with senile osteoporosis by improving gut microbiome composition and intestinal barrier function. These data might provide a scientific basis for future clinical treatment of osteoporosis through FMT.
Collapse
Affiliation(s)
- Sicong Ma
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Pu Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingjie Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
26
|
Bakhti SZ, Latifi-Navid S. Interplay and cooperation of Helicobacter pylori and gut microbiota in gastric carcinogenesis. BMC Microbiol 2021; 21:258. [PMID: 34556055 PMCID: PMC8461988 DOI: 10.1186/s12866-021-02315-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
Chronic Helicobacter pylori infection is a critical risk factor for gastric cancer (GC). However, only 1-3 % of people with H. pylori develop GC. In gastric carcinogenesis, non-H. pylori bacteria in the stomach might interact with H. pylori. Bacterial dysbiosis in the stomach can strengthen gastric neoplasia development via generating tumor-promoting metabolites, DNA damaging, suppressing antitumor immunity, and activating oncogenic signaling pathways. Other bacterial species may generate short-chain fatty acids like butyrate that may inhibit carcinogenesis and inflammation in the human stomach. The present article aimed at providing a comprehensive overview of the effects of gut microbiota and H. pylori on the development of GC. Next, the potential mechanisms of intestinal microbiota were discussed in gastric carcinogenesis. We also disserted the complicated interactions between H. pylori, intestinal microbiota, and host in gastric carcinogenesis, thus helping us to design new strategies for preventing, diagnosing, and treating GC.
Collapse
Affiliation(s)
- Seyedeh Zahra Bakhti
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran
| | - Saeid Latifi-Navid
- Department of Biology, Faculty of Sciences, University of Mohaghegh Ardabili, 56199-11367, Ardabil, Iran.
| |
Collapse
|
27
|
Caballero AM, Villagrán VAS, Serna AJ, Farrés A. Challenges in the production and use of probiotics as therapeuticals in cancer treatment or prevention. J Ind Microbiol Biotechnol 2021; 48:6356962. [PMID: 34427674 DOI: 10.1093/jimb/kuab052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/03/2021] [Indexed: 01/22/2023]
Abstract
Probiotics were defined as microbial strains that confer health benefits to their consumers. The concept has evolved during the last twenty years, and today metabolites produced by the strains, known as postbiotics, and even dead cells, known as paraprobiotics are closely associated to them. The isolation of commensal strains from human microbiome has led to the development of next generation probiotics. This review aims to present an overview of the developments in the area of cancer prevention and treatment, intimately related to advances in the knowledge of the microbiome role in its genesis and therapy. Strain identification and characterization, production processes, delivery strategies and clinical evaluation are crucial to translate results into the market with solid scientific support. Examples of recent tools in isolation, strain typification, quality control and development of new probiotic strains are described. Probiotics market and regulation were originally developed in the food sector, but these new strategies will impact the pharmaceutical and health sectors, requiring new considerations in regulatory frameworks.
Collapse
Affiliation(s)
- Alejandra Mejía Caballero
- Departamento de Ingeniería Celular y Biocatálisis, Insituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, México
| | - Vianey Anahi Salas Villagrán
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| | - Alaide Jiménez Serna
- Centro de Investigación y Capacitación en Gastronomía, Universidad del Claustro de Sor Juana, 06080 Ciudad de México, México
| | - Amelia Farrés
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, 04510 Ciudad de México, México
| |
Collapse
|
28
|
Stott K, Phillips B, Parry L, May S. Recent advancements in the exploitation of the gut microbiome in the diagnosis and treatment of colorectal cancer. Biosci Rep 2021; 41:BSR20204113. [PMID: 34236075 PMCID: PMC8314433 DOI: 10.1042/bsr20204113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023] Open
Abstract
Over the last few decades it has been established that the complex interaction between the host and the multitude of organisms that compose the intestinal microbiota plays an important role in human metabolic health and disease. Whilst there is no defined consensus on the composition of a healthy microbiome due to confounding factors such as ethnicity, geographical locations, age and sex, there are undoubtably populations of microbes that are consistently dysregulated in gut diseases including colorectal cancer (CRC). In this review, we discuss the most recent advances in the application of the gut microbiota, not just bacteria, and derived microbial compounds in the diagnosis of CRC and the potential to exploit microbes as novel agents in the management and treatment of CRC. We highlight examples of the microbiota, and their derivatives, that have the potential to become standalone diagnostic tools or be used in combination with current screening techniques to improve sensitivity and specificity for earlier CRC diagnoses and provide a perspective on their potential as biotherapeutics with translatability to clinical trials.
Collapse
Affiliation(s)
- Katie J. Stott
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Bethan Phillips
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Lee Parry
- European Cancer Stem Cell Research Institute, School of Biosciences, Cardiff University, Cardiff CF24 4HQ, U.K
| | - Stephanie May
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, U.K
| |
Collapse
|
29
|
Ebrahimzadeh S, Ahangari H, Soleimanian A, Hosseini K, Ebrahimi V, Ghasemnejad T, Soofiyani SR, Tarhriz V, Eyvazi S. Colorectal cancer treatment using bacteria: focus on molecular mechanisms. BMC Microbiol 2021; 21:218. [PMID: 34281519 PMCID: PMC8287294 DOI: 10.1186/s12866-021-02274-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Colorectal cancer which is related to genetic and environmental risk factors, is among the most prevalent life-threatening cancers. Although several pathogenic bacteria are associated with colorectal cancer etiology, some others are considered as highly selective therapeutic agents in colorectal cancer. Nowadays, researchers are concentrating on bacteriotherapy as a novel effective therapeutic method with fewer or no side effects to pay the way of cancer therapy. The introduction of advanced and successful strategies in bacterial colorectal cancer therapy could be useful to identify new promising treatment strategies for colorectal cancer patients. MAIN TEXT In this article, we scrutinized the beneficial effects of bacterial therapy in colorectal cancer amelioration focusing on different strategies to use a complete bacterial cell or bacterial-related biotherapeutics including toxins, bacteriocins, and other bacterial peptides and proteins. In addition, the utilization of bacteria as carriers for gene delivery or other known active ingredients in colorectal cancer therapy are reviewed and ultimately, the molecular mechanisms targeted by the bacterial treatment in the colorectal cancer tumors are detailed. CONCLUSIONS Application of the bacterial instrument in cancer treatment is on its way through becoming a promising method of colorectal cancer targeted therapy with numerous successful studies and may someday be a practical strategy for cancer treatment, particularly colorectal cancer.
Collapse
Affiliation(s)
- Sara Ebrahimzadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Kamran Hosseini
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
30
|
The Gut Microbiome and Gastrointestinal Toxicities in Pelvic Radiation Therapy: A Clinical Review. Cancers (Basel) 2021; 13:cancers13102353. [PMID: 34068216 PMCID: PMC8153110 DOI: 10.3390/cancers13102353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary A substantial proportion of cancer patients receive radiotherapy (RT) during their cancer trajectory. One of the most challenging pelvic RT-related toxicities are gastrointestinal (GI) toxicities (e.g., abdominal pain, rectal bleeding, faecal incontinence, and diarrhoea) which impair the quality of life (QoL) of patients. Mounting evidence suggests that gut microbiota plays a pivotal role in health and disease, including cancer. Our current clinical review aims to assess the impact of RT on gut microbiota and GI toxicities in cancer patients to provide useful information, in addition to standard care, for clinicians and patients. Abstract Background: Gastrointestinal (GI) toxicities are common adverse effects of pelvic radiotherapy (RT). Several recent studies revealed that toxicity of RT is associated with dysbiosis of the gut microbiome. Method: A literature search was conducted in electronic databases Medline, PubMed, and ScienceDirect, with search terms “microbiome and/or microbiota” and “radiotherapy (RT) and/or chemoradiation therapy (CRT)” and “cancer”, and the relevant literature were selected for use in this article. Results: Eight prospective cohort studies were selected for review with a total of 311 participants with a range of 15–134 participants within these studies. The selected studies were conducted in patients with gynaecological (n = 3), rectal (n = 2), or prostate cancers (n = 1), or patients with various types of malignancies (n = 2). Three studies reported that cancer patients had significantly lower alpha diversity compared with healthy controls. Seven studies found that lower alpha diversity and modulated gut microbiome were associated with GI toxicities during and after pelvic RT (n = 5) and CRT (n = 2), whereas one study found that beta diversity was related to a complete response following CRT. Two further studies reported that fatigue was associated with dysbiosis of the gut microbiome and low alpha diversity during and after RT, and with dysbiosis of the gut microbiome and diarrhoea, respectively. Conclusion: Gut microbiome profiles are associated with GI toxicities and have the potential to predict RT/CRT-induced toxicities and quality of life (QoL) in patients undergoing those treatments. Further robust randomized controlled trials (RCTs) are required to elucidate the effect of gut microbiome profiles on RT-related adverse effects and responses to RT.
Collapse
|
31
|
Yang J, Zhou X, Liu X, Ling Z, Ji F. Role of the Gastric Microbiome in Gastric Cancer: From Carcinogenesis to Treatment. Front Microbiol 2021; 12:641322. [PMID: 33790881 PMCID: PMC8005548 DOI: 10.3389/fmicb.2021.641322] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/10/2023] Open
Abstract
The development of sequencing technology has expanded our knowledge of the human gastric microbiome, which is now known to play a critical role in the maintenance of homeostasis, while alterations in microbial community composition can promote the development of gastric diseases. Recently, carcinogenic effects of gastric microbiome have received increased attention. Gastric cancer (GC) is one of the most common malignancies worldwide with a high mortality rate. Helicobacter pylori is a well-recognized risk factor for GC. More than half of the global population is infected with H. pylori, which can modulate the acidity of the stomach to alter the gastric microbiome profile, leading to H. pylori-associated diseases. Moreover, there is increasing evidence that bacteria other than H. pylori and their metabolites also contribute to gastric carcinogenesis. Therefore, clarifying the contribution of the gastric microbiome to the development and progression of GC can lead to improvements in prevention, diagnosis, and treatment. In this review, we discuss the current state of knowledge regarding changes in the microbial composition of the stomach caused by H. pylori infection, the carcinogenic effects of H. pylori and non-H. pylori bacteria in GC, as well as the potential therapeutic role of gastric microbiome in H. pylori infection and GC.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinxin Zhou
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaosun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|