1
|
Yang Y, Chen Y, Tang JY, Chen J, Li GQ, Feng B, Mu J. MiR-29a-3p inhibits fibrosis of diabetic kidney disease in diabetic mice via downregulation of DNA methyl transferase 3A and 3B. World J Diabetes 2025; 16:93630. [PMID: 40236856 PMCID: PMC11947916 DOI: 10.4239/wjd.v16.i4.93630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/16/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
BACKGROUND At present, the incidence of diabetic nephropathy is increasing year by year, and there are many studies on the pathogenesis of diabetic nephropathy, but it is still not completely clear. The final pathological result of diabetic nephropathy is mainly glomerular cell fibrosis, and the roles of micro-RNA (miRNA)-29 and DNA methyl transferase (DNMTs) in cell fibrosis have been confirmed in other studies, but there is a lack of relevant research in the kidney at present. AIM To study the potential involvement of miRNA-29a-3p in fibrosis related to diabetic kidney disease (DKD). METHODS The expression of miR-29a-3p, DNMT3A/3B, fibrosis-related molecules, Wnt3a, β-catenin, Janus kinase 2, and signal transducer and activator of transcription 3 was assessed in SV40MES13 cells and diabetic mice using quantitative real-time PCR and western blotting. Furthermore, the expression changes of fibrosis-related molecules were further analyzed using immunofluorescence and immunohistochemical blotting. The renal pathological changes of DKD in each group were also studied using hematoxylin-eosin and periodate-Schiff reaction staining. RESULTS In both the in vivo and in vitro experiments, it was observed that high glucose induction significantly decreased miR-29a-3p expression. As a result of this downregulation, DKD-related fibrosis was found to be promoted, as confirmed by elevated expression levels of α-smooth muscle actin, collagen type I, and fibronectin. MiR-29a-3p targets the 3' non-coding regions of DNMT3A and DNMT3B and inhibits their expression. Inhibition of DNMT3A and DNMT3B can reverse the effect of miR-29a-3p downregulation on DKD-related fibrosis. CONCLUSION MiR-29a-3p can regulate Wnt/β-catenin and Janus kinase/signal transducer and activator of transcription signal pathways by regulating and inhibiting the expression of DNMT3A/3B and thus participate in the inhibition of DKD-related fibrosis.
Collapse
Affiliation(s)
- Ying Yang
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Yi Chen
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jian-Ying Tang
- Department of Nephrology, University-Town Hospital of Chongqing Medical University, Chongqing 401331, China
| | - Jian Chen
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, China
| | - Gui-Qing Li
- Institute of Immunology, The Third Military Medical University, Chongqing 400038, China
| | - Bing Feng
- Department of Nephrology, Third Military Medical University, Chongqing 400038, China
| | - Jiao Mu
- Department of Nephrology, Chongqing Medical University, Chongqing 401331, China
| |
Collapse
|
2
|
Zhang M, Wu J, Wang Y, Wu Y, Wan X, Jiang M, Bo Q, Chen J, Sun X. circSIRT2/miR-542-3p/VASH1 axis regulates endothelial-to-mesenchymal transition (EndMT) in subretinal fibrosis in age-related macular degeneration models. Aging Cell 2025; 24:e14443. [PMID: 39744871 PMCID: PMC11984685 DOI: 10.1111/acel.14443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/14/2024] [Accepted: 11/21/2024] [Indexed: 04/12/2025] Open
Abstract
Neovascular age-related macular degeneration (nAMD), characterized by choroidal neovascularization (CNV), is one of the leading causes of severe visual impairment and irreversible vision loss around the world. Subretinal fibrosis (SRF) contributes to the incomplete response to anti-vascular endothelial growth factor (VEGF) treatment and is one of the main reasons for long-term poor visual outcomes in nAMD. Reducing SRF is urgently needed in the anti-VEGF era. The role of non-coding RNAs has been implicated in CNV; however, their roles in SRF have not been elucidated yet. Herein, we comprehensively investigated circular RNA (circRNA) profiles in the laser-induced mouse SRF model and the transforming growth factor-β (TGF-β) induced human umbilical vein endothelial cell (HUVEC) fibrosis model. A novel circRNA, circSIRT2, was identified, and its function in SRF and endothelial-to-mesenchymal transition (EndMT) regulation was investigated. circSIRT2 was consistently upregulated in fibrotic models in vivo and in vitro. circSIRT2 overexpression downregulated the fibrotic markers and inhibited the proliferation and migration of endothelial cells in vitro. circSIRT2 overexpression in vivo also reduced SRF area in mice. Mechanistically, circSIRT2 functioned by sponging miR-542-3p, which further upregulated the expression of vasohibin-1 (VASH1) and reduced SRF lesion development. Vitreous delivery of miR-542-3p and VASH1 in the mouse SRF model also confirmed the pro-fibrotic function of miR-542-3p and anti-fibrotic function of VASH1, respectively. In conclusion, circSIRT2 inhibited SRF by binding miR-542-3p, which stimulated the VASH1 expression and subsequently suppressed EndMT. The circSIRT2/miR-542-3p/VASH1 axis may serve as a promising therapeutic target for SRF in nAMD.
Collapse
Affiliation(s)
- Min Zhang
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Jiali Wu
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Yimin Wang
- Department of Ophthalmology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yidong Wu
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Xiaoling Wan
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Mei Jiang
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Qiyu Bo
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Jieqiong Chen
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
| | - Xiaodong Sun
- Department of Ophthalmology, Shanghai General HospitalShanghai Jiao Tong University, School of MedicineShanghaiChina
- National Clinical Research Center for Ophthalmic DiseasesShanghaiChina
- Shanghai Key Laboratory of Fundus DiseasesShanghaiChina
- Shanghai Engineering Center for Visual Science and PhotomedicineShanghaiChina
| |
Collapse
|
3
|
Yin Q, Guo N, Liao R. LncRNA GAS5 reduces blood glucose levels and alleviates renal fibrosis in diabetic nephropathy by regulating the miR-542-3p/ERBB4 axis. Diabetol Metab Syndr 2025; 17:30. [PMID: 39849629 PMCID: PMC11755873 DOI: 10.1186/s13098-025-01593-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025] Open
Abstract
OBJECTIVE The present study was implemented to unravel the effect of lncRNA GAS5 on renal fibrosis induced by diabetic nephropathy (DN) by regulating the miR-542-3p/ERBB4 axis. METHODS db/db mice were injected with lncRNA GAS5 high expression or miR-542-3p low expression related vectors. Biochemical experiments were performed to assess blood glucose level and urine protein concentration. HE, TUNEL and Masson stainings were employed to observe the cellular morphology, apoptosis, and fibrosis of renal tissues, respectively. ELISA was executed to examine the levels of IL-1β, IL-6, and TNF-α; and the superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) activities were evaluated. Bioinformatics analysis, dual-luciferase and RIP assays were performed to verify the relationship between lncRNA GAS5 and miR-542-3p, and miR-542-3p and ERBB4. RESULTS LncRNA GAS5 and ERBB4 were lowly expressed and miR-542-3p was highly expressed in the renal tissues of DN mice. Overexpression of lncRNA GAS5 or low-expression of miR-542-3p diminished DN-induced renal fibrosis. LncRNA GAS5 could bind to miR-542-3p and miR-542-3p further modulating ERBB4 expression. Up-regulation of miR-542-3p neutralized the suppressive effect of lncRNA GAS5 overexpression and down-regulation of ERBB4 also counteracted the inhibitory impact of down-regulation of miR-542-3p on renal fibrosis in DN mice. CONCLUSION Up-regulation of lncRNA GAS5 alleviates renal fibrosis in DN mice via down-regulation of miR-542-3p and up-regulation of ERBB4.
Collapse
Affiliation(s)
- Qinghua Yin
- Division of Nephrology, Kidney Research Institute, West China Hospital of Sichuan University, Chengdu, 610047, Sichuan, China
| | - Na Guo
- Occupational Disease and Toxicosis/Nephrology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610000, Sichuan, China
| | - Ruoxi Liao
- Division of Nephrology, West China Hospital of Sichuan University, No.37 Guoxue Lane, Wuhou District, Chengdu, 610047, Sichuan, China.
| |
Collapse
|
4
|
Qian L, Hu W, Wang Y, Waheed YA, Hu S, Sun D, Li S. LncRNA TUG1 mitigates chronic kidney disease through miR-542-3p/HIF-1α/VEGF axis. Heliyon 2025; 11:e40891. [PMID: 39811365 PMCID: PMC11730199 DOI: 10.1016/j.heliyon.2024.e40891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathway in chronic kidney disease (CKD) that ultimately leads to end-stage renal failure, worsening both glomerulosclerosis and interstitial fibrosis. Ten percent of the adult population in the world suffers from CKD, and as the ageing population continues to rise, it is increasingly regarded as a global threat-a silent epidemic. CKD has been discovered to be closely associated with both long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), while the precise molecular processes behind this relationship are still unclear. This study evaluated the impact of miR-542-3p and lncRNA TUG1 on renal fibrosis, along with the underlying regulatory mechanisms. Through in vitro tube formation assays, research demonstrated that knocking down lncRNA TUG1 may enhance angiogenesis and repair damaged endothelial cell-cell connections. We used Western blot and qRT-PCR methods in the unilateral ureteral obstruction (UUO) model to identify tissue hypoxia and fibrotic lesions. Additionally, a cutting-edge method known as fluorescence microangiography (FMA) was employed to detect damage to the peritubular capillaries (PTCs), with MATLAB software utilised for data evaluation. Furthermore, the coexpression of CD31 and α-SMA helped identify cells in the obstructed kidney that were transitioning from endothelium to myofibroblasts. On the contrary, lncRNA TUG1 downregulation showed a protective effect against the transition from endothelial cells to myofibroblasts. Additionally, knocking down lncRNA TUG1 has been shown to reduce the expression of fibrotic markers by alleviating tissue hypoxia. This effect was significantly counteracted by the inhibition of miR-542-3p. Collectively, our findings offer fresh perspectives on how lncRNA TUG1 and the miR-542-3p/HIF-1α/VEGF axis are regulated as renal fibrosis advances.
Collapse
Affiliation(s)
- Luoxiang Qian
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
- Department of Internal Medicine, Weinan Maternal and Child Health Hospital, Weinan, 714000, China
| | - Wanru Hu
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
| | - Yanping Wang
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
| | | | - Shuqun Hu
- Laboratory of Emergency Medicine, Second Clinical Medical College of Xuzhou Medical University, Xuzhou, 221002, China
| | - Dong Sun
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
- Department of Internal Medicine and Diagnostics, Xuzhou Medical University, Xuzhou, 221002, China
| | - Shulin Li
- Department of Nephrology, Affiliated Hospital of Xuzhou Medical University, 221002, China
| |
Collapse
|
5
|
Zhang L, Liu W, Li S, Wang J, Sun D, Li H, Zhang Z, Hu Y, Fang J. Astragaloside IV alleviates renal fibrosis by inhibiting renal tubular epithelial cell pyroptosis induced by urotensin II through regulating the cAMP/PKA signaling pathway. PLoS One 2024; 19:e0304365. [PMID: 38820434 PMCID: PMC11142519 DOI: 10.1371/journal.pone.0304365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 05/11/2024] [Indexed: 06/02/2024] Open
Abstract
OBJECTIVE To explore the molecular mechanism of Astragaloside IV (AS-IV) in alleviating renal fibrosis by inhibiting Urotensin II-induced pyroptosis and epithelial-mesenchymal transition of renal tubular epithelial cells. METHODS Forty SD rats were randomly divided into control group without operation: gavage with 5ml/kg/d water for injection and UUO model group: gavage with 5ml/kg/d water for injection; UUO+ AS-IV group (gavage with AS-IV 20mg/kg/d; and UUO+ losartan potassium group (gavage with losartan potassium 10.3mg/kg/d, with 10 rats in each group. After 2 weeks, Kidney pathology, serum Urotensin II, and cAMP concentration were detected, and the expressions of NLRP3, GSDMD-N, Caspase-1, and IL-1β were detected by immunohistochemistry. Rat renal tubular epithelial cells were cultured in vitro, and different concentrations of Urotensin II were used to intervene for 24h and 48h. Cell proliferation activity was detected using the CCK8 assay. Suitable concentrations of Urotensin II and intervention time were selected, and Urotensin II receptor antagonist (SB-611812), inhibitor of PKA(H-89), and AS-IV (15ug/ml) were simultaneously administered. After 24 hours, cells and cell supernatants from each group were collected. The cAMP concentration was detected using the ELISA kit, and the expression of PKA, α-SMA, FN, IL-1β, NLRP3, GSDMD-N, and Caspase-1 was detected using cell immunofluorescence, Western blotting, and RT-PCR. RESULTS Renal tissue of UUO rats showed renal interstitial infiltration, tubule dilation and atrophy, renal interstitial collagen fiber hyperplasia, and serum Urotensin II and cAMP concentrations were significantly higher than those in the sham operation group (p <0.05). AS-IV and losartan potassium intervention could alleviate renal pathological changes, and decrease serum Urotensin II, cAMP concentration levels, and the expressions of NLRP3, GSDMD-N, Caspase-1, and IL-1β in renal tissues (p <0.05). Urotensin II at a concentration of 10-8 mol/L could lead to the decrease of cell proliferation, (p<0.05). Compared with the normal group, the cAMP level and the PKA expression were significantly increased (p<0.05). After intervention with AS-IV and Urotensin II receptor antagonist, the cAMP level and the expression of PKA were remarkably decreased (p<0.05). Compared with the normal group, the expression of IL-1β, NLRP3, GSDMD-N, and Caspase-1 in the Urotensin II group was increased (p<0.05), which decreased in the AS-IV and H-89 groups. CONCLUSION AS-IV can alleviate renal fibrosis by inhibiting Urotensin II-induced pyroptosis of renal tubular epithelial cells by regulating the cAMP/PKA signaling pathway.
Collapse
Affiliation(s)
- Lin Zhang
- Shanxi Medical University, Taiyuan, Shanxi Province, China
- Department of Prevention Care, Cardiovascular Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Wenyuan Liu
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Sufen Li
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jinjing Wang
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Dalin Sun
- Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Hui Li
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Ziyuan Zhang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yaling Hu
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Jingai Fang
- Department of Nephrology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| |
Collapse
|
6
|
Campillo S, Gutiérrez-Calabrés E, García-Miranda S, Griera M, Fernández Rodríguez L, de Frutos S, Rodríguez-Puyol D, Calleros L. Integrin-linked kinase mRNA expression in circulating mononuclear cells as a biomarker of kidney and vascular damage in experimental chronic kidney disease. Cell Commun Signal 2024; 22:264. [PMID: 38734696 PMCID: PMC11088758 DOI: 10.1186/s12964-024-01646-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Traditional biomarkers of chronic kidney disease (CKD) detect the disease in its late stages and hardly predict associated vascular damage. Integrin-linked kinase (ILK) is a scaffolding protein and a serine/threonine protein kinase that plays multiple roles in several pathophysiological processes during renal damage. However, the involvement of ILK as a biomarker of CKD and its associated vascular problems remains to be fully elucidated. METHODS CKD was induced by an adenine-rich diet for 6 weeks in mice. We used an inducible ILK knockdown mice (cKD-ILK) model to decrease ILK expression. ILK content in mice's peripheral blood mononuclear cells (PBMCs) was determined and correlated with renal function parameters and with the expression of ILK and fibrosis and inflammation markers in renal and aortic tissues. Also, the expression of five miRNAs that target ILK was analyzed in whole blood of mice. RESULTS The adenine diet increased ILK expression in PBMCs, renal cortex, and aortas, and creatinine and urea nitrogen concentrations in the plasma of WT mice, while these increases were not observed in cKD-ILK mice. Furthermore, ILK content in PBMCs directly correlated with renal function parameters and with the expression of renal and vascular ILK and fibrosis and inflammation markers. Finally, the expression of the five miRNAs increased in the whole blood of adenine-fed mice, although only four correlated with plasma urea nitrogen, and of those, three were downregulated in cKD-ILK mice. CONCLUSIONS ILK, in circulating mononuclear cells, could be a potential biomarker of CKD and CKD-associated renal and vascular damage.
Collapse
Affiliation(s)
- Sofía Campillo
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain.
| | - Elena Gutiérrez-Calabrés
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain
| | - Susana García-Miranda
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Griera
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain
| | - Loreto Fernández Rodríguez
- Biomedical Research Foundation and Nephrology Unit, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Sergio de Frutos
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain
| | - Diego Rodríguez-Puyol
- Department of Medicine and Medical Specialties, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research Foundation and Nephrology Unit, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Madrid, Spain
| | - Laura Calleros
- Department of Systems Biology, Physiology Unit, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
- Fundación Renal Iñigo Álvarez de Toledo (FRIAT), Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), and RICORS2040 Kidney Disease, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
7
|
Barreiro K, Lay AC, Leparc G, Tran VDT, Rosler M, Dayalan L, Burdet F, Ibberson M, Coward RJM, Huber TB, Krämer BK, Delic D, Holthofer H. An in vitro approach to understand contribution of kidney cells to human urinary extracellular vesicles. J Extracell Vesicles 2023; 12:e12304. [PMID: 36785873 PMCID: PMC9925963 DOI: 10.1002/jev2.12304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 02/15/2023] Open
Abstract
Extracellular vesicles (EV) are membranous particles secreted by all cells and found in body fluids. Established EV contents include a variety of RNA species, proteins, lipids and metabolites that are considered to reflect the physiological status of their parental cells. However, to date, little is known about cell-type enriched EV cargo in complex EV mixtures, especially in urine. To test whether EV secretion from distinct human kidney cells in culture differ and can recapitulate findings in normal urine, we comprehensively analysed EV components, (particularly miRNAs, long RNAs and protein) from conditionally immortalised human kidney cell lines (podocyte, glomerular endothelial, mesangial and proximal tubular cells) and compared to EV secreted in human urine. EV from cell culture media derived from immortalised kidney cells were isolated by hydrostatic filtration dialysis (HFD) and characterised by electron microscopy (EM), nanoparticle tracking analysis (NTA) and Western blotting (WB). RNA was isolated from EV and subjected to miRNA and RNA sequencing and proteins were profiled by tandem mass tag proteomics. Representative sets of EV miRNAs, RNAs and proteins were detected in each cell type and compared to human urinary EV isolates (uEV), EV cargo database, kidney biopsy bulk RNA sequencing and proteomics, and single-cell transcriptomics. This revealed that a high proportion of the in vitro EV signatures were also found in in vivo datasets. Thus, highlighting the robustness of our in vitro model and showing that this approach enables the dissection of cell type specific EV cargo in biofluids and the potential identification of cell-type specific EV biomarkers of kidney disease.
Collapse
Affiliation(s)
- Karina Barreiro
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
| | - Abigail C. Lay
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - German Leparc
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
| | - Van Du T. Tran
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Marcel Rosler
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
| | - Lusyan Dayalan
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - Frederic Burdet
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Mark Ibberson
- Vital‐IT GroupSIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Richard J. M. Coward
- Bristol RenalBristol Medical SchoolFaculty of Health SciencesUniversity of BristolBristolUK
| | - Tobias B. Huber
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Bernhard K. Krämer
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology)University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
| | - Denis Delic
- Boehringer Ingelheim Pharma GmbH & Co. KG BiberachBiberachGermany
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology/Pneumology)University Medical Centre MannheimUniversity of HeidelbergMannheimGermany
| | - Harry Holthofer
- Institute for Molecular Medicine Finland (FIMM)University of HelsinkiHelsinkiFinland
- III Department of MedicineUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| |
Collapse
|
8
|
Xiao Q, Tang Y, Luo H, Chen S, Chen R, Yan Z, Pu L, Wang L, Li G, Li Y. Sclerostin is involved in osteogenic transdifferentiation of vascular smooth muscle cells in chronic kidney disease-associated vascular calcification with non-canonical Wnt signaling. Ren Fail 2022; 44:1426-1442. [PMID: 36017689 PMCID: PMC9423850 DOI: 10.1080/0886022x.2022.2114370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Vascular calcification is prominent in patients with chronic kidney disease (CKD) and is a strong predictor of cardiovascular mortality in the CKD population. However, the mechanism underlying CKD-associated vascular calcification remains unclear. To identify potential therapeutic targets, a 5/6 nephrectomy rat model was established by feeding of a high-phosphorous diet as the CKD group and compared with sham group rats at 4 and 16 weeks. Sequencing analyses of the rat aorta revealed 643 upregulated and 1023 downregulated genes at 4 weeks, as well as 899 upregulated and 1185 downregulated genes at 16 weeks in the CKD group compared to the sham group. Bioinformatics analyses suggested that SOST (which encodes sclerostin) and Wnt signaling are involved in CKD-associated vascular calcification. Furthermore, protein-protein interactions analysis revealed interactions between SOST, WNT5A, and WNT5B, that involved runt-related transcription factor 2 (RUNX2) and transgelin (TAGLN). SOST was increased in CKD-associated vascular calcification following reduction of the Wnt signaling, including WNT5A and WNT5B, both in vivo and in vitro. TargetScan was used to predict the microRNAs (miRNAs) targeting WNT5A and WNT5B. The expression levels of miR-542-3p, miR-298-3p, miR-376b-5p, and miR-3568 were significantly reduced, whereas that of miR-742-3p was significantly increased in calcified rat aortic vascular smooth muscle cells (VSMCs). In CKD rat aortas, the expression of miR-542-3p, miR-298-3p, miR-376b-5p, miR-3568, miR-742-3p, and miR-22-5p were significantly reduced at both 4 and 16 weeks. Altogether, owing to several assessments, potentially diagnostic and prognostic biomarkers for improving common CKD diagnostic tools were identified in this study. Abbreviations: BUN: blood urea nitrogen; CKD: chronic kidney disease; CKD-MBD: chronic kidney disease-mineral bone disorder; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GO: the Gene Ontology; HE: hematoxylin-eosin; HRP: horseradish peroxidase; KEGG: Kyoto Encyclopedia of Genes and Genomes; MiRNAs: microRNAs; PAS: periodic acid-Schiff; RUNX2: runt-related transcription factor 2; SCr: serum creatinine; STRING: the Search Tool for the Retrieval of Interacting Genes/Proteins; TAGLN: transgelin; VSMC: vascular smooth muscle cell.
Collapse
Affiliation(s)
- Qiong Xiao
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.,Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, PR China.,The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, PR China
| | - Yun Tang
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.,Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Haojun Luo
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.,Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, PR China.,Department of Palliative Medicine, Chongqing University Cancer Hospital, Chongqing, PR China
| | - Sipei Chen
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.,Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Rong Chen
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.,Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Zhe Yan
- College of Integration of Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, PR China
| | - Lei Pu
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.,Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Li Wang
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.,Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Guisen Li
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.,Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| | - Yi Li
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China.,Sichuan Clinical Research Center for Kidney Diseases, Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, PR China.,Chinese Academy of Sciences, Sichuan Translational Medicine Research Hospital, Chengdu, PR China
| |
Collapse
|
9
|
Song Y, Jiao H, Lin Q, Zhang X, Chen X, Wei Z, Yi L. Identification of the miR-423-3p/VLDLR Regulatory Network for Glioma Using Transcriptome Analysis. Neurochem Res 2022; 47:3864-3901. [PMID: 36352275 DOI: 10.1007/s11064-022-03774-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/21/2022] [Accepted: 09/28/2022] [Indexed: 11/10/2022]
Abstract
As the most prevalent primary CNS tumor, glioma is characterized by high mortality and morbidity. This research aims to investigate glioma-associated microRNAs (miRNAs) and their target mRNAs, as well as to explore their biological functions in gliomas. The Gene Expression Omnibus (GEO) database was applied to acquire the GSE112264 miRNA microarray dataset and the GSE15824 mRNA dataset. We selected samples from the GSE112264 dataset and the GSE15824 to identify differently expressed miRNAs (DE-miRNAs) as well as differentially expressed mRNAs (DEGs), respectively. Next, the intersections of mRNA and target mRNAs of miRNA were selected, and we constructed miRNA-mRNA regulation networks. These DEGs were selected for Gene Oncology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses by conducting the package clusterProfiler. After conducting Cytoscape software, a protein-protein interaction (PPI) network was created. Next, survival analysis of the miR-423-3p was confirmed by conducting TCGA database. Subsequently, Quantitative real-time PCR (qRT-PCR) was conducted to verify miR-423-3p's expression. Finally, miR-423-3p's biological functions of in effecting the cell proliferative, migratory, and invasive capabilities of glioma were investigated by performing Cell Counting Kit-8 (CCK-8) and Transwell assays. Our analysis elucidated a novel miRNA-mRNA regulatory network related to glioma carcinogenesis, which may be considered as future therapeutic biomarkers for glioma.
Collapse
Affiliation(s)
- Ying Song
- Department of Clinical Medicine, Weifang Medical University, Weifang, China.,Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Huili Jiao
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qirui Lin
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiaoyun Zhang
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiao Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zhiqiang Wei
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Li Yi
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, China.
| |
Collapse
|
10
|
Xue T, Qiu X, Liu H, Gan C, Tan Z, Xie Y, Wang Y, Ye T. Epigenetic regulation in fibrosis progress. Pharmacol Res 2021; 173:105910. [PMID: 34562602 DOI: 10.1016/j.phrs.2021.105910] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/23/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023]
Abstract
Fibrosis, a common process of chronic inflammatory diseases, is defined as a repair response disorder when organs undergo continuous damage, ultimately leading to scar formation and functional failure. Around the world, fibrotic diseases cause high mortality, unfortunately, with limited treatment means in clinical practice. With the development and application of deep sequencing technology, comprehensively exploring the epigenetic mechanism in fibrosis has been allowed. Extensive remodeling of epigenetics controlling various cells phenotype and molecular mechanisms involved in fibrogenesis was subsequently verified. In this review, we summarize the regulatory mechanisms of DNA methylation, histone modification, noncoding RNAs (ncRNAs) and N6-methyladenosine (m6A) modification in organ fibrosis, focusing on heart, liver, lung and kidney. Additionally, we emphasize the diversity of epigenetics in the cellular and molecular mechanisms related to fibrosis. Finally, the potential and prospect of targeted therapy for fibrosis based on epigenetic is discussed.
Collapse
Affiliation(s)
- Taixiong Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingyu Qiu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuxi Wang
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China; Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan, China.
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Department of Gastroenterology and Hepatology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|