1
|
Qiu D, Zhao N, Chen Q, Wang M. FOXC1 Aggravates the Ischemia-Reperfusion Induced Injury in Renal Tubular Epithelial Cells by Activating NF-κB/NLRP3 Signaling. J Biochem Mol Toxicol 2025; 39:e70301. [PMID: 40371539 DOI: 10.1002/jbt.70301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 03/19/2025] [Accepted: 04/25/2025] [Indexed: 05/16/2025]
Abstract
Renal ischemia-reperfusion injury (RIRI) is a condition characterized by inflammation and cell damage in the kidneys following a period of ischemia and subsequent reperfusion, which lacks effective treating method in the clinic. Exploring molecular mechanisms holds profound significance in guiding the clinical prevention and treatment of RIRI. Herein, the potential function of Forkhead box C1 (FOXC1), a protein belongs to FOX family, in I/R-induced injury in renal tubular epithelial cells (RTECs) was studied to explore potential targets for RIRI. FOXC1 was upregulated in RIRI rats, expressions of which were elevated as time prolonged. FOXC1-overexpressed or knockdown HK-2 cells were constructed, followed by I/R stimulation. FOXC1 was found markedly upregulated in I/R-stimulated HK-2 cells. Notably repressed cell viability, enhanced apoptosis, increased release of inflammatory cytokines, boosted reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and inactivated superoxide dismutase (SOD) enzyme were observed in I/R-stimulated HK-2 cells, which were sharply reversed by silencing FOXC1 and aggravated by overexpression FOXC1. Furthermore, largely increased levels of NLRP3, caspase-1, GSDMD-N, IL-18, IL-1β, and p-p65/p65 were observed in I/R-stimulated HK-2 cells, which were notably suppressed by silencing FOXC1 and further elevated by overexpression FOXC1. Additionally, FOXC1-overexpressed HK-2 cells were stimulated by I/R with or without 10 μM MCC950, an inhibitor of NLRP3. The enhanced apoptosis, triggered inflammation, and facilitated ROS by FOXC1 overexpression in I/R-stimulated HK-2 cells were remarkably abolished by the coculture of MCC950, accompanied by an inhibition on the NF-κB/NLRP3 signaling. Collectively, FOXC1 aggravated the I/R induced injury in RTECs by activating NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- Donghao Qiu
- Department of Nehprology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Ning Zhao
- Department of Nehprology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Qi Chen
- Department of Nehprology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Ming Wang
- Department of Nehprology, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Hu H, Liu Y, Han S, Guo J, Zhou J, Qiu T. DEF6 regulates renal ischemia reperfusion injury through suppressing the WWP2 mediated ubiquitination of PARP1. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167681. [PMID: 39837430 DOI: 10.1016/j.bbadis.2025.167681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/12/2025] [Accepted: 01/16/2025] [Indexed: 01/23/2025]
Abstract
BACKGROUND Renal ischemia-reperfusion injury (RIRI) stands as an unavoidable complication arising from kidney surgery, profoundly intertwined with its prognosis. The role of differentially expressed in FDCP 6 homolog (DEF6) in RIRI remains elusive, despite its confirmation as a potential therapeutic target for diverse diseases. Here, we investigated the mechanism by which DEF6 regulated RIRI. METHODS RNA sequencing data and IP-MS were used to identify the expression and potential targets of DEF6 through bioinformatics analysis. To elucidate the impact of DEF6 on RIRI, both an in vivo model of RIRI in mice and an in vitro model of kidney cell hypoxia/reoxygenation were established. Biochemical and histological analyses were used to investigate the influence of DEF6 on kidney damage mediated by RIRI. RESULTS We confirmed that DEF6 was upregulated during RIRI and had a close correlation with RIRI-related inflammation and apoptosis. Moreover, inhibition of DEF6 could mitigate RIRI-induced kidney damage, inflammation, and apoptosis. Through our comprehensive mechanistic investigation, we revealed that DEF6 interacts with poly ADP-ribose polymerase 1 (PARP1) and suppresses the ubiquitination of PARP1. Inhibition of DEF6 resulted in reduced cleaveage of PARP1, leading to a marked suppression of PARP1-mediated apoptosis activation. The aggravation effect on inflammation and apoptosis achieved through DEF6 was nullified by the inhibition of NF-κB and Bax/Bcl2 signaling activation through PARP1 deletion. CONCLUSIONS The findings from our study indicate that DEF6 suppressed the WWP2 mediated ubiquitination of PARP1 and modulates the activation of NF-κB and Bax/Bcl2 pathway, thus involved in RIRI-induced inflammation and apoptosis. These results suggest that DEF6 holds promise as a potential therapeutic target for mitigating RIRI.
Collapse
Affiliation(s)
- Haochong Hu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Yiting Liu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Shangting Han
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Jiayu Guo
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China
| | - Jiangqiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China.
| | - Tao Qiu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China; Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, PR China.
| |
Collapse
|
3
|
Wang J, Wu N, Zhang J, Li X, Hu Y, Dai J, Shen C, Chen X. Ciliary neurotrophic factor attenuates myocardial infarction-induced oxidative stress and ferroptosis via PI3K/Akt signaling. J Mol Histol 2025; 56:90. [PMID: 39954087 DOI: 10.1007/s10735-025-10359-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/19/2025] [Indexed: 02/17/2025]
Abstract
BACKGROUND As a member of the interleukin-6 family, ciliary neurotrophic factor (CNTF) regulates inflammation, oxidative stress, and other processes to exhibit neurotrophic and differentiating effects over cells in the central nervous system. It has not yet been documented, therefore, if CNTF influences the cardiac remodeling brought on by myocardial infarction (MI). The purpose of the current investigation was to identify the function and underlying mechanisms of CNTF in cardiac remodeling brought on by MI. METHODS Using an adeno-associated virus 9 (AAV9) system and tail vein injection, we overexpressed CNTF in the hearts. To create a model of MI, C57BL/6 mice underwent left anterior descending (LAD) ligation. The following techniques were employed to assess the impact of CNTF overexpression and the underlying mechanisms: quantitative real-time PCR, western blotting, histological analysis, immunofluorescence and immunohistochemistry analysis, and echocardiography. We used H9c2 cells to confirm CNTF's in vitro effects. RESULTS In MI mice, overexpression of CNTF prevents cardiac hypertrophy and cardiac fibrosis. Furthermore, oxidative stress and ferroptosis in response to MI damage were markedly reduced by CNTF overexpression. Mechanistically, overexpression of CNTF in both in vivo and in vitro markedly enhanced PI3K/Akt signaling. However, blocking this pathway effectively negated the beneficial impact of CNTF overexpression. CONCLUSIONS Our research indicates that via initiating the PI3K/Akt signaling pathway, CNTF controls myocardial dysfunction, oxidative stress, and ferroptosis in MI-induced cardiac remodeling. CNTF may have therapeutic potential in treating MI-induced cardiac remodeling.
Collapse
Affiliation(s)
- Jian Wang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Nan Wu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Jie Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Xiaojing Li
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Yingchu Hu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China
| | - Jiating Dai
- Health Science Center, Ningbo University, Ningbo, 315000, China
| | - Caijie Shen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China.
- , 59 Liuting Street, Haishu District, Ningbo, Zhejiang, China.
| | - Xiaomin Chen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, Ningbo, 315000, China.
- , 59 Liuting Street, Haishu District, Ningbo, Zhejiang, China.
| |
Collapse
|
4
|
Jin S, Wu Z. Study on Immune-Related Genes and Clinical Validation of Acute Myocardial Infarction Based on Bioinformatics. Biochem Genet 2025:10.1007/s10528-025-11029-y. [PMID: 39820825 DOI: 10.1007/s10528-025-11029-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
Acute myocardial infarction (AMI) is a cardiovascular disease featuring the narrowing and hardening of coronary arteries triggered by a combination of factors, which ultimately leads to the death of heart muscle. We retrieved the GSE109048 and GSE123342 datasets from the Gene Expression Omnibus (GEO) database. After integrating these datasets, we selected 154 module key genes with the help of weighted correlation network analysis (WGCNA). After that, we used protein-protein interaction networks (PPI) analysis to screen out 18 core genes in the protein interaction network from 154 genes. Finally, we used three machine learning algorithms to jointly identify three genes (CLEC4D, CLEC4E and LY96) that may predict or influence the progression of AMI. In the dataset, CLEC4D, CLEC4E and LY96 were significantly overexpressed in AMI patients. Immune infiltration analysis revealed that CLEC4D, CLEC4E and LY96 could affect the extent of immune cell infiltration. For further verification, we found that the expression levels of CLEC4D, CLEC4E and LY96 in the AMI cohort were significantly higher than those in coronary heart disease (CAD) patients by qRT-PCR. This finding corroborated the results derived from bioinformatics analysis. In summary, CLEC4D, CLEC4E and LY96 can be used to predict the occurrence of AMI.
Collapse
Affiliation(s)
- Shuang Jin
- Department of Emergency, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, 325000, Zhejiang, China
| | - Zhang Wu
- Department of Emergency, The Wenzhou Third Clinical Institute Affiliated To Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou Maternal and Child Health Care Hospital, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
5
|
Zhang Z, Peng J, Hu Y, Zeng G, Du W, Shen C. CTRP5 Attenuates Doxorubicin-Induced Cardiotoxicity Via Inhibiting TLR4/NLRP3 Signaling. Cardiovasc Drugs Ther 2024; 38:1235-1244. [PMID: 37256416 DOI: 10.1007/s10557-023-07464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND C1q/tumor necrosis factor-related protein 5 (CTRP5) has been reported to be a crucial regulator in cardiac ischemia/reperfusion (I/R) injury. Nevertheless, the potential role of CTRP5 in doxorubicin (DOX)-induced cardiotoxicity and the potential mechanisms remain largely unclear. METHODS We overexpressed CTRP5 in the hearts using an adeno-associated virus 9 (AAV9) system through tail vein injection. C57BL/6 mice were subjected to DOX (15 mg/kg/day, i.p.) to generate DOX-induced cardiotoxicity for 4 weeks. Subsequently, cardiac staining and molecular biological analysis were performed to analyze the morphological and biochemical effects of CTRP5 on the cardiac injury. H9c2 cells were used for validation in vitro. RESULTS CTRP5 expression was down-regulated after DOX treatment both in vivo and in vitro. CTRP5 overexpression significantly attenuated DOX-induced cardiac injury, cardiac dysfunction, inhibited oxidative stress and inflammatory response. Mechanistically, CTRP5 overexpression markedly decreased the protein expression of toll-like receptor 4 (TLR4), NLRP3, cleaved caspase-1 and caspase-1, indicating TLR/NLRP3 signaling contributes to the cardioprotective role of CTRP5 in DOX-induced cardiotoxicity. CONCLUSIONS Together, our findings demonstrated that CTRP5 overexpression could protect the heart from oxidative stress and inflammatory injury induced by DOX through inhibiting TLR4/NLRP3 signaling, suggesting that CTRP5 might be a potential therapeutic target in the prevention of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zhaoxia Zhang
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Haishu District, Ningbo, Zhejiang, China
| | - Jianye Peng
- Department of Cardiology, The Second Affiliated Hospital of Hengyang, Hengyang Medcial School, University of South China, Hengyang, 421001, Hunan, China
- The Second Affiliated Hospital, Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yewen Hu
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Haishu District, Ningbo, Zhejiang, China
| | - Gaofeng Zeng
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Haishu District, Ningbo, Zhejiang, China
| | - Weiping Du
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Haishu District, Ningbo, Zhejiang, China.
| | - Caijie Shen
- Department of Cardiology, The First Affiliated Hospital of Ningbo University, #59 Liuting Street, Haishu District, Ningbo, Zhejiang, China.
| |
Collapse
|
6
|
Chiang CH, Lan TY, Hsieh JH, Lin SC, Chen JW, Chang TT. Diosgenin Reduces Acute Kidney Injury and Ameliorates the Progression to Chronic Kidney Disease by Modifying the NOX4/p65 Signaling Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17444-17454. [PMID: 39074384 PMCID: PMC11311217 DOI: 10.1021/acs.jafc.4c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Acute kidney injury (AKI), if not well controlled, may progress to chronic kidney disease (CKD). Diosgenin is a natural phytosteroid sapogenin from plants. This study aimed to investigate the mechanistic effects of diosgenin on AKI and AKI related development of CKD. The mouse model of ischemia/reperfusion (I/R)-induced AKI was used, and its progressive changes were followed. Human renal proximal tubular epithelial cells were used, and hypoxia stimulation was applied to mimic the in vivo I/R. Diosgenin, given after renal injury, preserved kidney function, as evidenced by a reduction in serum levels of BUN, creatinine, and UACR in both acute and chronic phases of AKI. Diosgenin alleviated I/R-induced tubular injury and prevented macrophage infiltration and renal fibrosis in AKI mice. Furthermore, diosgenin also mitigated the development of CKD from AKI with reduced renal expression of inflammatory, fibrotic, and epithelial-mesenchymal transition markers. In human renal tubular epithelial cells, diosgenin downregulated the hypoxia-induced oxidative stress and cellular damages that were dependent on the NOX4/p65 signaling pathways. Taken together, diosgenin treatment reduced I/R-induced AKI and ameliorated the progression to CKD from AKI probably by modifying the NOX4/p65 signaling pathways.
Collapse
Affiliation(s)
- Chih-Hung Chiang
- Division
of Urology, Department of Surgery and Department of Research and Development,
Taoyuan General Hospital, Ministry of Health
and Welfare, Taoyuan 330, Taiwan
- Department
of Urology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Tien-Yun Lan
- Department
and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Jung-Hung Hsieh
- Department
of Surgery, Taipei Veterans General Hospital, Yuan-Shan Branch, Yilan 264, Taiwan
| | - Su-Chu Lin
- Department
of Medical Research and Education, Taipei
Veterans General Hospital, Yuan-Shan Branch, Yilan 264, Taiwan
| | - Jaw-Wen Chen
- Department
and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular
Research Center, Taipei Medical University
Hospital and Taipei Medical University, Taipei 110, Taiwan
- Division
of Cardiology, Department of Medicine and Department of Research, Taipei Medical University Hospital, Taipei 110, Taiwan
- Division
of Cardiology, Department of Medicine, Taipei
Veterans General Hospital, Taipei 112, Taiwan
- Cardiovascular
Research Center, National Yang Ming Chiao
Tung University, Taipei 112, Taiwan
| | - Ting-Ting Chang
- Department
and Institute of Pharmacology, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Cardiovascular
Research Center, Taipei Medical University
Hospital and Taipei Medical University, Taipei 110, Taiwan
- Biomedical
Industry Ph.D. Program, National Yang Ming
Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
7
|
Rysmakhanov MS, Zare A, Smagulov AS, Abenova NA, Mussin NM, Sultangereyev YB, Zhakiyev BS, Kuttymuratov GK, Haberal M, Jafari N, Baneshi H, Bakhshalizadeh S, Mahdipour M, Rahmanifar F, Tamadon A. Comprehensive Overview of Innovative Strategies in Preventing Renal Ischemia-reperfusion Injury: Insights from Bibliometric and In silico Analyses. Curr Pharm Des 2024; 30:1578-1598. [PMID: 38676525 DOI: 10.2174/0113816128283420240409050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Ischemia-reperfusion Injury (IRI) is a complex pathophysiological process with severe consequences, including irreversible loss of renal function. Various intraoperative prevention methods have been proposed to mitigate the harmful effects of warm ischemia and kidney reperfusion. AIM This comprehensive analysis provides an overview of pharmacological agents and intraoperative methods for preventing and treating renal IRI. METHODS Our analysis revealed that eplerenone exhibited the highest binding affinity to crucial targets, including Aldehyde Dehydrogenase (AD), Estrogen Receptor (ER), Klotho protein, Mineralocorticoid Receptor (MR), and Toll-like Receptor 4 (TLR4). This finding indicates eplerenone's potential as a potent preventive agent against IRI, surpassing other available therapeutics like Benzodioxole, Hydrocortisone, Indoles, Nicotinamide adenine dinucleotide, and Niacinamide. In preventing kidney IRI, our comprehensive analysis emphasizes the significance of eplerenone due to its strong binding affinity to key targets involved in the pathogenesis of IRI. RESULTS This finding positions eplerenone as a promising candidate for further clinical investigation and consideration for future clinical practice. CONCLUSION The insights provided in this analysis will assist clinicians and researchers in selecting effective preventive approaches for renal IRI in surgical settings, potentially improving patient outcomes.
Collapse
Affiliation(s)
- Myltykbay S Rysmakhanov
- Department of Surgery and Urology No. 2, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Kazakhstan
- Department of Surgery and Transplantation, Aktobe Medical Center, Aktobe, Kazakhstan
| | | | - Aibolat S Smagulov
- Department of Surgery and Urology No. 2, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Kazakhstan
| | - Nurgul A Abenova
- Department of General Medical Practice No. 1, West Kazakhstan Medical University, Aktobe, Kazakhstan
| | - Nadiar M Mussin
- Department of Surgery and Urology No. 2, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Kazakhstan
| | - Yerlan B Sultangereyev
- Department of Surgery and Urology No. 2, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Kazakhstan
- Department of Surgery and Transplantation, Aktobe Medical Center, Aktobe, Kazakhstan
| | - Bazylbek S Zhakiyev
- Department of Surgery and Urology No. 2, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Kazakhstan
| | - Gani K Kuttymuratov
- Department of Surgery and Transplantation, Aktobe Medical Center, Aktobe, Kazakhstan
| | - Mehmet Haberal
- Department of General Surgery, Division of Transplantation, Başkent University, Ankara, Turkey
| | | | | | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Mahdi Mahdipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Rahmanifar
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Amin Tamadon
- Department of Surgery and Transplantation, Aktobe Medical Center, Aktobe, Kazakhstan
- Department for Scientific Work, West Kazakhstan Marat Ospanov State Medical University, Aktobe, Kazakhstan
| |
Collapse
|
8
|
Xie M, Xie R, Huang P, Yap DYH, Wu P. GADD45A and GADD45B as Novel Biomarkers Associated with Chromatin Regulators in Renal Ischemia-Reperfusion Injury. Int J Mol Sci 2023; 24:11304. [PMID: 37511062 PMCID: PMC10379085 DOI: 10.3390/ijms241411304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Chromatin regulators (CRs) are essential upstream regulatory factors of epigenetic modification. The role of CRs in the pathogenesis of renal ischemia-reperfusion injury (IRI) remains unclear. We analyzed a bioinformatic analysis on the differentially expressed chromatin regulator genes in renal IRI patients using data from public domains. The hub CRs identified were used to develop a risk prediction model for renal IRI, and their expressions were also validated using Western blot, qRT-PCR, and immunohistochemistry in a murine renal IRI model. We also examined the relationships between hub CRs and infiltrating immune cells in renal IRI and used network analysis to explore drugs that target hub CRs and their relevant downstream microRNAs. The results of machine learning methods showed that five genes (DUSP1, GADD45A, GADD45B, GADD45G, HSPA1A) were upregulated in renal IRI, with key roles in the cell cycle, p38 MAPK signaling pathway, p53 signaling pathway, FoxO signaling pathway, and NF-κB signaling pathway. Two genes from the network, GADD45A and GADD45B (growth arrest and DNA damage-inducible protein 45 alpha and beta), were chosen for the renal IRI risk prediction model. They all showed good performance in the testing and validation cohorts. Mice with renal IRI showed significantly upregulated GADD45A and GADD45B expression within kidneys compared to sham-operated mice. GADD45A and GADD45B showed correlations with plasmacytoid dendritic cells (pDCs) in infiltrating immune cell analysis and enrichment in the MAPK pathway based on the weighted gene co-expression network analysis (WGCNA) method. Candidate drugs that target GADD45A and GADD45B include beta-escin, sertraline, primaquine, pimozide, and azacyclonol. The dysregulation of GADD45A and GADD45B is related to renal IRI and the infiltration of pDCs, and drugs that target GADD45A and GADD45B may have therapeutic potential for renal IRI.
Collapse
Affiliation(s)
- Ming Xie
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Ruiyan Xie
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Pengcheng Huang
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Desmond Y H Yap
- Division of Nephrology, Department of Medicine, Queen Mary Hospital, The University of Hong Kong, Hong Kong 999077, China
| | - Peng Wu
- Department of Urology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
9
|
Castro LUC, Otsuki DA, Sanches TR, Souza FL, Santinho MAR, da Silva C, Noronha IDL, Duarte-Neto AN, Gomes SA, Malbouisson LMS, Andrade L. Terlipressin combined with conservative fluid management attenuates hemorrhagic shock-induced acute kidney injury in rats. Sci Rep 2022; 12:20443. [PMID: 36443404 PMCID: PMC9705717 DOI: 10.1038/s41598-022-24982-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Hemorrhagic shock (HS), a major cause of trauma-related mortality, is mainly treated by crystalloid fluid administration, typically with lactated Ringer's (LR). Despite beneficial hemodynamic effects, such as the restoration of mean arterial pressure (MAP), LR administration has major side effects, including organ damage due to edema. One strategy to avoid such effects is pre-hospitalization intravenous administration of the potent vasoconstrictor terlipressin, which can restore hemodynamic stability/homeostasis and has anti-inflammatory effects. Wistar rats were subjected to HS for 60 min, at a target MAP of 30-40 mmHg, thereafter being allocated to receive LR infusion at 3 times the volume of the blood withdrawn (liberal fluid management); at 2 times the volume (conservative fluid management), plus terlipressin (10 µg/100 g body weight); and at an equal volume (conservative fluid management), plus terlipressin (10 µg/100 g body weight). A control group comprised rats not subjected to HS and receiving no fluid resuscitation or treatment. At 15 min after fluid resuscitation/treatment, the blood previously withdrawn was reinfused. At 24 h after HS, MAP was higher among the terlipressin-treated animals. Terlipressin also improved post-HS survival and provided significant improvements in glomerular/tubular function (creatinine clearance), neutrophil gelatinase-associated lipocalin expression, fractional excretion of sodium, aquaporin 2 expression, tubular injury, macrophage infiltration, interleukin 6 levels, interleukin 18 levels, and nuclear factor kappa B expression. In terlipressin-treated animals, there was also significantly higher angiotensin II type 1 receptor expression and normalization of arginine vasopressin 1a receptor expression. Terlipressin associated with conservative fluid management could be a viable therapy for HS-induced acute kidney injury, likely attenuating such injury by modulating the inflammatory response via the arginine vasopressin 1a receptor.
Collapse
Affiliation(s)
- Leticia Urbano Cardoso Castro
- grid.11899.380000 0004 1937 0722Laboratory of Basic Science in Renal Diseases, Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, São Paulo, SP CEP 01246-903 Brazil
| | - Denise Aya Otsuki
- grid.11899.380000 0004 1937 0722Laboratory of Anesthesiology, Division of Anesthesiology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Talita Rojas Sanches
- grid.11899.380000 0004 1937 0722Laboratory of Basic Science in Renal Diseases, Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, São Paulo, SP CEP 01246-903 Brazil
| | - Felipe Lima Souza
- grid.11899.380000 0004 1937 0722Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Mirela Aparecida Rodrigues Santinho
- grid.11899.380000 0004 1937 0722Laboratory of Basic Science in Renal Diseases, Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, São Paulo, SP CEP 01246-903 Brazil
| | - Cleonice da Silva
- grid.11899.380000 0004 1937 0722Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Irene de Lourdes Noronha
- grid.11899.380000 0004 1937 0722Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Amaro Nunes Duarte-Neto
- grid.11899.380000 0004 1937 0722Department of Pathology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Samirah Abreu Gomes
- grid.11899.380000 0004 1937 0722Laboratory of Cellular, Genetic, and Molecular Nephrology, Renal Division, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Luiz-Marcelo Sá Malbouisson
- grid.11899.380000 0004 1937 0722Laboratory of Anesthesiology, Division of Anesthesiology, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Lucia Andrade
- grid.11899.380000 0004 1937 0722Laboratory of Basic Science in Renal Diseases, Division of Nephrology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, 3º Andar, sala 3310, São Paulo, SP CEP 01246-903 Brazil
| |
Collapse
|
10
|
Qin Z, Wang H, Dou Q, Xu L, Xu Z, Jia R. Protective effect of fluoxetine against oxidative stress induced by renal ischemia-reperfusion injury via the regulation of miR-450b-5p/Nrf2 axis. Aging (Albany NY) 2022; 15:15640-15656. [PMID: 36126189 PMCID: PMC10781502 DOI: 10.18632/aging.204289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
The present study was performed to assess the protective effect of fluoxetine (FLX) on renal ischemia-reperfusion injury (IRI) via the regulation of miR-450b-5p/Nrf2 axis in male rats. In vivo, these male rats were randomly divided into different treatment groups. The rats were administered with FLX (20 mg/kg, intraperitoneally) once daily for 3 days before operation. The pathomorphological changes of renal tissues were assessed by histological examination and Masson staining. In vitro, HK-2 cells were used to detect the activity by CCK-8 assay in Hypoxia/Reoxygenation (H/R) group and Hypoxia/Reoxygenation+Fluoxetine (H/R+FLX) group. In addition, the oxidative stress biomarkers were evaluated. Subsequently, Nrf2, NF-κB, and Nrf2-dependent antioxidant enzymes, were detected by Western blot assay. In vivo, the pathological changes and serological renal function were significantly relieved in the rats with the pre-treatment of FLX, compared to IRI group. After FLX stimulation, the expression levels of oxidative stress indices significantly decreased, while tissue antioxidant indices significantly increased, compared to IRI group. The differently expressed miRNAs on renal IRI in male rats were screened out by miRNA microarray, especially showing that miR-450b-5p was selected as the target miRNA. Following miR-450b-5p agomir injection, the pathological changes and oxidative stress biomarkers significantly aggravated, whether in IRI group or IRI+FLX group. Bioinformatics analysis and double-luciferase reporter assay demonstrated that miR-450b-5p directly targeted Nrf2. The expression level of NF-κB significantly increased, while the expression levels of Nrf2 and Nrf2-dependent antioxidant enzymes significantly decreased after miR-450b-5p agomir injection. Furthermore, the expression levels of Nrf2 and it-dependent antioxidant enzymes were apparently increased in ischemic kidney after the transfection of miR-450b-5p mimic+recombination protein Nrf2, as well as the decreased expression levels of intracellular ROS and iNOS. In vitro, FLX significantly increased HK-2 cell viability, and relieved H/R HK-2 cell oxidative injury via down-regulating ROS and iNOS. In addition, H/R-induced oxidative damage was recovered with miR-450b-5p mimic and recombination protein Nrf2. Consequently, FLX played an important protective role in renal IRI-induced oxidative damage by promoting antioxidation via targeting miR-450b-5p/Nrf2 axis.
Collapse
Affiliation(s)
- Zhiqiang Qin
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Hao Wang
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Quanliang Dou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| |
Collapse
|
11
|
Hassanein EHM, Mohamed WR, Ahmed OS, Abdel-Daim MM, Sayed AM. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci 2022; 308:120971. [PMID: 36130617 DOI: 10.1016/j.lfs.2022.120971] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/06/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022]
Abstract
Kidney diseases are major health problem and understanding the underlined mechanisms that lead to kidney diseases are critical research points with a marked potential impact on health. Cadmium (Cd) is a heavy metal that occurs naturally and can be found in contaminated food. Kidneys are the most susceptible organ to heavy metal intoxication as it is the main route of waste excretion. The harmful effects of Cd were previously well proved. Cd induces inflammatory responses, oxidative injury, mitochondrial dysfunction and disturbs Ca2+ homeostasis. The nuclear factor-kappa B (NF-κB) is a cellular transcription factor that regulates inflammation and controls the expression of many inflammatory cytokines. Therefore, great therapeutic benefits can be attained from NF-κB inhibition. In this review we focused on certain compounds including cytochalasin D, mangiferin, N-acetylcysteine, pyrrolidine dithiocarbamate, roflumilast, rosmarinic acid, sildenafil, sinapic acid, telmisartan and wogonin and certain plants as Astragalus Polysaccharide, Ginkgo Biloba and Thymus serrulatus that potently inhibit NF-κB and effectively counteracted Cd-associated renal intoxication. In conclusion, the proposed NF-κB involvement in Cd-renal intoxication clarified the underlined inflammation associated with Cd-nephropathy and the beneficial effects of NF-κB inhibitors that make them the potential to substantially optimize treatment protocols for Cd-renal intoxication.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Osama S Ahmed
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia; Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt.
| |
Collapse
|
12
|
Badripour A, Behzadi M, Hassanipour A, Azar PRS, Rahbar A, Abbaslou Z, Ehghaghi E, Piranviseh A, Khavandi MM, Ahmadi-Tafti SM, Ashouri M, Soltani ZE, Dehpour A. Albendazole ameliorates inflammatory response in a rat model of acute mesenteric ischemia reperfusion injury. Biomed Pharmacother 2022; 153:113320. [PMID: 35752010 DOI: 10.1016/j.biopha.2022.113320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/14/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute mesenteric ischemia is known as a life threatening condition. Re-establishment of blood flow in this condition can lead to mesenteric ischemia reperfusion (MIR) injury which is accompanied by inflammatory response. Still, clear blueprint of inflammatory mechanism underlying MIR injury has not been provided. Interestingly, Albendazole has exhibited notable effects on inflammation and cytokine production. In this study, we aimed to evaluate outcomes of MIR injury following pretreatment with Albendazole with respect to assessment of mesenteric inflammation and ischemia threshold. METHODS Male rats were randomly divided into sham operated, vehicle treated, Albendazole 100 mg/kg and Albendazole 200 mg/kg groups. MIR injury was induced by occlusion of superior mesenteric artery for 30 min followed by 120 min of reperfusion. Samples were utilized for assessment of epithelial survival and villous height. Immunohistochemistry study revealed intestinal expression of TNF-α and HIF-1-α. Gene expression of NF-κB/TLR4/TNF-α/IL-6 was measured using RTPCR. Also protein levels of inflammatory cytokines in serum and intestine were assessed by ELISA method. RESULTS Histopathological study demonstrated that pretreatment with Albendazole could ameliorate decline in villous height and epithelial survival following MIR injury. Also, systemic inflammation was suppressed after administration of Albendazole. Analysis of possible participating inflammatory pathway could demonstrate that intestinal expression of NF-κB/TLR4/TNF-α/IL-6 is significantly attenuated in treated groups. Eventually, IHC study illustrated concordant decline in mesenteric expression of HIF-1-α/TNF-α. CONCLUSION Single dose pretreatment with Albendazole could ameliorate inflammatory response and enhance ischemia threshold following induction of MIR injury. More studies would clarify existing causality in this phenomenon.
Collapse
Affiliation(s)
- Abolfazl Badripour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Behzadi
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Hassanipour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Pasha Reza Shams Azar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Rahbar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zhaleh Abbaslou
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus Via Mersin 10, Turkey
| | - Elnaz Ehghaghi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus Via Mersin 10, Turkey
| | - Ashkan Piranviseh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Khavandi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mohsen Ahmadi-Tafti
- Colorectal Surgery Research Center, Imam Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran; Department of Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ashouri
- Department of Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran; Department of Surgery, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran.
| | - Zahra Ebrahim Soltani
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Feng YL, Yang Y, Chen H. Small molecules as a source for acute kidney injury therapy. Pharmacol Ther 2022; 237:108169. [DOI: 10.1016/j.pharmthera.2022.108169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/28/2022] [Accepted: 03/07/2022] [Indexed: 10/18/2022]
|
14
|
Wang T, Zhang Z, Xie M, Li S, Zhang J, Zhou J. Apigenin Attenuates Mesoporous Silica Nanoparticles-Induced Nephrotoxicity by Activating FOXO3a. Biol Trace Elem Res 2022; 200:2793-2806. [PMID: 34448149 DOI: 10.1007/s12011-021-02871-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) are widely used in many biomedical applications and clinical fields. However, the applications of MSNs are limited by their severe toxicity. Apigenin (AG) has demonstrated pharmacological effects with low toxicity. The aim of this study was to clarify the role of AG in the progression of MSNs-induced renal injury. BALB/c mice and NRK-52E cells were exposed to MSNs with or without AG. AG protected mice and NRK-52E cells from the MSNs-induced pathological variations in renal tissues and decreased cell viability. AG significantly reduced the levels of serum blood urea nitrogen (BUN) and serum creatinine (Scr), upregulated the levels of superoxide dismutase (SOD), glutathione (GSH) and catalase (CAT), and improved the pathological changes of the kidney in MSNs-treated mice. The protective effects of AG were associated with its ability to increase the levels of antioxidants, reduce the accumulation of ROS, and inhibit the expression of the inflammatory mediators (TNF-α, IL-6). In addition, AG treatment upregulated the activity of FOXO3a, increased the level of IkBα, and reduced the nuclear translocation of NF-κB, which ultimately alleviated MSNs-induced inflammation. Nuclear FOXO3a translocation also triggered antioxidant gene transcription and protected nephrocyte from oxidative damage. However, knockdown of FOXO3a significantly blocked the protective effects of AG. These findings suggested that AG could be a promising therapeutic strategy for MSNs-induced nephrotoxicity, and this protective effect might be related to the suppression of oxidative stress and inflammation via the FOXO3a/NF-κB pathway.
Collapse
Affiliation(s)
- Tianyang Wang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Ziwen Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Minjuan Xie
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Saifeng Li
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Jian Zhang
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China
| | - Jie Zhou
- School of Medicine, Yichun University, 576 XueFu Road, Yuanzhou District, Yichun, 336000, People's Republic of China.
| |
Collapse
|
15
|
Fang L, Ohashi K, Ogawa H, Otaka N, Kawanishi H, Takikawa T, Ozaki Y, Takahara K, Tatsumi M, Takefuji M, Murohara T, Ouchi N. Factor Xa inhibitor, edoxaban ameliorates renal injury after subtotal nephrectomy by reducing epithelial-mesenchymal transition and inflammatory response. Physiol Rep 2022; 10:e15218. [PMID: 35262272 PMCID: PMC8905573 DOI: 10.14814/phy2.15218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 05/31/2023] Open
Abstract
Chronic kidney disease (CKD) is an increasing and life-threatening disease worldwide. Recent evidence indicates that blood coagulation factors promote renal dysfunction in CKD patients. Activated factor X (FXa) inhibitors are safe and first-line drugs for the prevention of thrombosis in patients with atrial fibrillation. Here, we investigated the therapeutic effects of edoxaban on CKD using the mouse 5/6 nephrectomy model. Eight-week-old wild-type mice were subjected to 5/6 nephrectomy surgery and randomly assigned to two groups, edoxaban or vehicle admixture diet. Edoxaban treatment led to reduction of urinary albumin excretion and plasma UN levels compared with vehicle group, which was accompanied with reduced glomerular cross-sectional area and cell number. Edoxaban treatment also attenuated fibrinogen positive area in the remnant kidneys after subtotal nephrectomy. Moreover, edoxaban treatment resulted in attenuated tubulointerstitial fibrosis after 5/6 nephrectomy, which was accompanied by reduced expression levels of epithelial-mesenchymal transition (EMT) markers, inflammatory mediators, and oxidative stress markers in the remnant kidneys. Treatment of cultured proximal tubular cells, HK-2 cells, with FXa protein led to increased expression levels of EMT markers, inflammatory mediators, and oxidative stress markers, which were abolished by pretreatment with edoxaban. Treatment of HK-2 cells with edoxaban attenuated FXa-stimulated phosphorylation levels of extracellular signal-regulated kinase (ERK) and NF-κB. Our findings indicate that edoxaban can improve renal injury after subtotal nephrectomy by reducing EMT and inflammatory response, suggesting that FXa inhibition could be a novel therapeutic target for CKD patients with atrial fibrillation.
Collapse
Affiliation(s)
- Lixin Fang
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Koji Ohashi
- Department of Molecular Medicine and CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hayato Ogawa
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Naoya Otaka
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroshi Kawanishi
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Tomonobu Takikawa
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Yuta Ozaki
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Kunihiko Takahara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Minako Tatsumi
- Department of Molecular Medicine and CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Mikito Takefuji
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Toyoaki Murohara
- Department of CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Noriyuki Ouchi
- Department of Molecular Medicine and CardiologyNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
16
|
Cao Y, Jiao Y, Zhan S, Liang X, Li Z, Chen J, Xiong X, Gu Z, Du X, Zheng Z. Polyamine Putrescine Regulates Oxidative Stress and Autophagy of Hemocytes Induced by Lipopolysaccharides in Pearl Oyster Pinctada fucata martensii. Front Physiol 2021; 12:781324. [PMID: 34955892 PMCID: PMC8703005 DOI: 10.3389/fphys.2021.781324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022] Open
Abstract
The polyamine putrescine (Put) is a ubiquitous small cationic amine. It plays an essential role in controlling the innate immune response. However, little is known about its function in mollusks. In this study, the Put content was observed to increase in the serum of pearl oyster Pinctada fucata martensii after 6 and 24 h of lipopolysaccharide (LPS) stimulation. Activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) increased, and nitric oxide synthase was downregulated in the Put group (i.e., combined treatment with Put and LPS) compared with that in the LPS group (i.e., combined treatment with phosphate-buffered saline and LPS). Furthermore, activities of alkaline phosphatase and acid phosphatase were inhibited after 6 h of LPS stimulation. The expression levels of the nuclear factor kappa B, IκB kinase, Janus kinase, and signal transducer and activator of transcription proteins genes were all significantly suppressed at 12 and 24 h in the Put group. Pseudomonas aeruginosa and Bacillus subtilis grew better after being incubated with the serum from the Put group than that from the LPS group. Additionally, the Put treatment remarkably inhibited the autophagy of hemocytes mediated by the AMP-activated protein kinase-mammalian target of rapamycin-Beclin-1 pathway. This study demonstrated that Put can effectively inhibit the inflammatory response induced by LPS in pearl oysters. These results provide useful information for further exploration of the immunoregulatory functions of polyamines in bivalves and contribute to the development of immunosuppressive agents.
Collapse
Affiliation(s)
- Yanfei Cao
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
| | - Shuzhi Zhan
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Xueru Liang
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Zhixin Li
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Jiayi Chen
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Xinwei Xiong
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Zefeng Gu
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, China
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, China
- Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, China
- Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Zhanjiang, China
| |
Collapse
|
17
|
Zhu J, Qiu JG, Xu WT, Ma HX, Jiang K. Alamandine protects against renal ischaemia-reperfusion injury in rats via inhibiting oxidative stress. J Pharm Pharmacol 2021; 73:1491-1502. [PMID: 34244746 DOI: 10.1093/jpp/rgab091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/06/2021] [Indexed: 01/06/2023]
Abstract
OBJECTIVE This study was to determine whether alamandine (Ala) could reduce ischaemia and reperfusion (I/R) injury of kidney in rats. METHODS Renal I/R was induced by an occlusion of bilateral renal arteries for 70 min and a 24-h reperfusion in vivo, and rat kidney proximal tubular epithelial cells NRK52E were exposed to 24 h of hypoxia and followed by 3-h reoxygenation (H/R) in vitro. RESULTS The elevated serum creatinine (Cr), blood cystatin C (CysC) and blood urea nitrogen (BUN) levels in I/R rats were inhibited by Ala treatment. Tumour necrosis factor alpha (TNF)-α, IL-1β, IL-6, cleaved caspase-3, cleaved caspase-8 and Bax were increased, and Bcl2 was reduced in the kidney of I/R rats, which were reversed by Ala administration. Ala reversed the increase of TNF-α, IL-1β, IL-6, cleaved caspase-3, cleaved caspase-8 and Bax and the decrease of Bcl2 in the H/R NRK52E cells. Ala could also inhibit the increase of oxidative stress levels in the kidney of I/R rats. NADPH oxidase 1 (Nox1) overexpression reversed the improving effects of Ala on renal function, inflammation and apoptosis of I/R rats. CONCLUSION These results indicated that Ala could improve renal function, attenuate inflammation and apoptosis in the kidney of I/R rats via inhibiting oxidative stress.
Collapse
Affiliation(s)
- Jue Zhu
- Department of Nephrology, People's Hospital of Liyang, Changzhou, China
| | - Jian-Guo Qiu
- Department of Urology, Lianshui People's Hospital Affiliated to Kangda College of Nanjing Medical University, Huaian, China
| | - Wei-Tao Xu
- Department of Nephrology, Zaozhuang Mining Group Central Hospital, Zaozhuang, China
| | - Hong-Xiang Ma
- Department of Urology, People's Hospital of Liyang, Changzhou, China
| | - Ke Jiang
- Department of Urology, People's Hospital of Liyang, Changzhou, China
| |
Collapse
|
18
|
Meng K, Fang C. Knockdown of Tripartite motif-containing 22 (TRIM22)relieved the apoptosis of lens epithelial cells by suppressing the expression of TNF receptor-associated factor 6 (TRAF6). Bioengineered 2021; 12:7213-7222. [PMID: 34558381 PMCID: PMC8806417 DOI: 10.1080/21655979.2021.1980645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cataract is a disease that causes severe visual impairment in patients. Recent studies have found that lens epithelial cell apoptosis caused by oxidative damage is the critical cause of cataract. Moreover, TRIM22 could alleviate the ubiquitination of TRAF6. The expression of TRAF6 could activate the p38/MAPK pathway and aggravate the oxidative stress induced damage of lens epithelial cells. However, whether the TRIM22 could alleviate the oxidative stress induced damage of lens epithelial cells by regulating the expression of TRAF6 and p38/MAPK pathway is unclear. In this study, we stimulated the lens epithelial cells with the H2O2 and established the TRIM22 knockdown cells. Next, proliferation of these cells was determined by CCK-8 and EdU assays. Apoptosis of these cells was detected with the TUNEL assays. Levels of ROS was explored with the DCFH-DA staining. Finally, the expression levels of TRAF6, p-p38 and p-ERK were determined with the western blotting. According to the results, we found that knockdown of TRIM22 suppressed the proliferation and relieved the H2O2 induced DNA double-strand break and apoptosis of these cells. Inhibition of TRIM22 inhibited the production of ROS in these cells. Moreover, restriction of TRIM22 induced the decreased levels of TRAF6, p-p38 and p-ERK in lens epithelial cells. We concluded that inhibition of TRIM22 relieved the apoptosis of lens epithelial cells by suppressing the expression of TRAF6, p-p38 and p-ERK.
Collapse
Affiliation(s)
- Kai Meng
- Department of Ophthalmology, Fuyang Futian Eye Hospital, Fuyang, Anhui Province, China
| | - Chengbo Fang
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| |
Collapse
|
19
|
Reid S, Scholey JW. Recent Approaches to Targeting Canonical NF κB Signaling in the Early Inflammatory Response to Renal IRI. J Am Soc Nephrol 2021; 32:2117-2124. [PMID: 34108233 PMCID: PMC8729839 DOI: 10.1681/asn.2021010069] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is the most common cause of in-hospital AKI and is associated with increased morbidity and mortality. IRI is associated with an early phase of inflammation primarily regulated by the canonical NFκB signaling pathway. Despite recent advances in our understanding of the pathogenesis of IRI, few therapeutic strategies have emerged. The purpose of this manuscript is to review interventions targeting NFκB after IRI.
Collapse
Affiliation(s)
- Shelby Reid
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - James W. Scholey
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine, Division of Nephrology, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Wang M, Wei J, Shang F, Zang K, Zhang P. Down-regulation of lncRNA SNHG5 relieves sepsis-induced acute kidney injury by regulating the miR-374a-3p/TLR4/NF-κB pathway. J Biochem 2021; 169:575-583. [PMID: 33479745 DOI: 10.1093/jb/mvab008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is an acute systemic infectious disease engendered by infectious factors, which can cause the dysfunction of multiple organs, including acute kidney injury (AKI). Recently, more and more researchers are focussing on long noncoding RNA (lncRNA) that is closely associated with the development and progression of various diseases; however, the role and mechanism of lncRNA in sepsis-induced AKI are not fully understood. Here, we found a significant increase in the expression of lncRNA small nuclear RNA host gene 5 (SNHG5) in the serum of patients with sepsis than healthy controls. Similar results were obtained from mouse model of sepsis. Further investigations revealed that knockdown of SNHG5 improves the viability and reduces the rate of apoptosis and the generation of inflammatory cytokines in HK-2 and TCMK-1 cells treated with lipopolysaccharide. Mechanistically, we showed that SNHG5 can combine with microRNA-374a-3p (miR-374a-3p), which inhibits nuclear factor-κB (NF-κB) activity by targeting TLR4. In conclusion, our results demonstrate that SNHG5 may regulate sepsis-induced AKI via the miR-374a-3p/TLR4/NF-κB pathway, therefore providing a new insight into the treatment of this disease.
Collapse
Affiliation(s)
- Min Wang
- Department of Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 Beijing West Road, Huai'an 223300, China
| | - Jilou Wei
- Department of Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 Beijing West Road, Huai'an 223300, China
| | - Futai Shang
- Department of Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 Beijing West Road, Huai'an 223300, China
| | - Kui Zang
- Department of Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 Beijing West Road, Huai'an 223300, China
| | - Peng Zhang
- Department of Intensive Care Unit, The Affiliated Huai'an No. 1 People's Hospital of Nanjing Medical University, No. 6 Beijing West Road, Huai'an 223300, China
| |
Collapse
|