1
|
Gatea FK, Hussein ZA, Kadhim HM, Abu-Raghif AR. Effect of ophthalmic preparation of methyldopa on induced ocular hypertension in rabbits. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:4409-4417. [PMID: 39476246 DOI: 10.1007/s00210-024-03570-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/24/2024] [Indexed: 04/10/2025]
Abstract
Glaucoma is a type of ocular disorder with multifaceted etiologies characterized by progressive optic nerve damage and ultimately loss of visual field. This study aimed to evaluate the possible intraocular pressure (IOP) lowering effect of an ophthalmic preparation of methyldopa (MD) in corticosteroid-induced ocular hypertension in rabbits. Forty New Zealand white male rabbits were assigned to the experiment and then randomly divided into five groups (n = 8). Ocular hypertension was induced by weekly subconjunctival injection of betamethasone suspension in both eyes. Animal groups included the control (healthy) group, which received the ophthalmic vehicle only; the standard (timolol) group, which received 0.5% timolol eye drops (ED); and the MD groups, which received 0.5%, 1%, and 2% of methyldopa ophthalmic preparation. Treatments were applied to the right eye twice daily for 7 days, whereas the left eye served as a control and was given only distilled water. IOP was recorded and ocular reflexes were observed. Weekly subconjunctival injections of betamethasone resulted in a significant elevation in the IOP (P ≤ 0.001) that was reduced after treatments with timolol 0.5% and MD at different concentrations. Timolol showed the highest reduction (P ≤ 0.001) in the mean IOP with a 30% reduction. MD showed a concentration-dependent reduction with the highest reduction (P ≤ 0.01) observed at 2% compared to the induced/distilled water (DW) eyes and no significant difference compared to the timolol 0.5% (P ≥ 0.05) with a 24.2% reduction in the mean IOP. Methyldopa managed to reduce the IOP in the chronic model of glaucoma, making MD a promising addition to the anti-glaucoma medications.
Collapse
Affiliation(s)
- Fouad Kadhim Gatea
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq
| | - Zeena Ayad Hussein
- Department of Pharmacology, College of Medicine, Al-Nahrain University, Baghdad, Iraq.
| | - Haitham Mahmood Kadhim
- Department of Pharmacology & Toxicology, College of Pharmacy, Al-Nahrain University, Baghdad, Iraq
| | | |
Collapse
|
2
|
Yang YT, Ji MR, Lin ZJ, Li P, Wu RZ, Liu XD, Liu L. Bile duct ligation impairs visual acuity in rats by ammonia- and bilirubin-induced retinal degeneration. Acta Pharmacol Sin 2025; 46:380-392. [PMID: 39294446 PMCID: PMC11746980 DOI: 10.1038/s41401-024-01388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/28/2024] [Indexed: 09/20/2024]
Abstract
Patients with hepatic failure are often accompanied by hepatic retinopathy, but the cellular and molecular mechanisms underlying the hepatic retinopathy remain unclear. In this study, we investigated how liver failure leads to hepatic retinopathy using bile duct ligation (BDL) rats as a cholestasis animal model. Light-dark box test was used to assess sensitivity to light, indexed as visual acuity. On D28 post-BDL, rats were subjected to light-dark box test and blood samples were collected for biochemical analyses. The rats then were euthanized. Liver, spleen and both side of eye were quickly harvested. We showed that BDL impaired rat sensitivity to light, significantly decreased the thickness of inner nuclear layer (INL), outer nuclear layer (ONL) and total retina, as well as the retinal cell numbers in ONL and ganglion cell layer (GCL). The expression of rhodopsin (RHO), brn-3a and GPX4 was significantly decreased in retina of BDL rats, whereas the expression of cleaved caspase 3, 8, 9, bax/bcl-2, RIP1, GFAP, and iba-1, as well as TUNEL-positive cells were significantly increased. In cultured retinal explant, we found that NH4Cl (0.2, 1, 5 mM) concentration-dependently impaired activity of retinal explant, decreased thickness of INL and ONL, downregulated expression of brn-3a, RHO and GFAP, increased expression of cl-caspase 3 and TUNEL-positive cell numbers, with NH4Cl (5 mM) almost completely disrupting the structure of the cultured retina; bilirubin (1 μM) significantly upregulated GFAP expression, whereas high level (10 μM) of bilirubin downregulated expression of GFAP. We further demonstrated in vivo that hyperammonemia impaired rat sensitivity to light, decreased thickness of INL and ONL, downregulated expression of RHO, brn-3a, GFAP and increased expression of cl-caspase 3; hyperbilirubinemia impaired rat sensitivity to light, upregulated expression of GFAP and iba-1. In conclusion, BDL impaired rat visual acuity due to the elevated levels of ammonia and bilirubin. Ammonia induced loss of retinal ganglion cells and rod photoreceptor cells via apoptosis-mediated cell death. Bilirubin impaired retinal function via activating microglia and Müller cells.
Collapse
Affiliation(s)
- Yi-Ting Yang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
- Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Ming-Rui Ji
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Zi-Jin Lin
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Ping Li
- Department of Pharmacy, Beijing Tongren Hospital, Capital Medical University, Beijing, 100176, China
| | - Run-Ze Wu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiao-Dong Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Li Y, Wang X, Ren Y, Han BZ, Xue Y. Exploring the health benefits of food bioactive compounds from a perspective of NLRP3 inflammasome activation: an insight review. Crit Rev Food Sci Nutr 2025:1-26. [PMID: 39757837 DOI: 10.1080/10408398.2024.2448768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The food industry has been focusing on food bioactive compounds with multiple physiological and immunological properties that benefit human health. These bioactive compounds, including polyphenols, flavonoids, and terpenoids, have great potential to limit inflammatory responses especially NLRP3 inflammasome activation, which is a key innate immune platform for inflammation. Current studies have revealed numerous food bioactive compounds with promising activities for unraveling immune metabolic disorders and excessive inflammatory responses by directly and indirectly regulating the NLRP3 inflammasome activation. This review explores the food hazards, including microbial and abiotic factors, that may trigger NLRP3-mediated illnesses and inflammation. It also highlights bioactive compounds in food that can suppress NLRP3 inflammasome activation through various mechanisms, linking its activation and inhibition to different pathways. Especially, this review provided further insight into NLRP3-related targets where food bioactive compounds can interact to block the NLRP3 inflammasome activation process, as well as mechanisms on how these compounds facilitate inactivation processes.
Collapse
Affiliation(s)
- Yabo Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyi Wang
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ying Ren
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Bei-Zhong Han
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yansong Xue
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Wan Q, Lu Q, Luo S, Guan C, Zhang H. The beneficial health effects of puerarin in the treatment of cardiovascular diseases: from mechanisms to therapeutics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:7273-7296. [PMID: 38709267 DOI: 10.1007/s00210-024-03142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death globally that seriously threaten human health. Although novel western medicines have continued to be discovered over the past few decades to inhibit the progression of CVDs, new drug research and development for treating CVDs with less side effects and adverse reactions are continuously being desired. Puerarin is a natural product found in a variety of medicinal plants belonging to the flavonoid family with potent biological and pharmacological activities. Abundant research findings in the literature have suggested that puerarin possesses a promising prospect in treating CVDs. In recent years, numerous new molecular mechanisms of puerarin have been explored in experimental and clinical studies, providing new evidence for this plant metabolite to protect against CVDs. This article systematically introduces the history of use, bioavailability, and various dosage forms of puerarin and further summarizes recently published data on the major research advances and their underlying therapeutic mechanisms in treating CVDs. It may provide references for researchers in the fields of pharmacology, natural products, and internal medicine.
Collapse
Affiliation(s)
- Qiang Wan
- Affiliated Hospital of Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
- Clinical Medical College, Jiangxi University of Chinese Medicine, 445 Bayi Avenue, Nanchang, 330006, China.
| | - Qiwen Lu
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Sang Luo
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Chengyan Guan
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| | - Hao Zhang
- Graduate School, Jiangxi University of Chinese Medicine, 1688 Meiling Avenue, Nanchang, 330004, China
| |
Collapse
|
5
|
Qing KX, Lo ACY, Lu S, Zhou Y, Yang D, Yang D. Integrated bioinformatics analysis of retinal ischemia/reperfusion injury in rats with potential key genes. BMC Genomics 2024; 25:367. [PMID: 38622534 PMCID: PMC11017533 DOI: 10.1186/s12864-024-10288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/07/2024] [Indexed: 04/17/2024] Open
Abstract
The tissue damage caused by transient ischemic injury is an essential component of the pathogenesis of retinal ischemia, which mainly hinges on the degree and duration of interruption of the blood supply and the subsequent damage caused by tissue reperfusion. Some research indicated that the retinal injury induced by ischemia-reperfusion (I/R) was related to reperfusion time.In this study, we screened the differentially expressed circRNAs, lncRNAs, and mRNAs between the control and model group and at different reperfusion time (24h, 72h, and 7d) with the aid of whole transcriptome sequencing technology, and the trend changes in time-varying mRNA, lncRNA, circRNA were obtained by chronological analysis. Then, candidate circRNAs, lncRNAs, and mRNAs were obtained as the intersection of differentially expression genes and trend change genes. Importance scores of the genes selected the key genes whose expression changed with the increase of reperfusion time. Also, the characteristic differentially expressed genes specific to the reperfusion time were analyzed, key genes specific to reperfusion time were selected to show the change in biological process with the increase of reperfusion time.As a result, 316 candidate mRNAs, 137 candidate lncRNAs, and 31 candidate circRNAs were obtained by the intersection of differentially expressed mRNAs, lncRNAs, and circRNAs with trend mRNAs, trend lncRNAs and trend circRNAs, 5 key genes (Cd74, RT1-Da, RT1-CE5, RT1-Bb, RT1-DOa) were selected by importance scores of the genes. The result of GSEA showed that key genes were found to play vital roles in antigen processing and presentation, regulation of the actin cytoskeleton, and the ribosome. A network included 4 key genes (Cd74, RT1-Da, RT1-Bb, RT1-DOa), 34 miRNAs and 48 lncRNAs, and 81 regulatory relationship axes, and a network included 4 key genes (Cd74, RT1-Da, RT1-Bb, RT1-DOa), 9 miRNAs and 3 circRNAs (circRNA_10572, circRNA_03219, circRNA_11359) and 12 regulatory relationship axes were constructed, the subcellular location, transcription factors, signaling network, targeted drugs and relationship to eye diseases of key genes were predicted. 1370 characteristic differentially expressed mRNAs (spec_24h mRNA), 558 characteristic differentially expressed mRNAs (spec_72h mRNA), and 92 characteristic differentially expressed mRNAs (spec_7d mRNA) were found, and their key genes and regulation networks were analyzed.In summary, we screened the differentially expressed circRNAs, lncRNAs, and mRNAs between the control and model groups and at different reperfusion time (24h, 72h, and 7d). 5 key genes, Cd74, RT1-Da, RT1-CE5, RT1-Bb, RT1-DOa, were selected. Key genes specific to reperfusion time were selected to show the change in biological process with the increased reperfusion time. These results provided theoretical support and a reference basis for the clinical treatment.
Collapse
Affiliation(s)
- Kai-Xiong Qing
- Department of Cardiac & Vascular Surgery, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China
| | - Amy C Y Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Siduo Lu
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China
| | - You Zhou
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China
| | - Dan Yang
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China
| | - Di Yang
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, Yunnan Province, China.
| |
Collapse
|
6
|
Yang F, Gao H, Niu Z, Ni Q, Zhu H, Wang J, Lu J. Puerarin protects the fatty liver from ischemia-reperfusion injury by regulating the PI3K/AKT signaling pathway. Braz J Med Biol Res 2024; 57:e13229. [PMID: 38381885 PMCID: PMC10880884 DOI: 10.1590/1414-431x2024e13229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/25/2024] [Indexed: 02/23/2024] Open
Abstract
The incidence of non-alcoholic fatty liver (NAFLD) remains high, and many NAFLD patients suffer from severe ischemia-reperfusion injury (IRI). Currently, no practical approach can be used to treat IRI. Puerarin plays a vital role in treating multiple diseases, such as NAFLD, stroke, diabetes, and high blood pressure. However, its role in the IRI of the fatty liver is still unclear. We aimed to explore whether puerarin could protect the fatty liver from IRI. C57BL/6J mice were fed with a high-fat diet (HFD) followed by ischemia reperfusion injury. We showed that hepatic IRI was more severe in the fatty liver compared with the normal liver, and puerarin could significantly protect the fatty liver against IRI and alleviate oxidative stress. The PI3K-AKT signaling pathway was activated during IRI, while liver steatosis decreased the level of activation. Puerarin significantly protected the fatty liver from IRI by reactivating the PI3K-AKT signaling pathway. However, LY294002, a PI3K-AKT inhibitor, attenuated the protective effect of puerarin. In conclusion, puerarin could significantly protect the fatty liver against IRI by activating the PI3K-AKT signaling pathway.
Collapse
Affiliation(s)
- Faji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Zheyu Niu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianlu Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
7
|
Dong Y, Ding YY, Gao WP. Puerarin alleviates hyperosmotic stress-induced oxidative stress, inflammation, apoptosis and barrier damage of human corneal epithelial cells by targeting SIRT1/NLRP3 signaling. Toxicol In Vitro 2024; 94:105722. [PMID: 37865300 DOI: 10.1016/j.tiv.2023.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
The increase of tear osmolarity caused by excessive evaporation of tear phase is the main pathological mechanism of dry eye disease (DED). Puerarin, the major bioactive ingredient isolated from the root of the Pueraria lobata (Willd.) Ohwi, has been reported to improve ophthalmic diseases in clinic. However, the effect and the potential regulatory mechanism related to silent information regulator sirtuin 1 (SIRT1)/NOD-like receptor family pyrin domain containing 3 (NLRP3) signaling of puerarin in DED has not been evaluated. In this study, we aimed to explore the effect and mechanism of hyperosmotic stress (Hyp)-induced human corneal epithelial cell line (HCE-2). The viability of HCE-2 cells induced by Hyp with or without puerarin treatment was assessed by a CCK-8 assay. Results indicated that puerarin treatment enhanced cell viability, reduced reactive oxygen species (ROS) content, increased CAT and SOD activities, and elevated the ratio of GSH/GSSG in HCE-2 cells exposed to Hyp. Besides, TNF-α, IL-1β and IL-6 contents were decreased by puerarin. Additionally, puerarin inhibited Hyp-induced apoptosis and barrier disruption of HCE-2 cells. Moreover, molecular docking method suggested that puerarin bound to SIRT1, and upregulated SIRT1 and downregulated NLRP3 inflammasome proteins after puerarin treatment was observed. Furthermore, SIRT1 silencing alleviated the protective effects of puerarin on Hyp-induced HCE-2 cell damage. Collectively, puerarin attenuates Hyp-induced injury of HCE-2 cells by targeting regulating SIRT1/NLRP3 signaling.
Collapse
Affiliation(s)
- Yue Dong
- Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210046, China; Department of Ophthalmology, Yangzhou Hospital affiliated to Nanjing University of Chinese Medicine, Yangzhou City, Jiangsu Province 225009, China
| | - Yin-Yin Ding
- Department of Ophthalmology, Nanjing Hospital of Chinese Medicine affiliated to Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210022, China
| | - Wei-Ping Gao
- Department of Ophthalmology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing City, Jiangsu Province 210029, China.
| |
Collapse
|
8
|
Tsai T, Reinehr S, Deppe L, Strubbe A, Kluge N, Dick HB, Joachim SC. Glaucoma Animal Models beyond Chronic IOP Increase. Int J Mol Sci 2024; 25:906. [PMID: 38255979 PMCID: PMC10815097 DOI: 10.3390/ijms25020906] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Glaucoma is a complex and multifactorial disease defined as the loss of retinal ganglion cells (RGCs) and their axons. Besides an elevated intraocular pressure (IOP), other mechanisms play a pivotal role in glaucoma onset and progression. For example, it is known that excitotoxicity, immunological alterations, ischemia, and oxidative stress contribute to the neurodegeneration in glaucoma disease. To study these effects and to discover novel therapeutic approaches, appropriate animal models are needed. In this review, we focus on various glaucoma animal models beyond an elevated IOP. We introduce genetically modified mice, e.g., the optineurin E50K knock-in or the glutamate aspartate transporter (GLAST)-deficient mouse. Excitotoxicity can be mimicked by injecting the glutamate analogue N-methyl-D-aspartate intravitreally, which leads to rapid RGC degeneration. To explore the contribution of the immune system, the experimental autoimmune glaucoma model can serve as a useful tool. Here, immunization with antigens led to glaucoma-like damage. The ischemic mechanism can be mimicked by inducing a high IOP for a certain amount of time in rodents, followed by reperfusion. Thereby, damage to the retina and the optic nerve occurs rapidly after ischemia/reperfusion. Lastly, we discuss the importance of optic nerve crush models as model systems for normal-tension glaucoma. In summary, various glaucoma models beyond IOP increase can be utilized.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany; (T.T.); (S.R.); (L.D.); (N.K.); (H.B.D.)
| |
Collapse
|
9
|
Sharma V, Sharma P, Singh TG. Therapeutic Correlation of TLR-4 Mediated NF-κB Inflammatory Pathways in Ischemic Injuries. Curr Drug Targets 2024; 25:1027-1040. [PMID: 39279711 DOI: 10.2174/0113894501322228240830063605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/06/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024]
Abstract
Ischemia-reperfusion (I/R) injury refers to the tissue damage that happens when blood flow returns to tissue after a period of ischemia. I/R injuries are implicated in a large array of pathological conditions, such as cerebral, myocardial, renal, intestinal, retinal and hepatic ischemia. The hallmark of these pathologies is excessive inflammation. Toll-like receptors (TLRs) are recognized as significant contributors to inflammation caused by pathogens and, more recently, inflammation caused by injury. TLR-4 activation initiates a series of events that results in activation of nuclear factor kappa-B (NF-κB), which stimulates the production of pro-inflammatory cytokines and chemokines, exacerbating tissue injury. Therefore, through a comprehensive review of current research and experimentation, this investigation elucidates the TLRs signalling pathway and the role of TLR-4/NF-κB in the pathophysiology of I/R injuries. Furthermore, this review highlights the various pharmacological agents (TLR-4/NF-κB inhibitors) with special emphasis on the various ischemic injuries (cerebral, myocardial, renal, intestinal, retinal and hepatic). Future research should prioritise investigating the specific molecular pathways that cause TLR-4/NF-κBmediated inflammation in ischemic injuries. Additionally, efforts should be made to enhance treatment approaches in order to enhance patient outcomes.
Collapse
Affiliation(s)
- Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Prateek Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | |
Collapse
|
10
|
Duan H, Yan W. Visual fatigue a comprehensive review of mechanisms of occurrence, animal model design and nutritional intervention strategies. Crit Rev Food Sci Nutr 2023; 65:1631-1655. [PMID: 38153314 DOI: 10.1080/10408398.2023.2298789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
When the eyes work intensively, it is easy to have eye discomfort such as blurred vision, soreness, dryness, and tearing, that is, visual fatigue. Visual fatigue not only affects work and study efficiency, but long-term visual fatigue can also easily affect physical and mental health. In recent years, with the popularization of electronic products, although it has brought convenience to the office and study, it has also caused more frequent visual fatigue among people who use electronic devices. Moreover, studies have reported that the number of people with visual fatigue is showing a trend of increasing year by year. The range of people involved is also extensive, especially students, people who have been engaged in computer work and fine instruments (such as microscopes) for a long time, and older adults with aging eye function. More and more studies have proposed that supplementation with the proper nutrients can effectively relieve visual fatigue and promote eye health. This review discusses the physiological mechanisms of visual fatigue and the design ideas of animal experiments from the perspective of modern nutritional science. Functional food ingredients with the ability to alleviate visual fatigue are discussed in detail.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| |
Collapse
|
11
|
Park SY, Kang HM, Park G, Oh JW, Choi YW. OGD/R-induced ferroptosis and pyroptosis in retinal pigment epithelium cells: Role of PLD1 and PLD2 modulation. Cell Biochem Funct 2023; 41:1162-1173. [PMID: 37691020 DOI: 10.1002/cbf.3848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/12/2023]
Abstract
This study investigated the role of phospholipase D (PLD) in retinal ischemia-reperfusion (I/R) injury using an oxygen-glucose deprivation/reperfusion (OGD/R) model commonly used in retinal I/R injury research. To create an in vitro cellular I/R model, pharmacological inhibitors and small interfering RNA (siRNA) were used to target PLD1 and PLD2 in retinal pigment epithelial (RPE) cells. Treatment with PLD inhibitors and siRNA reduced reactive oxygen species (ROS) and malondialdehyde (MDA) induced by OGD/R in RPE cells and increased the levels of superoxide dismutase (SOD) and glutathione (GSH), indicating a reduction in oxidative damage and improvement in the antioxidant system. Next, we showed that inhibiting PLD1 or PLD2 reduced intracellular iron levels and lipid peroxidation, which are critical factors in ferroptosis. Additionally, PLD1 and PLD2 modulated the expression of proteins involved in the regulation of ferroptosis, including GPX4, SLC7A11, FTH1, and ACSL4. We also investigated the roles of PLD1 and PLD2 in preventing pyroptosis, another form of programmed cell death associated with inflammation. Our study found that OGD/R significantly increased the production of pro-inflammatory cytokines and activated caspase-1, NLRP3, ASC, cleaved-caspase 1 (C-caspase-1), and GSDMD-N in RPE cells, indicating pyroptosis induction. However, PLD1 and PLD2 inhibition or knockdown significantly inhibited the production of pro-inflammatory cytokines and activation of the NLRP3 inflammasome, Taken together, our findings support the hypothesis that the PLD signaling pathway plays a key role in OGD/R-induced ferroptosis and pyroptosis induction and may be a potential therapeutic target for preventing or treating retinal dysfunction and degeneration.
Collapse
Affiliation(s)
- Sun Young Park
- Bio-IT Fusion Technology Research Institute, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| | - He Mi Kang
- Department of Horticultural Bioscience, Pusan National University, Miryang, Gyeongsangnam-do, Republic of Korea
| | - Geuntae Park
- Department of Nanomaterials Engineering, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| | - Jin-Woo Oh
- Department of Nanomaterials Engineering, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| | - Young-Whan Choi
- Bio-IT Fusion Technology Research Institute, Pusan National University, Geumjeong-gu, Busan, Republic of Korea
| |
Collapse
|
12
|
Wang K, Tang Z, Liu S, Liu Y, Zhang H, Zhan H. Puerarin protects renal ischemia-reperfusion injury in rats through NLRP3/Caspase-1/GSDMD pathway. Acta Cir Bras 2023; 38:e387323. [PMID: 38055404 DOI: 10.1590/acb387323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 09/22/2023] [Indexed: 12/08/2023] Open
Abstract
PURPOSE To observe the effect of puerarin on renal ischemia-reperfusion (I/R) injury in rats, and to explore its mechanism based on NLRP3/Caspase-1/GSDMD pathway. METHODS Twenty-one Sprague-Dawley rats were divided into three groups: sham-operated group (sham), model group (RIRI), and puerarin treatment group (RIRI + Pue). The model of acute renal I/R injury was established by cutting the right kidney and clamping the left renal pedicle for 45 min. RESULTS Renal function parameters were statistically significant in group comparisons. The renal tissue structure of rats in sham group was basically normal. Pathological changes were observed in the RIRI group. The renal pathological damage score and apoptosis rate in the RIRI group were higher than those in the sham group, and significantly lower in the RIRI + Pue group than in the RIRI group. Indicators of oxidative stress-superoxide dismutase, malondialdehyde, and glutathione peroxidase-were statistically significant in group comparisons. Compared with the sham group, the relative expressions of NLRP3, Caspase-1 and GSDMD proteins in the RIRI group were increased. Compared with the RIRI group, the RIRI + Pue group had significant reductions. CONCLUSIONS Puerarin can inhibit the activation of NLRP3/Caspase-1/GSDMD pathway, inhibit inflammatory response and pyroptosis, and enhance the antioxidant capacity of kidney, thereby protecting renal I/R injury in rats.
Collapse
Affiliation(s)
- Kangyu Wang
- The First Affiliated Hospital of Xinxiang Medical University - Department of Urology - Weihui - China
- The First Affiliated Hospital of Xinxiang Medical University - Life Science Center - Weihui - China
| | - Zhao Tang
- The First Affiliated Hospital of Xinxiang Medical University - Department of Urology - Weihui - China
| | - Shuai Liu
- The First Affiliated Hospital of Xinxiang Medical University - Department of Urology - Weihui - China
| | - Yan Liu
- The First Affiliated Hospital of Xinxiang Medical University - Department of Urology - Weihui - China
| | - Huiqing Zhang
- The First Affiliated Hospital of Xinxiang Medical University - Department of Urology - Weihui - China
| | - Haocheng Zhan
- The First Affiliated Hospital of Xinxiang Medical University - Department of Urology - Weihui - China
| |
Collapse
|
13
|
Ramalingam V. NLRP3 inhibitors: Unleashing their therapeutic potential against inflammatory diseases. Biochem Pharmacol 2023; 218:115915. [PMID: 37949323 DOI: 10.1016/j.bcp.2023.115915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 11/12/2023]
Abstract
The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome has been linked to the release of pro-inflammatory cytokines and is essential for innate defence against infection and danger signals. These secreted cytokines improve the inflammatory response caused by tissue damage and associated inflammation. Consequently, the development of NLRP3 inflammasome inhibitors are viable option for the treatment of diverse inflammatory disorders. The significant anti-inflammatory effects of the NLRP3 inhibitors have severe side effects. Hence, the application of NLRP3 inhibitors against inflammatory disease has not yet been understood and most of the developed inhibitors are unsuccessful in clinical trials. The processes behind the NLRP3 complex, priming, and activation are the main emphasis of this review, which also covers therapeutical inhibitors of the NLRP3 inflammasome and potential therapeutic strategies for directing the NLRP3 inflammasome towards clinical development.
Collapse
Affiliation(s)
- Vaikundamoorthy Ramalingam
- Department of Natural Products and Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
Saadh MJ, Castillo-Acobo RY, Baher H, Narayanan J, Palacios Garay JP, Yamaguchi MNV, Arias-Gonzáles JL, Cotrina-Aliaga JC, Akram SV, Lakshmaiya N, Amin AH, Mohany M, Al-Rejaie SS, Ahsan M, Bahrami A, Akhavan-Sigari R. The protective role of sulforaphane and Homer1a in retinal ischemia-reperfusion injury: Unraveling the neuroprotective interplay. Life Sci 2023; 329:121968. [PMID: 37487941 DOI: 10.1016/j.lfs.2023.121968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023]
Abstract
AIMS Retinal ischemia/reperfusion (I/R) injury is a common pathological basis for various ophthalmic diseases. This study aimed to investigate the potential of sulforaphane (SFN) and Homer1a in regulating cell apoptosis induced by retinal I/R injury and to explore the underlying regulatory mechanism between them. MATERIALS AND METHODS In in vivo experiments, C57BL/6J mice and Homer1flox/-/Homer1a+/-/Nestin-Cre+/- mice were used to construct retinal I/R injury models. In vitro experiments utilized the oxygen-glucose deprivation-reperfusion (OGD/R) injury model with primary retinal ganglion cells (RGCs). The effects of Homer1a and SFN on cell apoptosis were observed through pathological analyses, flow cytometry, and visual electrophysiological assessments. KEY FINDINGS We discovered that after OGD/R injury, apoptosis of RGCs and intracellular Ca2+ activity significantly increased. However, these changes were reversed upon the addition of SFN, and similar observations were reproduced in in vivo studies. Furthermore, both in vivo and in vitro studies confirmed the upregulation of Homer1a after I/R, which could be further enhanced by the administration of SFN. Moreover, upregulation of Homer1a resulted in a reduction in cell apoptosis and pro-apoptotic proteins, while downregulation of Homer1a had the opposite effect. Flash visual evoked potential, oscillatory potentials, and escape latency measurements in mice supported these findings. Furthermore, the addition of SFN strengthened the neuroprotective effects in the OGD/R + H+ group but weakened them in Homer1flox/-/Homer1a+/-/Nestin-Cre+/- mice. SIGNIFICANCE These results indicate that Homer1a plays a significant role in the therapeutic potential of sulforaphane for retinal I/R injury, thereby providing a theoretical basis for clinical treatment.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman 11831, Jordan; Applied Science Research Center, Applied Science Private University, Amman 11152, Jordan
| | | | - Hala Baher
- Department of Radiology and Ultrasonography Techniques, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | | | | | | | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, BC, Canada
| | | | - Shaik Vaseem Akram
- Uttaranchal Institute of Technology, Division of research and Innovation, Uttaranchal University, Dehradun, India
| | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Muhammad Ahsan
- Department of Measurements and Control Systems, Silesian University of Technology, Gliwice, 44-100, Poland; Joint Doctoral School, Silesian University of Technology, Akademicka 2A, Gliwice, 44-100, Poland.
| | - Abolfazl Bahrami
- Department of Cell Biology, Tuebingen University, Tuebingen, Germany; Biomedical Center for Systems Biology Science Munich, Ludwig-Maximilians-University, Munich, Germany.
| | - Reza Akhavan-Sigari
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw, Poland; Department of Neurosurgery, University Medical Center Tuebingen, Germany
| |
Collapse
|
15
|
Huang Y, Lu J, Zhao L, Fu X, Peng S, Zhang W, Wang R, Yuan W, Luo R, Wang X, Li Z, Zhang Z. Retinal cell-targeted liposomal ginsenoside Rg3 attenuates retinal ischemia-reperfusion injury via alleviating oxidative stress and promoting microglia/macrophage M2 polarization. Free Radic Biol Med 2023; 206:162-179. [PMID: 37380044 DOI: 10.1016/j.freeradbiomed.2023.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Retinal ischemia-reperfusion (RIR) injury remains a major challenge that is detrimental to retinal cell survival in a variety of ocular diseases. However, current clinical treatments focus on a single pathological mechanism, making them unable to provide comprehensive retinal protection. A variety of natural products including ginsenoside Rg3 (Rg3) exhibit potent antioxidant and anti-inflammatory activities. Unfortunately, the hydrophobicity of Rg3 and the presence of various intraocular barriers limit its effective application in clinical settings. Hyaluronic acid (HA)- specifically binds to cell surface receptors, CD44, which is widely expressed in retinal pigment epithelial cells and M1-type macrophage. Here, we developed HA-decorated liposomes loaded with Rg3, termed Rg3@HA-Lips, to protect against retinal damage caused by RIR injury. Treatment with Rg3@HA-Lips significantly inhibited the oxidative stress induced by RIR injury. In addition, Rg3@HA-Lips promoted the transition of M1-type macrophage to the M2 type, ultimately reversing the pro-inflammatory microenvironment. The mechanism of Rg3@HA-Lips was further investigated and found that they can regulateSIRT/FOXO3a, NF-κB and STAT3 signaling pathways. Together with as well demonstrated good safety profiles, this CD44-targeted platform loaded with a natural product alleviates RIR injury by modulating the retinal microenvironment and present a potential clinical treatment strategy.
Collapse
Affiliation(s)
- Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Wen Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Rong Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Wenze Yuan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Rongrui Luo
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Xiaojie Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Zelin Li
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, 264005, People's Republic of China.
| |
Collapse
|
16
|
Ju WK, Perkins GA, Kim KY, Bastola T, Choi WY, Choi SH. Glaucomatous optic neuropathy: Mitochondrial dynamics, dysfunction and protection in retinal ganglion cells. Prog Retin Eye Res 2023; 95:101136. [PMID: 36400670 DOI: 10.1016/j.preteyeres.2022.101136] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/04/2022] [Accepted: 11/03/2022] [Indexed: 11/18/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide and is characterized by a slow, progressive, and multifactorial degeneration of retinal ganglion cells (RGCs) and their axons, resulting in vision loss. Despite its high prevalence in individuals 60 years of age and older, the causing factors contributing to glaucoma progression are currently not well characterized. Intraocular pressure (IOP) is the only proven treatable risk factor. However, lowering IOP is insufficient for preventing disease progression. One of the significant interests in glaucoma pathogenesis is understanding the structural and functional impairment of mitochondria in RGCs and their axons and synapses. Glaucomatous risk factors such as IOP elevation, aging, genetic variation, neuroinflammation, neurotrophic factor deprivation, and vascular dysregulation, are potential inducers for mitochondrial dysfunction in glaucoma. Because oxidative phosphorylation stress-mediated mitochondrial dysfunction is associated with structural and functional impairment of mitochondria in glaucomatous RGCs, understanding the underlying mechanisms and relationship between structural and functional alterations in mitochondria would be beneficial to developing mitochondria-related neuroprotection in RGCs and their axons and synapses against glaucomatous neurodegeneration. Here, we review the current studies focusing on mitochondrial dynamics-based structural and functional alterations in the mitochondria of glaucomatous RGCs and therapeutic strategies to protect RGCs against glaucomatous neurodegeneration.
Collapse
Affiliation(s)
- Won-Kyu Ju
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Tonking Bastola
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
| | - Woo-Young Choi
- Hamilton Glaucoma Center and Viterbi Family Department of Ophthalmology and Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA; Department of Plastic Surgery, College of Medicine, Chosun University, Gwang-ju, South Korea
| | - Soo-Ho Choi
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
17
|
Zhao L, Ling L, Lu J, Jiang F, Sun J, Zhang Z, Huang Y, Liu X, Zhu Y, Fu X, Peng S, Yuan W, Zhao R, Zhang Z. Reactive oxygen species-responsive mitochondria-targeted liposomal quercetin attenuates retinal ischemia-reperfusion injury via regulating SIRT1/FOXO3A and p38 MAPK signaling pathways. Bioeng Transl Med 2023; 8:e10460. [PMID: 37206232 PMCID: PMC10189480 DOI: 10.1002/btm2.10460] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
Abstract
Retinal ischemia-reperfusion (RIR) injury is involved in the pathogenesis of various vision-threatening diseases. The overproduction of reactive oxygen species (ROS) is thought to be the main cause of RIR injury. A variety of natural products, including quercetin (Que), exhibit potent antioxidant activity. However, the lack of an efficient delivery system for hydrophobic Que and the presence of various intraocular barriers limit the effective retinal delivery of Que in clinical settings. In this study, we encapsulated Que into ROS-responsive mitochondria-targeted liposomes (abbreviated to Que@TPP-ROS-Lips) to achieve the sustained delivery of Que to the retina. The intracellular uptake, lysosome escape ability, and mitochondria targeting ability of Que@TPP-ROS-Lips were evaluated in R28 retinal cells. Treating R28 cells with Que@TPP-ROS-Lips significantly ameliorated the decrease in ATP content, ROS generation, and increase in the release of lactate dehydrogenase in an in vitro oxygen-glucose deprivation (OGD) model of retinal ischemia. In a rat model, the intravitreal injection of Que@TPP-ROS-Lips 24 h after inducing retinal ischemia significantly enhanced retinal electrophysiological recovery and reduced neuroinflammation, oxidative stress, and apoptosis. Que@TPP-ROS-Lips were taken up by retina for at least 14 days after intravitreal administration. Molecular docking and functional biological experiments revealed that Que targets FOXO3A to inhibit oxidative stress and inflammation. Que@TPP-ROS-Lips also partially inhibited the p38 MAPK signaling pathway, which contributes to oxidative stress and inflammation. In conclusion, our new platform for ROS-responsive and mitochondria-targeted drug release shows promise for the treatment of RIR injury and promotes the clinical application of hydrophobic natural products.
Collapse
Affiliation(s)
- Laien Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Longbing Ling
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Feng Jiang
- Department of OphthalmologyTianjin Medical University General HospitalTianjinPeople's Republic of China
| | - Jianchao Sun
- School of Environment and Material EngineeringYantai UniversityYantaiPeople's Republic of China
| | - Zhen Zhang
- College of Chemistry and Chemical EngineeringYantai UniversityYantaiPeople's Republic of China
| | - Yanmei Huang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Xiaoqian Liu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Yanjuan Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Xiaoxuan Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Shengjun Peng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Wenze Yuan
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Ruikang Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| | - Zhuhong Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiPeople's Republic of China
| |
Collapse
|
18
|
He Q, Xiao L, Shi Y, Li W, Xin X. Natural products: protective effects against ischemia-induced retinal injury. Front Pharmacol 2023; 14:1149708. [PMID: 37180697 PMCID: PMC10169696 DOI: 10.3389/fphar.2023.1149708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/05/2023] [Indexed: 05/16/2023] Open
Abstract
Ischemic retinal damage, a common condition associated with retinal vascular occlusion, glaucoma, diabetic retinopathy, and other eye diseases, threatens the vision of millions of people worldwide. It triggers excessive inflammation, oxidative stress, apoptosis, and vascular dysfunction, leading to the loss and death of retinal ganglion cells. Unfortunately, minority drugs are available for treating retinal ischemic injury diseases, and their safety are limited. Therefore, there is an urgent need to develop more effective treatments for ischemic retinal damage. Natural compounds have been reported to have antioxidant, anti-inflammatory, and antiapoptotic properties that can be used to treat ischemic retinal damage. In addition, many natural compounds have been shown to exhibit biological functions and pharmacological properties relevant to the treatment of cellular and tissue damage. This article reviews the neuroprotective mechanisms of natural compounds involve treating ischemic retinal injury. These natural compounds may serve as treatments for ischemia-induced retinal diseases.
Collapse
Affiliation(s)
- Qianxiong He
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Liuyi Xiao
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yuanjiang Shi
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Medicine School of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Wanrong Li
- Department of Ophthalmology, People's Hospital of Golog Tibetan Autonomous Prefecture, Golog, Qinghai, China
| | - Xiaorong Xin
- Department of Ophthalmology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
19
|
Wan H, Yan YD, Hu XM, Shang L, Chen YH, Huang YX, Zhang Q, Yan WT, Xiong K. Inhibition of mitochondrial VDAC1 oligomerization alleviates apoptosis and necroptosis of retinal neurons following OGD/R injury. Ann Anat 2023; 247:152049. [PMID: 36690044 DOI: 10.1016/j.aanat.2023.152049] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023]
Abstract
Ischemia-reperfusion (I/R) injury is a common pathological mechanism in many retinal diseases, which can lead to cell death via mitochondrial dysfunction. Voltage-dependent anion channel 1 (VDAC1), which is mainly located in the outer mitochondrial membrane, is the gatekeeper of mitochondria. The permeability of mitochondrial membrane can be regulated by controlling the oligomerization of VDAC1. However, the functional mechanism of VDAC1 in retinal I/R injury was unclear. Our results demonstrate that oxygen-glucose deprivation and re-oxygenation (OGD/R) injury leads to apoptosis, necroptosis, and mitochondrial dysfunction of R28 cells. The OGD/R injury increases the levels of VDAC1 oligomerization. Inhibition of VDAC1 oligomerization by VBIT-12 rescued mitochondrial dysfunction by OGD/R and also reduced apoptosis/necroptosis of R28 cells. In vivo, the use of VBIT-12 significantly reduced aHIOP-induced neuronal death (apoptosis/necroptosis) in the rat retina. Our findings indicate that VDAC1 oligomers may open and enlarge mitochondrial membrane pores during OGD/R injury, leading to the release of death-related factors in mitochondria, resulting in apoptosis and necroptosis. This study provides a potential therapeutic strategy against ocular diseases caused by I/R injury.
Collapse
Affiliation(s)
- Hao Wan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Yan-di Yan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xi-Min Hu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Lei Shang
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Affiliated Eye Hospital of Nanchang University, Nanchang 330006, China
| | - Yu-Hua Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Yan-Xia Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Qi Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China
| | - Wei-Tao Yan
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China.
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013, China; Hunan Key Laboratory of Ophthalmology, Changsha 410008, China; Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
20
|
Chen X, Zhang J, Li R, Zhang H, Sun Y, Jiang L, Wang X, Xiong Y. Flos Puerariae- Semen Hoveniae medicinal pair extract ameliorates DSS-induced inflammatory bowel disease through regulating MAPK signaling and modulating gut microbiota composition. Front Pharmacol 2022; 13:1034031. [PMID: 36569313 PMCID: PMC9768334 DOI: 10.3389/fphar.2022.1034031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Background: Inflammatory bowel disease (IBD) is a global gastrointestinal disease characterized by relapsing and remitting inflammatory conditions. Flos Puerariae (the flower of Pueraria lobata [Willd.] Ohwi and P. thomsonii Benth.) and Hovenia dulcis Thunb. (Rhamnaceae) are traditional Chinese medicines. This medicinal pair has been used to treat various diseases due to its excellent anti-oxidant and anti-inflammatory activity. However, the effects of extracts from these plants on dextran sulfate sodium (DSS)-induced colitis have not been investigated; further study is needed to improve the understanding of their mechanisms of action and potential applications. Methods: The chemical constitution of extracts from Flos Puerariae and Semen Hoveniae (PHE) was analyzed using UPLC-LTQ-Orbitrap-MS/MS. The protective effects of PHE on mice with DSS-induced colitis were evaluated through assessment of body weight loss, disease activity index (DAI) score, colon length shortening, and pathological changes. The levels of inflammatory cytokines were determined by ELISA and RT-qPCR. Biomarkers of oxidative stress (ROS, CAT, SOD, MDA, and T-AOC) were analyzed using biochemical kits. The expression of MAPK proteins was determined by Western blotting analysis. Gut microbiota were analyzed via 16S rRNA sequencing. Results: Chemical composition analysis indicated that PHE contains various bioactive compounds, including puerarin, kakkalide, tectoridin, and genistin. The findings from this study suggest that PHE could effectively modulate histopathological score, inflammatory cell infiltration, and inflammatory factor secretion. Notably, PHE ameliorated oxidative stress by inhibiting activation of the MAPK pathway, leading to decreased inflammatory mediators and restored antioxidant enzyme activity. Furthermore, PHE treatment regulated the composition of the gut microbiota by increasing the abundance of benign bacteria, such as Akkermansia, and reducing the abundance of harmful bacteria, such as Proteobacteria. Conclusion: The findings from this study demonstrate the mechanism underlying the amelioration of DSS-induced intestinal oxidative stress by PHE and its positive impact on the restoration of the composition of gut microbiota.
Collapse
Affiliation(s)
- Xiaofan Chen
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China,Evidence-Based Medicine Research Centre, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Jiahui Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Rui Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Hua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yong Sun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Li Jiang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xiaoya Wang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Xiaoya Wang, ; Yaokun Xiong,
| | - Yaokun Xiong
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, China,*Correspondence: Xiaoya Wang, ; Yaokun Xiong,
| |
Collapse
|
21
|
Meng F, Guo B, Ma YQ, Li KW, Niu FJ. Puerarin: A review of its mechanisms of action and clinical studies in ophthalmology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154465. [PMID: 36166943 DOI: 10.1016/j.phymed.2022.154465] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 09/07/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Pueraria is the common name of the dried root of either Pueraria montana var. lobata (Willd.) Maesen & S.M.Almeida ex Sanjappa & Predeep (syn. Pueraria lobata (Willd.) Ohwi) or Pueraria montana var. thomsonii (Benth.) M.R.Almeida (syn. Pueraria thomsonii Benth.). Puerarin is a C-glucoside of the isoflavone daidzein extracted from Pueraria. It has been widely investigated to explore its therapeutic role in eye diseases and the molecular mechanisms. PURPOSE To collect the available literature from 2000 to 2022 on puerarin in the treatment of ocular diseases and suggest the future required directions to improve its medicinal value. METHOD The content of this review was obtained from databases such as Web of Science, PubMed, Google Scholar, China National Knowledge Infrastructure (CNKI), and the Wanfang Database. RESULTS The search yielded 428 articles, of which 159 articles were included after excluding duplicate articles and articles related to puerarin but less relevant to the topic of the review. In eleven articles, the bioavailability of puerarin was discussed. Despite puerarin possesses diverse biological activities, its bioavailability on its own is poor. There are 95 articles in which the therapeutic mechanisms of puerarin in ocular diseases was reported. Of these, 54 articles discussed the various signalling pathways related to occular diseases affected by puerarin. The other 41 articles discussed specific biological activities of puerarin. It plays a therapeutic role in ophthalmopathy via regulating nuclear factor kappa-B (NF-ĸB), mitogen-activated protein kinases (MAPKs), PI3K/AKT, JAK/STAT, protein kinase C (PKC) and other related pathways, affecting the expression of tumour necrosis factor α (TNF-α), interleukin-1β (IL-1β), intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein-1 (MCP-1), superoxide dismutase (SOD), B-cell lymphoma-2 (Bcl-2) and other cytokines resulting in anti-inflammatory, antioxidant and anti-apoptotic effects. The clinical applications of puerarin in ophthalmology were discussed in 25 articles. Eleven articles discussed the toxicity of puerarin. The literature suggests that puerarin has a good curative effect and can be used safely in clinical practice. CONCLUSION This review has illustrated the diverse applications of puerarin acting on ocular diseases and suggested that puerarin can be used for treating diabetic retinopathy, retinal vascular occlusion, glaucoma and other ocular diseases in the clinic. Some ocular diseases are the result of the combined action of multiple factors, and the effect of puerarin on different factors needs to be further studied to improve a more complete mechanism of action of puerarin. In addition, it is necessary to increase the number of subjects in clinical trials and conduct clinical trials for other ocular diseases. The information presented here will guide future research studies.
Collapse
Affiliation(s)
- Fan Meng
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Bin Guo
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Yi-Qing Ma
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China
| | - Kun-Wei Li
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| | - Feng-Ju Niu
- Shandong University of Traditional Chinese Medicine, Daxue Road 4655, Ji'nan 250355, China.
| |
Collapse
|
22
|
Yu X, Niu T, Liu C. Mechanism of LSD1 in oxygen-glucose deprivation/reoxygenation-induced pyroptosis of retinal ganglion cells via the miR-21-5p/NLRP12 axis. BMC Neurosci 2022; 23:63. [PMID: 36357913 PMCID: PMC9650888 DOI: 10.1186/s12868-022-00747-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
Background Retinal ganglion cells (RGCs) are important retinal neurons that connect visual receptors to the brain, and lysine-specific demethylase 1 (LSD1) is implicated in the development of RGCs. This study expounded the mechanism of LSD1 in oxygen-glucose deprivation/reoxygenation (OGD/R)-induced pyroptosis of RGCs. Methods Mouse RGCs underwent OGD/R exposure, and then RGC viability was examined using the cell counting kit-8 method. The mRNA levels of Caspase 1, the protein levels of NOD-like receptor family pyrin domain-containing 3 (NLRP3), N-terminal fragment of gasdermin D (GSDMD-N), and cleaved-Caspase1, and the concentrations of interleukin (IL)-1β and IL-18 were respectively examined. Subsequently, LSD1 expression was intervened to explore the underlying effect of LSD1 on OGD/R-induced pyroptosis of RGCs. Afterwards, the enrichments of LSD1 and histone H3 lysine 4 methylation (H3K4me) 1/2 on the microRNA (miR)-21-5p promoter were determined using chromatin-immunoprecipitation assay. And the binding interaction between miR-21-5p and NLRP12 was detected using dual-luciferase and RNA pull-down assays. Finally, the effects of miR-21-5p/NLRP12 on LSD1-mediated pyroptosis of RGCs were verified through functional rescue experiments. Results OGD/R treatment increased pyroptosis of RGCs and LSD1 expression. Silencing LSD1 declined levels of Caspase 1 mRNA, NLRP3, GSDMD-N, cleaved-Caspase1, IL-1β, and IL-18 and limited pyroptosis of OGD/R-treated RGCs. Mechanically, LSD1 suppressed miR-21-5p expression via demethylation of H3K4me2 on the miR-21-5p promoter to hamper the binding of miR-21-5p to NLRP12, and thereby increased NLRP12 expression. Silencing miR-21-5p or overexpressing NLRP12 facilitated OGD/R-induced pyroptosis of RGCs. Conclusion LSD1-mediated demethylation of H3K4me2 decreased miR-21-5p expression to increase NLRP12 expression, promoting pyroptosis of OGD/R-treated RGCs.
Collapse
|
23
|
Wang D, Bu T, Li Y, He Y, Yang F, Zou L. Pharmacological Activity, Pharmacokinetics, and Clinical Research Progress of Puerarin. Antioxidants (Basel) 2022; 11:2121. [PMID: 36358493 PMCID: PMC9686758 DOI: 10.3390/antiox11112121] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/01/2023] Open
Abstract
As a kind of medicine and food homologous plant, kudzu root (Pueraria lobata (Willd.) Ohwi) is called an "official medicine" in Chinese folk medicine. Puerarin is the main active component extracted from kudzu root, and its structural formula is 8-β-D-grapes pyranose-4, 7-dihydroxy isoflavone, with a white needle crystal; it is slightly soluble in water, and its aqueous solution is colorless or light yellow. Puerarin is a natural antioxidant with high health value and has a series of biological activities such as antioxidation, anti-inflammation, anti-tumor effects, immunity improvement, and cardio-cerebrovascular and nerve cell protection. In particular, for the past few years, it has also been extensively used in clinical study. This review focuses on the antioxidant activity of puerarin, the therapy of diverse types of inflammatory diseases, various new drug delivery systems of puerarin, the "structure-activity relationship" of puerarin and its derivatives, and pharmacokinetic and clinical studies, which can provide a new perspective for the puerarin-related drug research and development, clinical application, and further development and utilization.
Collapse
Affiliation(s)
- Di Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tong Bu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yangqian Li
- Asset and Laboratory Management Department, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yueyue He
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Fan Yang
- Academic Affairs Office, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| |
Collapse
|
24
|
Ghafouri-Fard S, Shoorei H, Poornajaf Y, Hussen BM, Hajiesmaeili Y, Abak A, Taheri M, Eghbali A. NLRP3: Role in ischemia/reperfusion injuries. Front Immunol 2022; 13:926895. [PMID: 36238294 PMCID: PMC9552576 DOI: 10.3389/fimmu.2022.926895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 09/01/2022] [Indexed: 12/05/2022] Open
Abstract
NLR family pyrin domain containing 3 (NLRP3) is expressed in immune cells, especially in dendritic cells and macrophages and acts as a constituent of the inflammasome. This protein acts as a pattern recognition receptor identifying pathogen-associated molecular patterns. In addition to recognition of pathogen-associated molecular patterns, it recognizes damage-associated molecular patterns. Triggering of NLRP3 inflammasome by molecules ATP released from injured cells results in the activation of the inflammatory cytokines IL-1β and IL-18. Abnormal activation of NLRP3 inflammasome has been demonstrated to stimulate inflammatory or metabolic diseases. Thus, NLRP3 is regarded as a proper target for decreasing activity of NLRP3 inflammasome. Recent studies have also shown abnormal activity of NLRP3 in ischemia/reperfusion (I/R) injuries. In the current review, we have focused on the role of this protein in I/R injuries in the gastrointestinal, neurovascular and cardiovascular systems.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Yadollah Poornajaf
- Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
- Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | | | - Atefe Abak
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- *Correspondence: Mohammad Taheri, ; Ahmad Eghbali,
| | - Ahmad Eghbali
- Anesthesiology Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Taheri, ; Ahmad Eghbali,
| |
Collapse
|
25
|
HDAC3 Inhibition Alleviates High-Glucose-Induced Retinal Ganglion Cell Death through Inhibiting Inflammasome Activation. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4164824. [PMID: 36046456 PMCID: PMC9420628 DOI: 10.1155/2022/4164824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/14/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Purpose The exact effects of histone deacetylase 3 (HDAC3) inhibition in DR related retinal ganglion cells (RGCs) death remained unclear. This study is aimed at detecting the influence of HDAC3 on the high-glucose-induced retinal ganglion cell death. Methods The retinal HDAC3 expression in DR of different time points was analyzed by immunohistochemical assay and western blot. Besides, the expression of HDAC3 and both retinal thickness and RGC loss were analyzed. The effects of HDAC3 inhibitor on cell viability, oxidative stress, and apoptosis in high-glucose- (HG-) treated RGCs were analyzed. Both inflammatory and antioxidative factors were detected by ELISA. Results Advanced effects of HDAC3 inhibition on the expression of NLRP3 inflammasome were detected using western blots. High HDAC3 expression was detected only in the late DR mice (4 months of diabetes duration) but not early DR mice (2 months of diabetes duration). The immunohistochemical assay showed that HDAC3 expression was correlated with both retinal thickness and RCG contents. HDAC3 inhibitor significantly protected the HG-treated RGCs from damaged cell viability, severe apoptosis, and oxidative stress. Advanced pathway analyses showed that HDAC3 inhibition inactivated NLRP3 inflammasome and thus alleviated retinal inflammation. Conclusion. In conclusion, HDAC3 was involved in RGC loss and thus promoted the progression of neurodegeneration of DR. Besides, HDAC3 inhibitor demonstrated protective effects in neurodegeneration in DR through downregulation of NLRP3 activity. The effects of HDAC3 inhibitor in DR management should be confirmed in clinical trials.
Collapse
|
26
|
Transcriptomic Analysis Reveals That Granulocyte Colony-Stimulating Factor Trigger a Novel Signaling Pathway (TAF9-P53-TRIAP1-CASP3) to Protect Retinal Ganglion Cells after Ischemic Optic Neuropathy. Int J Mol Sci 2022; 23:ijms23158359. [PMID: 35955492 PMCID: PMC9368818 DOI: 10.3390/ijms23158359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Optic nerve head (ONH) infarct can result in progressive retinal ganglion cell (RGC) death. The granulocyte colony-stimulating factor (GCSF) protects the RGC after ON infarct. However, protective mechanisms of the GCSF after ONH infarct are complex and remain unclear. To investigate the complex mechanisms involved, the transcriptome profiles of the GCSF-treated retinas were examined using microarray technology. The retinal mRNA samples on days 3 and 7 post rat anterior ischemic optic neuropathy (rAION) were analyzed by microarray and bioinformatics analyses. GCSF treatment influenced 3101 genes and 3332 genes on days 3 and 7 post rAION, respectively. ONH infarct led to changes in 702 and 179 genes on days 3 and 7 post rAION, respectively. After cluster analysis, the levels of TATA box-binding protein (TBP)-associated factor were significantly reduced after ONH infarct, but these significantly increased after GCSF treatment. The network analysis revealed that TBP associated factor 9 (TAF9) can bind to P53 to induce TP53-regulated inhibitor of apoptosis 1 (TRIAP1) expression. To evaluate the function of TAF9 in RGC apoptosis, GCSF plus TAF9 siRNA-treated rats were evaluated using retrograde labeling with FluoroGold assay, TUNEL assay, and Western blotting in an rAION model. The RGC densities in the GCSF plus TAF9 siRNA-treated rAION group were 1.95-fold (central retina) and 1.75-fold (midperipheral retina) lower than that in the GCSF-treated rAION group (p < 0.05). The number of apoptotic RGC in the GCSF plus TAF9 siRNA-treated group was threefold higher than that in the GCSF-treated group (p < 0.05). Treatment with TAF9 siRNA significantly reduced GCSF-induced TP53 and TRIAP1 expression by 2.4-fold and 4.7-fold, respectively, in the rAION model. Overexpression of TAF9 significantly reduced apoptotic RGC and CASP3 levels, and induced TP53 and TRIAP1 expression in the rAION model. Therefore, we have demonstrated that GCSF modulated a new pathway, TAF9-P53-TRIAP1-CASP3, to control RGC death and survival after ON infarct.
Collapse
|
27
|
Li S, Yang Q, Zhou Z, Yang X, Liu Y, Hao K, Fu M. Gastrodin protects retinal ganglion cells from ischemic injury by activating phosphatidylinositol 3-kinase/protein kinase B/nuclear factor erythroid 2-related factor 2 (PI3K/AKT/Nrf2) signaling pathway. Bioengineered 2022; 13:12625-12636. [PMID: 35609324 PMCID: PMC9275977 DOI: 10.1080/21655979.2022.2076499] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Glaucoma is a progressive optic neuropathy and improper treatment may cause irreversible damage to visual function. Gastrodin is an effective active substance extracted from Gastrodia elata and possesses antioxidant as well as anti-inflammatory properties. However, the therapeutic potential of gastrodin for retinal ischemia/reperfusion (I/R) injury remains unclear. We adopted oxygen and glucose deprivation/reoxygenation (OGD/R) to induce R28 cells with the aim of simulating glaucomatous neurodegeneration. CCK-8 analysis and TUNEL were applied for examining cell proliferation and apoptosis . In addition, RT-qPCR and ELISA were performed to test the releases of inflammatory factors in cells . Related indicators of intracellular oxidative stress and ROS production were detected by corresponding kits. Moreover, western blot was applied to assay the expressions of PI3K/AKT/Nrf2 pathway-related proteins. OGD/R induction contributed to the decreased cell viability and reduced Bcl-2 protein expression, while the protein contents of Bax, Cyto-C, c-caspase 9 and c-PARP as well as ROS production were ascended. The co-treatment of hypoxia and gastrodin greatly improved R28 cell viability but effectively suppressed cell apoptosis, ROS level and the releases of OGD/R-induced inflammatory factors as well as oxidative stress. In addition, OGD/R stimulation reduced Nrf2, accompanied by a decrease in the phosphorylation levels of PI3K and AKT. Gastrodin significantly promoted the activation of PI3K/AKT/Nrf2 signaling pathway in R28 cells, which was then counteracted by PI3K/AKT inhibitors. In conclusion, the present study suggested that gastrodin has a protective effect on OGD/R-induced R28 cell injury, which is achieved through the activation of the PI3K/AKT/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Sizhen Li
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Qingsong Yang
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Zixiu Zhou
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Xiaodong Yang
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Yating Liu
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Kuanxiao Hao
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| | - Min Fu
- Nanjing Tongren Eye Center, Nanjing Tongren Hospital, School of Medicine, Southeast University, Nanjing, P.R. China
| |
Collapse
|
28
|
Puerarin promotes apoptosis and senescence of bladder cancer cells. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
29
|
Titi-Lartey O, Mohammed I, Amoaku WM. Toll-Like Receptor Signalling Pathways and the Pathogenesis of Retinal Diseases. FRONTIERS IN OPHTHALMOLOGY 2022; 2:850394. [PMID: 38983565 PMCID: PMC11182157 DOI: 10.3389/fopht.2022.850394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 07/11/2024]
Abstract
There is growing evidence that the pathogenesis of retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD) have a significant chronic inflammatory component. A vital part of the inflammatory cascade is through the activation of pattern recognition receptors (PRR) such as toll-like receptors (TLR). Here, we reviewed the past and current literature to ascertain the cumulative knowledge regarding the effect of TLRs on the development and progression of retinal diseases. There is burgeoning research demonstrating the relationship between TLRs and risk of developing retinal diseases, utilising a range of relevant disease models and a few large clinical investigations. The literature confirms that TLRs are involved in the development and progression of retinal diseases such as DR, AMD, and ischaemic retinopathy. Genetic polymorphisms in TLRs appear to contribute to the risk of developing AMD and DR. However, there are some inconsistencies in the published reports which require further elucidation. The evidence regarding TLR associations in retinal dystrophies including retinitis pigmentosa is limited. Based on the current evidence relating to the role of TLRs, combining anti-VEGF therapies with TLR inhibition may provide a longer-lasting treatment in some retinal vascular diseases.
Collapse
Affiliation(s)
| | | | - Winfried M. Amoaku
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
30
|
Peng ZT, Liu H. Puerarin attenuates LPS-induced inflammatory injury in gastric epithelial cells by repressing NLRP3 inflammasome-mediated apoptosis. Toxicol In Vitro 2022; 81:105350. [PMID: 35331853 DOI: 10.1016/j.tiv.2022.105350] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
Abstract
The NLRP3 inflammasome plays a crucial role in microbially induced gastric epithelial injury, but the underlying mechanisms remain unclear. Here, we aimed to assess the impacts of puerarin on LPS-induced inflammatory damage and the involvement of the AMPK/SIRT1/NLRP3 signaling pathways in this process in GES-1 cells. Cell viability and cytotoxicity were determined using CCK-8 and lactate dehydrogenase assay kits. Apoptosis was measured using annexin staining followed by flow cytometry. Cytokine levels were detected by ELISA, and protein expression was analyzed using western blotting. Protein overexpression was achieved by transfection with relevant pcDNA3.1 vectors, and protein knockdown was achieved by transfection with relevant siRNAs. Puerarin ameliorated LPS-induced cytotoxicity and apoptosis, while repressing LPS-stimulated NLRP3 inflammasome-mediated pyroptosis in GES-1 cells, as evidenced by significantly decreased expression of NLRP3, ASC, cleaved caspase-1, IL-1β and IL-18. NLRP3 knockdown efficiently repressed LPS-induced inflammatory injury in GES-1 cells. Puerarin activated the AMPK/SIRT1 pathway in LPS-treated GES-1 cells, and knockdown of both AMPK and SIRT1 reversed the protective effects of puerarin against LPS-induced inflammatory damage. AMPK overexpression strengthened, while AMPK knockdown weakened, the ability of puerarin to inhibit NLRP3-mediated inflammatory injury in LPS-treated GES-1 cells. Our findings suggest that puerarin may ameliorate LPS-induced inflammatory injury in GES-1 cells by activating the AMPK/SIRT1 signaling pathway and thereby repressing NLRP3 inflammasome-mediated apoptosis.
Collapse
Affiliation(s)
- Zi-Tan Peng
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, People's Republic of China; Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventionHubei, Huangshi, Hubei, People's Republic of China
| | - Hui Liu
- Department of Clinical Laboratory, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University, Edong Healthcare Group, Hubei, People's Republic of China; Hubei Key Laboratory of Kidney Disease Pathogenesis and InterventionHubei, Huangshi, Hubei, People's Republic of China.
| |
Collapse
|
31
|
Lian D, Zhu L, Yu Y, Zhang X, Lin Y, Liu J, Han R, Guo Y, Cai D, Xiao W, Chen Y, He H, Xu D, Zheng C, Wang X, Huang Y, Chen Y. Kakonein restores hyperglycemia‐induced macrophage digestion dysfunction through regulation of cathepsin B‐dependent NLRP3 inflammasome activation. J Leukoc Biol 2022; 112:143-155. [PMID: 35224772 PMCID: PMC9305139 DOI: 10.1002/jlb.3ma0821-418r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/05/2022] [Accepted: 02/05/2022] [Indexed: 12/22/2022] Open
Abstract
In hyperglycemia‐induced complications, macrophages play important roles in disease progression, and altered digestion is a key feature that dictates macrophage function. Recent evidence indicates that kakonein (Ka) possesses anti‐inflammatory activities for hyperglycemia‐induced complication. In this study, we established a mouse model of Nlrp3+/+ and Nlrp3−/− hyperglycemia and administering Ka, primary culture macrophages were tested by engulfing and digesting microbes. The role of macrophages in the cathepsin B–NLRP3 pathway involved in the mechanism of Ka in restoring macrophage digestion function was investigated using biochemical analyses, molecular biotechnology, and microbiology. Ka restored the function of macrophage digestion, which were same characterized by Nlrp3−/− mice. Meanwhile, kakonein could decrease NLRP3 inflammasome products expression and NLRP3/ASC or NLRP3/Casp1 colocalization in macrophage. Interestingly, Ka suppressed inflammasome response not by reducing NLRP3 and ASC expression but by reducing cathepsin B release and activation. And Ka restored macrophage digestion and inhibited NLRP3 inflammasome activation consistent with cathepsin B inhibitor. It is concluded that Ka reduced the release of lysosomal cathepsin B and consequently inhibited NLRP3 inflammasome activation to prevent macrophage digestion. Hence, Ka may contribute to new targets for treatment of hyperglycemia‐associated dysfunction of macrophage digestion and development of innovative drugs.
Collapse
Affiliation(s)
- Dawei Lian
- Department of Pharmaceutical and Postdoctoral Research Station Guangzhou University of Chinese Medicine Guangzhou China
| | - Li Zhu
- Department of Pharmaceutical and Postdoctoral Research Station Guangzhou University of Chinese Medicine Guangzhou China
| | - Yunhong Yu
- Department of Guangdong Academy of Medical Sciences and Guangdong Geriatric Institute Guangdong Provincial People's Hospital Guangzhou China
| | - Xiaojuan Zhang
- Department of clinical pharmacology Guangdong Provincial People's Hospital Guangzhou China
| | - Yike Lin
- Department of Pharmaceutical and Postdoctoral Research Station Guangzhou University of Chinese Medicine Guangzhou China
| | - Jiaying Liu
- Department of Laboratory Animal Center Guangzhou University of Chinese Medicine Guangzhou China
| | - Ruifang Han
- Department of Laboratory Animal Center Guangzhou University of Chinese Medicine Guangzhou China
| | - Yitong Guo
- Department of Pharmaceutical and Postdoctoral Research Station Guangzhou University of Chinese Medicine Guangzhou China
| | - Dongpeng Cai
- Department of Pharmaceutical and Postdoctoral Research Station Guangzhou University of Chinese Medicine Guangzhou China
| | - Wenjing Xiao
- Department of Pharmaceutical and Postdoctoral Research Station Guangzhou University of Chinese Medicine Guangzhou China
| | - Yulin Chen
- Department of Pharmaceutical and Postdoctoral Research Station Guangzhou University of Chinese Medicine Guangzhou China
| | - Hong He
- Department of Obstetrics and Gynecology, Key Laboratory for Major Obstetric Diseases of Guangdong Province The Third Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Danping Xu
- Department of Cardiology The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Chaoyang Zheng
- Department of Cardiology The Second Affiliated Hospital of Guangzhou University of Chinese Medicine Guangzhou China
| | - Xiao Wang
- Department of Laboratory Animal Center Guangzhou University of Chinese Medicine Guangzhou China
| | - Yi Huang
- Department of Stomatology, The First Affiliated Hospital, The school of Dental Medicine Jinan University Guangzhou China
| | - Yang Chen
- Department of Pharmaceutical and Postdoctoral Research Station Guangzhou University of Chinese Medicine Guangzhou China
| |
Collapse
|
32
|
Yu A, Wang S, Xing Y, Han M, Shao K. 7,8-Dihydroxyflavone alleviates apoptosis and inflammation induced by retinal ischemia-reperfusion injury via activating TrkB/Akt/NF-kB signaling pathway. Int J Med Sci 2022; 19:13-24. [PMID: 34975295 PMCID: PMC8692126 DOI: 10.7150/ijms.65733] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Retinal ischemia-reperfusion injury (RIRI) is of common occurrence in retinal and optic nerve diseases. The BDNF/TrkB signaling pathway has been examined to be neuroprotective in RIRI. In this study, we investigated the role of a potent selective TrkB agonist 7,8-dihydroxyfavone (DHF) in rat retinas with RIRI. Our results showed that RIRI inhibited the conversion of BDNF precursor (proBDNF) to mature BDNF (mBDNF) and increased the level of neuronal cell apoptosis. Compared with RIRI, DHF+RIRI reduced proBDNF level and at the same time increased mBDNF level. Moreover, DHF administration effectively activated TrkB signaling and and downstream Akt and Erk signaling pathways which increased nerve cell survival. The combined effects of mBDNF/proBDNF increase and TrkB signaling activation lead to reduction of apoptosis level and protection of retinas with RIRI. Moreover, it was also found that astrocytes labeled by GFAP were activated in RIRI and NF-kB mediated the increased expressions of inflammatory factors and these effects were partially reversed by DHF administration. Besides, we also used RNA sequencing to analyze the differently expressed genes (DEGs) and their enriched (Kyoto Encyclopedia of Genes and Genomes) KEGG pathways between Sham, RIRI, and DHF+RIRI. It was found that 1543 DEGs were differently expressed in RIRI and 619 DEGs were reversed in DHF+RIRI. The reversed DEGs were typically enriched in PI3K-Akt signaling pathway, Jak-STAT signaling pathway, NF-kB signaling pathway, and Apoptosis. To sum up, the DHF administration alleviated apoptosis and inflammation induced by RIRI via activating TrkB signaling pathway and may serve as a promising drug candidate for RIRI related ophthalmopathy.
Collapse
Affiliation(s)
- Aihua Yu
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, Hubei Province, China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan University,Wuhan 430071, Hubei Province, China
| | - Shun Wang
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, Hubei Province, China
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan University,Wuhan 430071, Hubei Province, China
| | - Yiqiao Xing
- Eye Center, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mengyao Han
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan University,Wuhan 430071, Hubei Province, China
| | - Kun Shao
- Department of Ophthalmology, Zhongnan Hospital of Wuhan University, Wuhan University,Wuhan 430071, Hubei Province, China
| |
Collapse
|
33
|
Wu X, Dou YN, Fei Z, Fei F. Parkin Prevents Glutamate Excitotoxicity Through Inhibiting NLRP3 Inflammasome in Retinal Ganglion Cells. Neuroscience 2021; 478:1-10. [PMID: 34600073 DOI: 10.1016/j.neuroscience.2021.09.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022]
Abstract
Glutamate excitotoxicity is one of the important pathophysiological culprits in retinal ganglion cells (RGCs) damage after acute optic nerve injury such as traumatic optic neuropathies and glaucoma. It is necessary to elucidate the mechanism of glutamate injury to RGCs in order to find the relevant neuroprotector. In this study, it was observed that the expression of Parkin increased and peaked at 24 h after glutamate injury to RGCs. Moreover, upregulating Parkin attenuated glutamate induced apoptosis, mitochondrial dysfunction and oxidative stress. And, it was found that Parkin could exert neuroprotective effects on RGCs by inhibiting nucleotide-binding domain leucine-rich repeat containing family pyrin domain containing 3 (NLRP3) inflammasome. Moreover, the genetic and pharmacological downregulation of NLRP3 improved survival of RGCs against glutamate excitotoxicity. In the end, knockdown of Parkin exacerbated glutamate induced RGCs damage via triggering NLRP3 inflammasome activation. Taken together, these results shed light on the promising molecular targets for the prevention and treatment of acute optic nerve injury.
Collapse
Affiliation(s)
- Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, 15 Changle West Road, Xi'an 71032, People's Republic of China
| | - Ya-Nan Dou
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, 15 Changle West Road, Xi'an 71032, People's Republic of China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, 15 Changle West Road, Xi'an 71032, People's Republic of China.
| | - Fei Fei
- Department of Ophthalmology, Xijing Hospital, the Fourth Military Medical University, 15 Changle West Road, Xi'an 71032, People's Republic of China.
| |
Collapse
|
34
|
Coyle S, Khan MN, Chemaly M, Callaghan B, Doyle C, Willoughby CE, Atkinson SD, Gregory-Ksander M, McGilligan V. Targeting the NLRP3 Inflammasome in Glaucoma. Biomolecules 2021; 11:biom11081239. [PMID: 34439904 PMCID: PMC8393362 DOI: 10.3390/biom11081239] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/16/2022] Open
Abstract
Glaucoma is a group of optic neuropathies characterised by the degeneration of retinal ganglion cells, resulting in damage to the optic nerve head (ONH) and loss of vision in one or both eyes. Increased intraocular pressure (IOP) is one of the major aetiological risk factors in glaucoma, and is currently the only modifiable risk factor. However, 30–40% of glaucoma patients do not present with elevated IOP and still proceed to lose vision. The pathophysiology of glaucoma is therefore not completely understood, and there is a need for the development of IOP-independent neuroprotective therapies to preserve vision. Neuroinflammation has been shown to play a key role in glaucoma and, specifically, the NLRP3 inflammasome, a key driver of inflammation, has recently been implicated. The NLRP3 inflammasome is expressed in the eye and its activation is reported in pre-clinical studies of glaucoma. Activation of the NLRP3 inflammasome results in IL-1β processing. This pro inflammatory cytokine is elevated in the blood of glaucoma patients and is believed to drive neurotoxic inflammation, resulting in axon degeneration and the death of retinal ganglion cells (RGCs). This review discusses glaucoma as an inflammatory disease and evaluates targeting the NLRP3 inflammasome as a therapeutic strategy. A hypothetical mechanism for the action of the NLRP3 inflammasome in glaucoma is presented.
Collapse
Affiliation(s)
- Sophie Coyle
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
| | - Mohammed Naeem Khan
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
| | - Melody Chemaly
- Department of Molecular Medicine and Surgery, Karolinska Institute, SE-171 76 Solna, Sweden;
| | - Breedge Callaghan
- Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK; (B.C.); (C.D.); (C.E.W.)
| | - Chelsey Doyle
- Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK; (B.C.); (C.D.); (C.E.W.)
| | - Colin E. Willoughby
- Centre for Molecular Biosciences, Biomedical Sciences Research Institute, Ulster University, Coleraine BT52 1SA, UK; (B.C.); (C.D.); (C.E.W.)
| | - Sarah D. Atkinson
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
| | - Meredith Gregory-Ksander
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary and Harvard Medical School, Boston, MA 02114, USA;
| | - Victoria McGilligan
- Northern Ireland Centre for Stratified Medicine, Ulster University, Londonderry BT47 6SB, UK; (S.C.); (M.N.K.); (S.D.A.)
- Correspondence:
| |
Collapse
|
35
|
Li W, Jin L, Cui Y, Nie A, Xie N, Liang G. Bone marrow mesenchymal stem cells-induced exosomal microRNA-486-3p protects against diabetic retinopathy through TLR4/NF-κB axis repression. J Endocrinol Invest 2021; 44:1193-1207. [PMID: 32979189 DOI: 10.1007/s40618-020-01405-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/23/2020] [Indexed: 02/08/2023]
Abstract
AIM Diabetic retinopathy (DR) is a chronic disease causing health and economic burdens on individuals and society. Thus, this study is conducted to figure out the mechanisms of bone marrow mesenchymal stem cells (BMSCs)-induced exosomal microRNA-486-3p (miR-486-3p) in DR. METHODS The putative miR-486-3p binding sites to 3'untranslated region of Toll-like receptor 4 (TLR4) was verified by luciferase reporter assay. High glucose (HG)-treated Muller cells were transfected with miR-486-3p or TLR4-related oligonucleotides and plasmids to explore theirs functions in DR. Additionally, HG-treated Muller cells were co-cultured with BMSC-derived exosomes, exosomes collected from BMSCs that had been transfected with miR-486-3p or TLR4-related oligonucleotides and plasmids to explore their functions in DR. MiR-486-3p, TLR4 and nuclear factor-kappaB (NF-κB) expression, angiogenesis-related factors, oxidative stress factors, viability and apoptosis in HG-treated Muller cells were detected by RT-qPCR, western blot analysis, ELISA, MTT assay and flow cytometry, respectively. RESULTS MiR-486-3p was poorly expressed while TLR4 and NF-κB were highly expressed in HG-treated Muller cells. TLR4 was a target of miR-486-3p. Upregulating miR-486-3p or down-regulating TLR4 inhibited oxidative stress, inflammation and apoptosis, and promoted proliferation of HG-treated Muller cells. Meanwhile, BMSC-derived exosomes inhibited oxidative stress, inflammation and apoptosis, and promoted proliferation of HG-treated Muller cells. Restoring miR-486-3p further enhanced, while up-regulating TLR4 reversed, the improvement of exosomes treatment. CONCLUSION Our study highlights that up-regulation of miR-486-3p induced by BMSC-derived exosomes played a protective role in DR mice via TLR4/NF-κB axis repression.
Collapse
Affiliation(s)
- W Li
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - L Jin
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - Y Cui
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - A Nie
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - N Xie
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China.
| | - G Liang
- Department of Ophthalmology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 53300, Guangxi, China.
| |
Collapse
|
36
|
Liang B, Zhu YC, Lu J, Gu N. Effects of Traditional Chinese Medication-Based Bioactive Compounds on Cellular and Molecular Mechanisms of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3617498. [PMID: 34093958 PMCID: PMC8139859 DOI: 10.1155/2021/3617498] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 04/28/2021] [Indexed: 12/21/2022]
Abstract
The oxidative stress reaction is the imbalance between oxidation and antioxidation in the body, resulting in excessive production of oxygen free radicals in the body that cannot be removed, leading to excessive oxidation of the body, and causing damage to cells and tissues. A large number of studies have shown that oxidative stress is involved in the pathological process of many diseases, so inhibiting oxidative stress, that is, antioxidation, is of great significance for the treatment of diseases. Studies have shown that many traditional Chinese medications contain antioxidant active bioactive compounds, but the mechanisms of those compounds are different and complicated. Therefore, by summarizing the literature on antioxidant activity of traditional Chinese medication-based bioactive compounds in recent years, our review systematically elaborates the main antioxidant bioactive compounds contained in traditional Chinese medication and their mechanisms, so as to provide references for the subsequent research.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong-Chun Zhu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Jia Lu
- Nanjing University of Chinese Medicine, Nanjing, China
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
37
|
Yu ZM, Wan XM, Xiao M, Zheng C, Zhou XL. Puerarin induces Nrf2 as a cytoprotective mechanism to prevent cadmium-induced autophagy inhibition and NLRP3 inflammasome activation in AML12 hepatic cells. J Inorg Biochem 2021; 217:111389. [PMID: 33607539 DOI: 10.1016/j.jinorgbio.2021.111389] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 12/18/2022]
Abstract
Liver is the main target organ of cadmium (Cd) toxicity and puerarin (PU) has been shown to prevent Cd-induced hepatic cell damage via its antioxidant activity. Nrf2 acts as a critical regulator of cellular defense against various oxidative insults, but its role in the protection of PU against Cd-induced hepatic damage has not yet been clarified. Hereby, this study was designed to investigate the underlying mechanism using mouse hepatocyte line AML-12. Data firstly showed that Cd-inhibited Nrf2 pathway was markedly restored by PU treatment, assessed by Nrf2 nuclear translocation, protein levels of Keap1 and Nrf2 downstream target genes. Accordingly, Cd-reduced protein levels of antioxidant enzymes were significantly up-regulated by PU. Next, Nrf2 silencing cellular model was established to further elucidate the role of Nrf2 in the protection of PU against Cd-induced hepatic damage. Attenuation of Cd-induced autophagy inhibition and autophagosome accumulation by PU was remarkably countered by Nrf2 silencing. Moreover, alleviation of Cd-induced NLRP3 inflammasome activation by PU was distinctly prevented by Nrf2 knockdown, assessed by protein levels of NLRP3 inflammosome complex and downstream IL-18 and IL-1β production. Collectively, our data suggest that PU restores Cd-induced Nrf2 inhibition to prevent autophagy inhibition and NLRP3 inflammasome activation, providing novel insights into the protection of PU against Cd-induced hepatic cell damage.
Collapse
Affiliation(s)
- Zhao-Ming Yu
- Dazhou Women's and Children's Hospital, No. 99 Baqu East Road, Tongchuan district, Dazhou, Sichuan 635000, China
| | - Xue-Mei Wan
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Min Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China
| | - Chuan Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611130, China.
| | - Xue-Lei Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu, Sichuan 610072,China.
| |
Collapse
|