1
|
Liz Belli Cassa Domingues E, Gonçalves-Santos E, Santana Caldas I, Vilela Gonçalves R, Caetano-da-Silva JE, Cardoso Santos E, Mól Pelinsari S, Figueiredo Diniz L, Dias Novaes R. Identification of host antioxidant effectors as thioridazine targets: Impact on cardiomyocytes infection and Trypanosoma cruzi-induced acute myocarditis. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167264. [PMID: 38806073 DOI: 10.1016/j.bbadis.2024.167264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 05/30/2024]
Abstract
Phenothiazines inhibit antioxidant enzymes in trypanosomatids. However, potential interferences with host cell antioxidant defenses are central concerns in using these drugs to treat Trypanosoma cruzi-induced infectious myocarditis. Thus, the interaction of thioridazine (TDZ) with T. cruzi and cardiomyocytes antioxidant enzymes, and its impact on cardiomyocytes and cardiac infection was investigated in vitro and in vivo. Cardiomyocytes and trypomastigotes in culture, and mice treated with TDZ and benznidazole (Bz, reference antiparasitic drug) were submitted to microstructural, biochemical and molecular analyses. TDZ was more cytotoxic and less selective against T. cruzi than Bz in vitro. TDZ-pretreated cardiomyocytes developed increased infection rate, reactive oxygen species (ROS) production, lipid and protein oxidation; similar catalase (CAT) and superoxide dismutase (SOD) activity, and reduced glutathione's (peroxidase - GPx, S-transferase - GST, and reductase - GR) activity than infected untreated cells. TDZ attenuated trypanothione reductase activity in T. cruzi, and protein antioxidant capacity in cardiomyocytes, making these cells more susceptible to H2O2-based oxidative challenge. In vivo, TDZ potentiated heart parasitism, total ROS production, myocarditis, lipid and protein oxidation; as well as reduced GPx, GR, and GST activities compared to untreated mice. Benznidazole decreased heart parasitism, total ROS production, heart inflammation, lipid and protein oxidation in T. cruzi-infected mice. Our findings indicate that TDZ simultaneously interact with enzymatic antioxidant targets in cardiomyocytes and T. cruzi, potentiating the infection by inducing antioxidant fragility and increasing cardiomyocytes and heart susceptibility to parasitism, inflammation and oxidative damage.
Collapse
Affiliation(s)
- Elisa Liz Belli Cassa Domingues
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Elda Gonçalves-Santos
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Ivo Santana Caldas
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Reggiani Vilela Gonçalves
- Departamento de Biologia Animal, Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil; Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - José Edson Caetano-da-Silva
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Eliziária Cardoso Santos
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina 39100-000, Minas Gerais, Brazil
| | - Silvania Mól Pelinsari
- Programa de Pós-Graduação em Biologia Celular e Estrutural, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Lívia Figueiredo Diniz
- Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Rômulo Dias Novaes
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Departamento de Biologia Animal, Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Birhanu MY, Jemberie SS. Mortality rate and predictors of COVID-19 inpatients in Ethiopia: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1213077. [PMID: 37928474 PMCID: PMC10624109 DOI: 10.3389/fmed.2023.1213077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/31/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an extremely rare virus that devastates the economy and claims human lives. Despite countries' urgent and tenacious public health responses to the COVID-19 pandemic, the disease is killing a large number of people. The results of prior studies have not been used by policymakers and programmers due to the presence of conflicting results. As a result, this study was conducted to fill the knowledge gap and develop a research agenda. Objective This study aimed to assess the mortality rate and predictors of COVID-19 hospitalized patients in Ethiopia. Methods Electronic databases were searched to find articles that were conducted using a retrospective cohort study design and published in English up to 2022. The data were extracted using a Microsoft Excel spreadsheet and exported to StataTM version 17.0 for further analysis. The presence of heterogeneity was assessed and presented using a forest plot. The subgroup analysis, meta-regression, and publication bias were computed to identify the source of heterogeneity. The pool COVID-19 mortality rate and its predictors were calculated and identified using the random effects meta-analysis model, respectively. The significant predictors identified were reported using a relative risk ratio and 95% confidence interval (CI). Results Seven studies with 31,498 participants were included. The pooled mortality rate of COVID-19 was 9.13 (95% CI: 5.38, 12.88) per 1,000 person-days of mortality-free observation. Those study participants who had chronic kidney disease had 2.29 (95% CI: 1.14, 4.60) times higher chance of experiencing mortality than their corresponding counterparts, diabetics had 2.14 (95% CI: 1.22, 3.76), HIV patients had 2.98 (95% CI: 1.26, 7.03), hypertensive patients had 1.63 (95% CI: 1.43, 1.85), and smoker had 2.35 (95% CI: 1.48, 3.73). Conclusion COVID-19 mortality rate was high to tackle the epidemic of the disease in Ethiopia. COVID-19 patients with chronic renal disease, diabetes, hypertension, smoking, and HIV were the significant predictors of mortality among COVID-19 patients in Ethiopia. COVID-19 patients with chronic diseases and comorbidities need special attention, close follow-up, and care from all stakeholders.
Collapse
Affiliation(s)
- Molla Yigzaw Birhanu
- Department of Public Health, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Selamawit Shita Jemberie
- Department of Midwifery, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
3
|
Gonçalves-Santos E, Caldas IS, Fernandes VÂ, Franco LL, Pelozo MF, Feltrim F, Maciel JS, Machado JVC, Gonçalves RV, Novaes RD. Pharmacological potential of new metronidazole/eugenol/dihydroeugenol hybrids against Trypanosoma cruzi in vitro and in vivo. Int Immunopharmacol 2023; 121:110416. [PMID: 37295025 DOI: 10.1016/j.intimp.2023.110416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
AIMS From well-delimited immunomodulatory, redox and antimicrobial properties; metronidazole and eugenol were used as structural platforms to assembly two new molecular hybrids (AD06 and AD07), whose therapeutic relevance was analyzed on T. cruzi infection in vitro and in vivo. METHODS Non-infected, T. cruzi-infected H9c2 cardiomyocytes, and mice non-treated and treated with vehicle, benznidazole (Bz - reference drug), AD06 and AD07 were investigated. Parasitological, prooxidant, antioxidant, microstructural, immunological, and hepatic function markers were analyzed. RESULTS Our findings indicated that in addition to having a direct antiparasitic effect on T. cruzi, metronidazole/eugenol hybrids (especially AD07) attenuated cellular parasitism, reactive species biosynthesis and oxidative stress in infected cardiomyocytes in vitro. Although AD06 and AD07 exerted no relevant impact on antioxidant enzymes activity (CAT, SOD, GR and GPx) in host cells, these drugs (especially AD07) attenuated trypanothione reductase activity in T. cruzi, which increased parasite's susceptibility to in vitro pro-oxidant challenge. AD06 and AD07 were well tolerated and do not determine humoral response suppression, mortality (100 % survival) or hepatotoxicity in mice, as indicated by transaminases plasma levels. AD07 also induced relevant in vivo antiparasitic and cardioprotective effects, attenuating parasitemia, cardiac parasite load and myocarditis in T. cruzi-infected mice. Although this cardioprotective response is potentially related to AD07 antiparasitic effect, a direct anti-inflammatory potential of this molecular hybrid cannot be ruled out. CONCLUSION Taken together, our findings indicated that the new molecular hybrid AD07 stood out as a potentially relevant candidate for the development of new, safe and more effective drug regimens for T. cruzi infection treatment.
Collapse
Affiliation(s)
- Elda Gonçalves-Santos
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Ivo S Caldas
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Valquiria  Fernandes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Lucas L Franco
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Mônica F Pelozo
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Fernando Feltrim
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Juliana S Maciel
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Faculdade de Ciências Farmacêuticas, Departamento de Alimentos e Medicamentos, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Jose Vaz C Machado
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil
| | - Reggiani V Gonçalves
- Departamento de Biologia Animal, Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil
| | - Rômulo D Novaes
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas 37130-001, Minas Gerais, Brazil; Departamento de Biologia Animal, Programa de Pós-Graduação em Biologia Animal, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil.
| |
Collapse
|
4
|
Nogueira SS, Souza MA, Santos EC, Caldas IS, Gonçalves RV, Novaes RD. Oxidative stress, cardiomyocytes senescence and contractile dysfunction in in vitro and in vivo experimental models of Chagas disease. Acta Trop 2023:106950. [PMID: 37211152 DOI: 10.1016/j.actatropica.2023.106950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/13/2023] [Accepted: 05/18/2023] [Indexed: 05/23/2023]
Abstract
AIMS The relationship between redox imbalance and cardiovascular senescence in infectious myocarditis is unknown. Thus, the aim of this study was to investigate whether cardiomyocytes parasitism, oxidative stress and contractile dysfunction can be correlated to senescence-associated β-galactosidase (SA-β-Gal) activity in Trypanosoma cruzi-infection in vitro and in vivo. METHODS Uninfected, T. cruzi-infected untreated and benznidazole (BZN)-treated H9c2 cardiomyocytes and rats were investigated. Parasitological, prooxidant, antioxidant, microstructural, and senescence-associated markers were quantified in vitro and in vivo. RESULTS T. cruzi infection triggered intense cardiomyocytes parasitism in vitro and in vivo, which was accompanied by reactive oxygen species (ROS) upregulation, lipids, proteins and DNA oxidation in cardiomyocytes and cardiac tissue. Oxidative stress was parallel to microstructural cell damage (e.g., increased cardiac toponin I levels) and contractile dysfunction in cardiomyocytes in vitro and in vivo, whose severity accompanied a premature cellular senescence-like phenotype revealed by increased senescence-associated β-galactosidase (SA-β-Gal) activity and DNA oxidation (8-OHdG). Cellular parasitism (e.g., infection rate and parasite load), myocarditis and T. cruzi-induced prooxidant responses were attenuated by early BZN administration to interrupt the progression of T. cruzi infection, protecting against SA-β-gal-based premature cellular senescence, microstructural damage and contractile deterioration in cardiomyocytes from T. cruzi-infected animals. CONCLUSION Our findings indicated that cell parasitism, redox imbalance and contractile dysfunction were correlated to SA-β-Gal-based cardiomyocytes premature senescence in acute T. cruzi infection. Therefore, in addition to controlling parasitism, inflammation and oxidative stress; inhibiting cardiomyocytes premature senescence should be further investigated as an additional target of specific Chagas disease therapeutics.
Collapse
Affiliation(s)
- Silas Santana Nogueira
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas, 37130-000, Minas Gerais, Brazil; Instituto Federal do Sul de Minas Gerais, Pouso Alegre, 37560-250, Minas Gerais, Brazil
| | - Matheus Augusto Souza
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, 37130-000, Minas Gerais, Brazil
| | - Eliziária Cardoso Santos
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil, 39100-000, Minas Gerais, Brazil
| | - Ivo Santana Caldas
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, 37130-000, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, 37130-000, Minas Gerais, Brazil
| | - Reggiani Vilela Gonçalves
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Rômulo Dias Novaes
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Universidade Federal de Alfenas, Alfenas, 37130-000, Minas Gerais, Brazil; Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal de Alfenas, Alfenas, 37130-000, Minas Gerais, Brazil; Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, 37130-000, Minas Gerais, Brazil.
| |
Collapse
|
5
|
Coutinho DCO, Santos-Miranda A, Joviano-Santos JV, Foureaux G, Santos A, Rodrigues-Ferreira C, Martins-Júnior PA, Resende RR, Medei E, Vieyra A, Santos RAS, Cruz JS, Ferreira AJ. Diminazene Aceturate, an angiotensin converting enzyme 2 (ACE2) activator, promotes cardioprotection in ischemia/reperfusion-induced cardiac injury. Peptides 2022; 151:170746. [PMID: 35033621 DOI: 10.1016/j.peptides.2022.170746] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 01/03/2023]
Abstract
This study aimed to investigate whether the Diminazene Aceturate (DIZE), an angiotensin-converting enzyme 2 (ACE2) activator, can revert cardiac dysfunction in ischemia reperfusion-induced (I/R) injury in animals and examine the mechanism underlying this effect. Wistar rats systemically received DIZE (1 mg/kg) for thirty days. Cardiac function in isolated rat hearts was evaluated using the Langendorff technique. After I/R, ventricular non-I/R and I/R samples were used to evaluate ATP levels. Mitochondrial function was assessed using cardiac permeabilized fibers and isolated cardiac mitochondria. Cardiac cellular electrophysiology was evaluated using the patch clamp technique. DIZE protected the heart after I/R from arrhythmia and cardiac dysfunction by preserving ATP levels, independently of any change in coronary flow and heart rate. DIZE improved mitochondrial function, increasing the capacity for generating ATP and reducing proton leak without changing the specific citrate synthase activity. The activation of the ACE2 remodeled cardiac electrical profiles, shortening the cardiac action potential duration at 90 % repolarization. Additionally, cardiomyocytes from DIZE-treated animals exhibited reduced sensibility to diazoxide (KATP agonist) and a higher KATP current compared to the controls. DIZE was able to improve mitochondrial function and modulate cardiac electrical variables with a cardio-protective profile, resulting in direct myocardial cell protection from I/R injury.
Collapse
Affiliation(s)
| | - Artur Santos-Miranda
- Laboratory of CardioBiology, Department of Biophysics, Federal University of Sao Paulo, Brazil
| | | | - Giselle Foureaux
- Department of Morphology, Federal University of Minas Gerais, Brazil
| | - Anderson Santos
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Brazil
| | - Clara Rodrigues-Ferreira
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo A Martins-Júnior
- Department of Child and Adolescent Oral Health, Federal University of Minas Gerais, Brazil
| | - Rodrigo R Resende
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Brazil
| | - Emiliano Medei
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adalberto Vieyra
- Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson A S Santos
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Brazil; National Institute of Science and Technology in Nanobiopharmaceutics, Federal University of Minas Gerais, Brazil
| | - Jader S Cruz
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Brazil
| | | |
Collapse
|
6
|
Chronic rapamycin pretreatment modulates arginase/inducible nitric oxide synthase balance attenuating aging-dependent susceptibility to Trypanosoma cruzi infection and acute myocarditis. Exp Gerontol 2022; 159:111676. [DOI: 10.1016/j.exger.2021.111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
|
7
|
Rodrigues G, Moraes T, Elisei L, Malta I, Dos Santos R, Novaes R, Lollo P, Galdino G. Resistance Exercise and Whey Protein Supplementation Reduce Mechanical Allodynia and Spinal Microglia Activation After Acute Muscle Trauma in Rats. Front Pharmacol 2021; 12:726423. [PMID: 34858171 PMCID: PMC8631966 DOI: 10.3389/fphar.2021.726423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022] Open
Abstract
Muscle injury caused by direct trauma to the skeletal muscle is among the main musculoskeletal disorders. Non-pharmacological treatments have been effective in controlling muscle injury–induced pain; however, there are just a few studies in the literature investigating this response. Thus, the present study aimed to evaluate the effect of a resistance exercise training protocol combined or not with whey protein supplementation on mechanical allodynia induced by muscle injury. In addition, we also investigated the involvement of spinal glial cells in this process. For this purpose, male Wistar rats underwent a muscle injury model induced by direct trauma to the gastrocnemius muscle. Mechanical allodynia was measured by a digital von Frey algesimeter test. To evaluate the effect of exercise and/or supplementation on mechanical allodynia, the animals practiced exercises three times a week for 14 days and received supplementation daily for 14 days, respectively. Moreover, the effect of both the participation of spinal glial cells in the muscle injury and the resistance exercise training and/or whey protein supplementation on these cells was also investigated by the Western blot assay. The results demonstrated that resistance exercise training and whey protein supplementation, combined or alone, reduced mechanical allodynia. These treatments also reduced the number of interstitial cells and pro-inflammatory cytokine IL-6 levels in the injured muscle. It was also found that spinal microglia and astrocytes are involved in muscle injury, and that resistance exercise training combined with whey protein supplementation inhibits spinal microglia activation. The results suggest that both resistance exercise training and whey protein supplementation may be effective non-pharmacological treatments to control pain in the muscle after injury induced by acute trauma.
Collapse
Affiliation(s)
- Gusthavo Rodrigues
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil.,Federal Institute of Education, Science and Technology of South of Minas Gerais, Advanced Campus Carmo de Minas, Carmo de Minas, Brazil
| | - Thamyris Moraes
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Lívia Elisei
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Iago Malta
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Rafaela Dos Santos
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Rômulo Novaes
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Pablo Lollo
- School of Physical Education, Federal University of Grande Dourados, Dourados, Brazil
| | - Giovane Galdino
- Laboratory of Experimental Physical Therapy, Institute of Motricity Sciences, Federal University of Alfenas, Alfenas, Brazil
| |
Collapse
|
8
|
Yang K, Wen G, Wang J, Zhou S, Da W, Meng Y, Xue Y, Tao L. Complication and Sequelae of COVID-19: What Should We Pay Attention to in the Post-Epidemic Era. Front Immunol 2021; 12:711741. [PMID: 34539642 PMCID: PMC8446426 DOI: 10.3389/fimmu.2021.711741] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/10/2021] [Indexed: 12/24/2022] Open
Abstract
COVID-19 is widespread worldwide and seriously affects the daily life and health of humans. Countries around the world are taking necessary measures to curb the spread. However, COVID-19 patients often have at least one organ complication and sequelae in addition to respiratory symptoms. Controlling the epidemic is only a phased victory, and the complication and sequelae of COVID-19 will need more attention in the post-epidemic era. We collected general information from over 1000 articles published in 2020 after the COVID-19 outbreak and systematically analyzed the complication and sequelae associated with eight major systems in COVID-19 patients caused by ACE2 intervention in the RAS regulatory axis. The autoimmune response induced by 2019-nCoV attacks and damages the normal tissues and organs of the body. Our research will help medical workers worldwide address COVID-19 complication and sequelae.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Guangfu Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jinpeng Wang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Siming Zhou
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Wacili Da
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yan Meng
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Yuchuan Xue
- The First Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Lin Tao
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| |
Collapse
|