1
|
Zhang WJ, Peng JL, Dai DF, Huang C, Chen XP. Targeting DUSP3 promotes cell senescence by activating the notch1 pathway to treat hepatocellular carcinoma. Tissue Cell 2025; 94:102781. [PMID: 39954561 DOI: 10.1016/j.tice.2025.102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/15/2025] [Accepted: 02/02/2025] [Indexed: 02/17/2025]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor of the digestive system, influenced by various factors. Due to its subtle clinical symptoms, it delayed results in poor prognosis and limited treatment options. Cellular senescence, characterized by stable growth arrest, is closely linked to tumor proliferation inhibition, making it a promising therapeutic strategy for HCC. However, the role of Dual Specificity Phosphatase 3 (DUSP3) in HCC-induced senescence and its underlying mechanisms remain poorly understood. Our preliminary data show a marked upregulation of DUSP3 in HCC tissues compared to adjacent group. Additionally, DUSP3 knockdown induced senescence in HCC cells in vitro. Further investigation revealed that inhibiting Notch1 reversed the senescence induced by DUSP3 knockdown in these cells. Thus, targeting DUSP3 to activate the Notch1 pathway and induction of senescence as a promising anti-tumor strategy.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Department Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Jun-Lu Peng
- Department Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Da-Fei Dai
- Department Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Chen Huang
- Department Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China
| | - Xiao-Peng Chen
- Department Hepatobiliary Surgery, Yijishan Hospital of Wannan Medical College, Wuhu 241000, China.
| |
Collapse
|
2
|
Liang Z, Li S, Wang Z, Zhou J, Huang Z, Li J, Bao H, Yam JWP, Xu Y. Unraveling the Role of the Wnt Pathway in Hepatocellular Carcinoma: From Molecular Mechanisms to Therapeutic Implications. J Clin Transl Hepatol 2025; 13:315-326. [PMID: 40206274 PMCID: PMC11976435 DOI: 10.14218/jcth.2024.00401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/23/2024] [Indexed: 04/11/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the deadliest malignant tumors in the world, and its incidence and mortality have increased year by year. HCC research has increasingly focused on understanding its pathogenesis and developing treatments.The Wnt signaling pathway, a complex and evolutionarily conserved signal transduction system, has been extensively studied in the genesis and treatment of several malignant tumors. Recent investigations suggest that the pathogenesis of HCC may be significantly influenced by dysregulated Wnt/β-catenin signaling. This article aimed to examine the pathway that controls Wnt signaling in HCC and its mechanisms. In addition, we highlighted the role of this pathway in HCC etiology and targeted treatment.
Collapse
Affiliation(s)
- Zixin Liang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shanshan Li
- School of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui, China
| | - Zhiyu Wang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junting Zhou
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, China
| | - Jiehan Li
- Department of Urology, the Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Haolin Bao
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- School of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, Bengbu, Anhui, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, Fujian, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
3
|
Bahriz HA, Abdelaziz RR, El-Kashef DH. Desloratadine mitigates hepatocellular carcinoma in rats: Possible contribution of TLR4/MYD88/NF-κB pathway. Toxicol Appl Pharmacol 2025; 495:117202. [PMID: 39672344 DOI: 10.1016/j.taap.2024.117202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/03/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Chemotherapeutic medication-induced systemic toxicity makes cancer treatment less effective. Thus, the need for drug repurposing, which aids in the development of safe and efficient cancer therapies, is urgent. The primary goal of this research was to assess desloratadine hepatoprotective abilities and its capacity to attenuate TLR4/MyD88/NF-κB inflammatory pathway in hepatocellular carcinoma (HCC) induced by thioacetamide (TAA). Male Sprague Dawely rats received TAA injections (200 mg/kg, i.p., 2 times/week) for 16 weeks. To confirm the development of HCC, liver function biomarkers and histopathological analysis were evaluated. Desloratadine (5 mg/kg, p.o.) was administered to rats in 2 treatment groups; HCC + DES 1 group received desloratadine with TAA for 1 month from week 13-16, HCC + DES 2 group received desloratadine with TAA for 2 months from week 9-16. Chronic TAA administration resulted in considerable overexpression of the profibrogenic cytokine TGF-β and elevation in protein expression of NF-κB besides levels of TLR4, MyD88, TRAF6, TAK1 and IL-1β. Desloratadine administration showed a significant improvement in liver function tests, as well as an increase in tissue antioxidant enzymes and an improvement in the liver's histopathological features. Collectively, desloratadine through modulating TLR4/MyD88/TRAF6/TAK1/NF-κB and acting as an antioxidant, is a promising treatment for HCC induced by TAA.
Collapse
MESH Headings
- Animals
- Toll-Like Receptor 4/metabolism
- Male
- Myeloid Differentiation Factor 88/metabolism
- Loratadine/analogs & derivatives
- Loratadine/pharmacology
- Loratadine/therapeutic use
- NF-kappa B/metabolism
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/prevention & control
- Rats, Sprague-Dawley
- Signal Transduction/drug effects
- Rats
- Liver Neoplasms/chemically induced
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Thioacetamide
- Liver Neoplasms, Experimental/chemically induced
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/prevention & control
- Liver/drug effects
- Liver/pathology
- Liver/metabolism
Collapse
Affiliation(s)
- Heba A Bahriz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Rania R Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt.
| | - Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Mohapatra P, Chandrasekaran N. In vitro β-catenin attenuation by a mefloquine-loaded core-shell nano emulsion strategy to suppress liver cancer cells. NANOSCALE ADVANCES 2025; 7:748-765. [PMID: 39610791 PMCID: PMC11601157 DOI: 10.1039/d4na00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/26/2024] [Indexed: 11/30/2024]
Abstract
Liver cancer, with its robust metastatic propensity, imposes a substantial global health burden of around 800 000 new cases annually. Mutations in the Wnt/β-catenin pathway genes are common in liver cancer, driving over 80% of cases. Targeting this pathway could potentially lead to better treatments. The aim of the present study was to develop a novel strategy for targeting the Wnt/β-catenin pathway while blocking the growth and division, of liver cancer cells and downregulating gene expression. This was achieved by formulating a repurposed drug (mefloquine)-loaded garlic nano-emulsion (GNE) with gold nanoparticles (GNPs) as a core-shell nano-emulsion (MQ/GNE-GNP). The biocompatible core-shell nano-emulsion (MQ/GNE-GNP) exhibited a size distribution in the range of 50-100 nm, high stability, excellent hydrophilicity, good biosafety, and sustained release. Human liver cancer cells were exposed to MQ/GNE, GNPs, and MQ/GNE-GNP at varying concentrations, and the effects were assessed through analysis of the cytotoxicity, reactive oxygen species, cell death, cell cycle analysis, and gene expression studies. It was found that MQ/GNE-GNP arrested HepG2 cells in the sub G0/G1phase and induced apoptosis. The anticancer efficacy of the core-shell nano-emulsion (MQ/GNE-GNP) resulted in higher cell death in the AO/PI staining studies, demonstrating its greater anticancer efficacy. The administration of MQ/GNE-GNP downregulated the overall expression of nuclear β-catenin, thereby suppressing the Wnt/β-catenin pathway. The protein expression level of Wnt 1 was upregulated, while β-catenin expression was significantly decreased. The core-shell nano-emulsion, incorporating a repurposed drug, could disrupt the β-catenin connections in the Wnt/β-catenin pathway. In conclusion, MQ/GNE-GNP could be a promising core-shell nano emulsion for the effective treatment of liver cancer by targeting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Priyadarshini Mohapatra
- ICMR-SRF, Centre for Nanobiotechnology, Vellore Institute of Technology Vellore 632014 India
| | - Natarajan Chandrasekaran
- Centre for Nanobiotechnology, VIT University Vellore 632 014 India +91-416-2243092 +91-416-220-2879
| |
Collapse
|
5
|
El-Zehery IM, El-Mesery M, El-Sherbiny M, El Gayar AM, Eisa NH. Carbenoxolone upregulates TRAIL\TRAILR2 expression and enhances the anti-neoplastic effect of doxorubicin in experimentally induced hepatocellular carcinoma in rats. Biochem Biophys Res Commun 2024; 741:150876. [PMID: 39579528 DOI: 10.1016/j.bbrc.2024.150876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/25/2024]
Abstract
AIMS This study investigates the in vivo anticancer activity of carbenoxolone (CBX) and its role in fighting hepatocellular carcinoma (HCC) progression and alleviating resistance against doxorubicin (DOX). Moreover, the molecular mechanism of action of CBX is explored. METHODS HCC was induced in Sprague Dawley rats via biweekly administration of thioacetamide (TAA) (200 mg/kg) intraperitoneally (i.p.) for 16 weeks after administering a single dose of diethylnitrosamine (DEN) (200 mg/kg, i.p.). A prophylactic model was established by treating rats with i.p. CBX (20 mg/kg/day) for 4 weeks starting on week 13 post-TAA injection. A therapeutic model was established by treating rats with CBX, DOX, or their combination for 7 weeks following 16 weeks of TAA administration. Serum Alpha-fetoprotein (AFP) and biochemical markers of hepatic functions were assessed. Histopathological examinations of hepatic tissues were performed. Immunohistochemical and qRT-PCR analyses were applied to assess the differential expressions of TRAIL/TRAILR2, Bcl-2, TGF-β1, and caspases 3, 8, and 9. RESULTS CBX markedly improved hepatic functions, reduced serum AFP levels, and alleviated TAA-induced hepatic histopathological alterations. CBX triggered apoptosis as evident by upregulating apoptotic markers: TRAIL/TRAILR2, caspases 3, 8, and 9, and downregulating the antiapoptotic protein Bcl-2. CBX downregulated TGF-β1. Interestingly, CBX/DOX combination mitigated hepatic damage and induced apoptosis in a way that surpassed DOX-only treatment. CONCLUSION The current study proposes that CBX is a promising anti-tumor compound, which can work effectively under prophylactic and therapeutic modes. Interestingly, CBX enhanced the anti-tumor effect of DOX. CBX exerted these effects via, in part, stimulating TRAIL-induced apoptosis along with attenuating fibrosis.
Collapse
MESH Headings
- Animals
- Doxorubicin
- Rats, Sprague-Dawley
- Male
- Carbenoxolone/pharmacology
- Rats
- Up-Regulation/drug effects
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/chemically induced
- Carcinoma, Hepatocellular/genetics
- Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism
- Receptors, TNF-Related Apoptosis-Inducing Ligand/genetics
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/pathology
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/chemically induced
- Apoptosis/drug effects
- Antibiotics, Antineoplastic
- Drug Synergism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/chemically induced
- Liver Neoplasms/genetics
- Antineoplastic Agents/pharmacology
- TNF-Related Apoptosis-Inducing Ligand
Collapse
Affiliation(s)
- Iman M El-Zehery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt; Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh, 11597, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Amal M El Gayar
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Nada H Eisa
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
6
|
Rejinold NS, Jin GW, Choy JH. Insight into Preventing Global Dengue Spread: Nanoengineered Niclosamide for Viral Infections. NANO LETTERS 2024; 24:14541-14551. [PMID: 39194045 PMCID: PMC11583367 DOI: 10.1021/acs.nanolett.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 08/29/2024]
Abstract
Millions of cases of dengue virus (DENV) infection yearly from Aedes mosquitoes stress the need for effective antivirals. No current drug effectively combats dengue efficiently. Transient immunity and severe risks highlight the need for broad-spectrum antivirals targeting all serotypes of DENV. Niclosamide, an antiparasitic, shows promising antiviral activity against the dengue virus, but enhancing its bioavailability is challenging. To overcome this issue and enable niclosamide to address the global dengue problem, nanoengineered niclosamides can be the solution. Not only does it address cost issues but also with its broad-spectrum antiviral effects nanoengineered niclosamide offers hope in addressing the current health crisis associated with DENV and will play a crucial role in combating other arboviruses as well.
Collapse
Affiliation(s)
- N. Sanoj Rejinold
- Intelligent
Nanohybrid Materials Laboratory (INML), College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Institute
of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic
of Korea
| | - Geun-woo Jin
- R&D
Center, Hyundai Bioscience Co. LTD., Seoul 03759, Republic
of Korea
| | - Jin-Ho Choy
- Intelligent
Nanohybrid Materials Laboratory (INML), College of Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Division
of Natural Sciences, The National Academy
of Sciences, Seoul 06579, Republic of Korea
- Tokyo
Tech World Research Hub Initiative (WRHI), Institute of Innovative
Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
7
|
Elleithi Y, El-Gayar A, Amin MN. Autophagy modulation attenuates sorafenib resistance in HCC induced in rats. Cell Death Dis 2024; 15:595. [PMID: 39152108 PMCID: PMC11329791 DOI: 10.1038/s41419-024-06955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 07/20/2024] [Accepted: 07/26/2024] [Indexed: 08/19/2024]
Abstract
Hepatocellular carcinoma (HCC) has risen as the villain of cancer-related death globally, with a usual cruel forecasting. Sorafenib was officially approved by the FDA as first-line treatment for advanced HCC. Despite the brilliant promise revealed in research, actual clinical results are limited due to the widespread appearance of drug resistance. The tumor microenvironment (TME) has been correlated to pharmacological resistance, implying that existing cellular level strategies may be insufficient to improve therapy success. The role of autophagy in cancer is a two-edged sword. On one hand, autophagy permits malignant cells to overcome stress, such as hypoxic TME and therapy-induced starvation. Autophagy, on the other hand, plays an important role in damage suppression, which can reduce carcinogenesis. As a result, controlling autophagy is certainly a viable technique in cancer therapy. The goal of this study was to investigate at the impact of autophagy manipulation with sorafenib therapy by analyzing autophagy induction and inhibition to sorafenib monotherapy in rats with HCC. Western blot, ELISA, immunohistochemistry, flow cytometry, and quantitative-PCR were used to investigate autophagy, apoptosis, and the cell cycle. Routine biochemical and pathological testing was performed. Ultracellular features and autophagic entities were observed using a transmission electron microscope (TEM). Both regimens demonstrated significant reductions in chemotherapeutic resistance and hepatoprotective effects. According to the findings, both autophagic inhibitors and inducers are attractive candidates for combating sorafenib-induced resistance in HCC.
Collapse
Affiliation(s)
- Yomna Elleithi
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Biochemistry Department, Faculty of Pharmacy, Mansoura National University, Gamasa, 7731168, Egypt.
| | - Amal El-Gayar
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed N Amin
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
8
|
de Pellegars-Malhortie A, Picque Lasorsa L, Mazard T, Granier F, Prévostel C. Why Is Wnt/β-Catenin Not Yet Targeted in Routine Cancer Care? Pharmaceuticals (Basel) 2024; 17:949. [PMID: 39065798 PMCID: PMC11279613 DOI: 10.3390/ph17070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Despite significant progress in cancer prevention, screening, and treatment, the still limited number of therapeutic options is an obstacle towards increasing the cancer cure rate. In recent years, many efforts were put forth to develop therapeutics that selectively target different components of the oncogenic Wnt/β-catenin signaling pathway. These include small molecule inhibitors, antibodies, and more recently, gene-based approaches. Although some of them showed promising outcomes in clinical trials, the Wnt/β-catenin pathway is still not targeted in routine clinical practice for cancer management. As for most anticancer treatments, a critical limitation to the use of Wnt/β-catenin inhibitors is their therapeutic index, i.e., the difficulty of combining effective anticancer activity with acceptable toxicity. Protecting healthy tissues from the effects of Wnt/β-catenin inhibitors is a major issue due to the vital role of the Wnt/β-catenin signaling pathway in adult tissue homeostasis and regeneration. In this review, we provide an up-to-date summary of clinical trials on Wnt/β-catenin pathway inhibitors, examine their anti-tumor activity and associated adverse events, and explore strategies under development to improve the benefit/risk profile of this therapeutic approach.
Collapse
Affiliation(s)
- Auriane de Pellegars-Malhortie
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Laurence Picque Lasorsa
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| | - Thibault Mazard
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
- Medical Oncology Department, ICM, University of Montpellier, CEDEX 5, 34298 Montpellier, France
| | | | - Corinne Prévostel
- IRCM (Montpellier Cancer Research Institute), University of Montpellier, Inserm, ICM (Montpellier Regional Cancer Institute), 34298 Montpellier, CEDEX 5, France; (A.d.P.-M.); (L.P.L.); (T.M.)
| |
Collapse
|
9
|
Li L, Zhao L, Yang J, Zhou L. Multifaceted effects of LRP6 in cancer: exploring tumor development, immune modulation and targeted therapies. Med Oncol 2024; 41:180. [PMID: 38898247 DOI: 10.1007/s12032-024-02399-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024]
Abstract
Low-density lipoprotein receptor (LDLR)-related protein 6 (LRP6), a member of the LDLR superfamily of cell surface receptors, is most widely known as a crucial co-receptor in the activation of canonical Wnt/β-catenin signaling. This signaling pathway is implicated in multiple biological processes, such as lipoprotein metabolism, protease regulation, cell differentiation, and migration. LRP6 is frequently overexpressed in a variety of tumors, including liver cancer, colorectal cancer, and prostate cancer, and is generally considered an oncogene that promotes tumor proliferation, migration, and invasion. However, there are exceptions; some studies have reported that LRP6 inhibits lung metastasis of breast cancer through its ectodomain (LRP6N), and patients with low LRP6 expression tend to have a poor prognosis. Thus, the role of LRP6 in tumors remains controversial. Although limited studies have shown that LRP6 is associated with the expression and roles of a variety of immune cells in tumors, the interaction of LRP6 with the tumor microenvironment (TME) is not fully understood. Furthermore, it is crucial to acknowledge that LRP6 can engage with alternative pathways, including the mTORC1, CXCL12/CXCR4, and KRAS signaling pathways mentioned earlier, resulting in the regulation of biological functions independent of canonical Wnt/β-catenin signaling. Due to the potential of LRP6 as a molecular target for cancer therapy, various treatment modalities have been developed to directly or indirectly inhibit LRP6 function, demonstrating promising anti-cancer effects across multiple cancer types. This review will concentrate on exploring the expression, function, and potential therapeutic applications of LRP6 in different cancer types, along with its influence on the TME.
Collapse
Affiliation(s)
- Liangliang Li
- Department of Hematology, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Li Zhao
- Laboratory of Clinical Molecular Cytogenetics and Immunology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China
- Gansu Key Laboratory of Genetic Study of Hematopathy, Lanzhou, Gansu, People's Republic of China
| | - Jincai Yang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, People's Republic of China
| | - Lanxia Zhou
- Laboratory of Clinical Molecular Cytogenetics and Immunology, The First Hospital of Lanzhou University, Lanzhou, Gansu, People's Republic of China.
- Gansu Key Laboratory of Genetic Study of Hematopathy, Lanzhou, Gansu, People's Republic of China.
| |
Collapse
|
10
|
Yao M, Fang RF, Xie Q, Xu M, Sai WL, Yao DF. Early monitoring values of oncogenic signalling molecules for hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:2350-2361. [PMID: 38994143 PMCID: PMC11236219 DOI: 10.4251/wjgo.v16.i6.2350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
The prevention and early diagnosis of liver cancer remains a global medical challenge. During the malignant transformation of hepatocytes, a variety of oncogenic cellular signalling molecules, such as novel high mobility group-Box 3, angiopoietin-2, Golgi protein 73, glypican-3, Wnt3a (a signalling molecule in the Wnt/β-catenin pathway), and secretory clusterin, can be expressed and secreted into the blood. These signalling molecules are derived from different signalling pathways and may not only participate in the malignant transformation of hepatocytes but also become early diagnostic indicators of hepatocarcinogenesis or specific targeted molecules for hepatocellular carcinoma therapy. This article reviews recent progress in the study of several signalling molecules as sensitive biomarkers for monitoring hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Yao
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Rong-Fei Fang
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Qun Xie
- Department of Infectious Diseases, Haian People’s Hospital, Haian 226600, Jiangsu Province, China
| | - Min Xu
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Li Sai
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
11
|
Ali FEM, Abdel-Reheim MA, Hassanein EHM, Abd El-Aziz MK, Althagafy HS, Badran KSA. Exploring the potential of drug repurposing for liver diseases: A comprehensive study. Life Sci 2024; 347:122642. [PMID: 38641047 DOI: 10.1016/j.lfs.2024.122642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/24/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Drug repurposing involves the investigation of existing drugs for new indications. It offers a great opportunity to quickly identify a new drug candidate at a lower cost than novel discovery and development. Despite the importance and potential role of drug repurposing, there is no specific definition that healthcare providers and the World Health Organization credit. Unfortunately, many similar and interchangeable concepts are being used in the literature, making it difficult to collect and analyze uniform data on repurposed drugs. This research was conducted based on understanding general criteria for drug repurposing, concentrating on liver diseases. Many drugs have been investigated for their effect on liver diseases even though they were originally approved (or on their way to being approved) for other diseases. Some of the hypotheses for drug repurposing were first captured from the literature and then processed further to test the hypothesis. Recently, with the revolution in bioinformatics techniques, scientists have started to use drug libraries and computer systems that can analyze hundreds of drugs to give a short list of candidates to be analyzed pharmacologically. However, this study revealed that drug repurposing is a potential aid that may help deal with liver diseases. It provides available or under-investigated drugs that could help treat hepatitis, liver cirrhosis, Wilson disease, liver cancer, and fatty liver. However, many further studies are needed to ensure the efficacy of these drugs on a large scale.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Mostafa K Abd El-Aziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Khalid S A Badran
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| |
Collapse
|
12
|
Yao M, Fang RF, Xie Q, Xu M, Sai WL, Yao DF. Early monitoring values of oncogenic signalling molecules for hepatocellular carcinoma. World J Gastrointest Oncol 2024; 16:2814-2825. [DOI: 10.4251/wjgo.v16.i6.2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/02/2024] [Accepted: 04/24/2024] [Indexed: 06/13/2024] Open
Abstract
The prevention and early diagnosis of liver cancer remains a global medical challenge. During the malignant transformation of hepatocytes, a variety of oncogenic cellular signalling molecules, such as novel high mobility group-Box 3, angiopoietin-2, Golgi protein 73, glypican-3, Wnt3a (a signalling molecule in the Wnt/β-catenin pathway), and secretory clusterin, can be expressed and secreted into the blood. These signalling molecules are derived from different signalling pathways and may not only participate in the malignant transformation of hepatocytes but also become early diagnostic indicators of hepatocarcinogenesis or specific targeted molecules for hepatocellular carcinoma therapy. This article reviews recent progress in the study of several signalling molecules as sensitive biomarkers for monitoring hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Yao
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Rong-Fei Fang
- Department of Gastroenterology, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Qun Xie
- Department of Infectious Diseases, Haian People’s Hospital, Haian 226600, Jiangsu Province, China
| | - Min Xu
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Wen-Li Sai
- Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Department of Immunology, Medical School of Nantong University and Research Center of Clinical Medicine, The Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
13
|
Yu Y, Liu H, Yuan L, Pan M, Bei Z, Ye T, Qian Z. Niclosamide - encapsulated lipid nanoparticles for the reversal of pulmonary fibrosis. Mater Today Bio 2024; 25:100980. [PMID: 38434573 PMCID: PMC10907778 DOI: 10.1016/j.mtbio.2024.100980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 03/05/2024] Open
Abstract
Pulmonary fibrosis (PF) is a serious and progressive fibrotic interstitial lung disease that is possibly life-threatening and that is characterized by fibroblast accumulation and collagen deposition. Nintedanib and pirfenidone are currently the only two FDA-approved oral medicines for PF. Some drugs such as antihelminthic drug niclosamide (Ncl) have shown promising therapeutic potentials for PF treatment. Unfortunately, poor aqueous solubility problems obstruct clinical application of these drugs. Herein, we prepared Ncl-encapsulated lipid nanoparticles (Ncl-Lips) for pulmonary fibrosis therapy. A mouse model of pulmonary fibrosis induced by bleomycin (BLM) was generated to assess the effects of Ncl-Lips and the mechanisms of reversing fibrosis in vivo. Moreover, cell models treated with transforming growth factor β1 (TGFβ1) were used to investigate the mechanism through which Ncl-Lips inhibit fibrosis in vitro. These findings demonstrated that Ncl-Lips could alleviate fibrosis, consequently reversing the changes in the levels of the associated marker. Moreover, the results of the tissue distribution experiment showed that Ncl-Lips had aggregated in the lung. Additionally, Ncl-Lips improved the immune microenvironment in pulmonary fibrosis induced by BLM. Furthermore, Ncl-Lips suppressed the TGFβ1-induced activation of fibroblasts and epithelial-mesenchymal transition (EMT) in epithelial cells. Based on these results, we demonstrated that Ncl-Lips is an efficient strategy for reversing pulmonary fibrosis via drug-delivery.
Collapse
Affiliation(s)
- Yan Yu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Hongyao Liu
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer and Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Liping Yuan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Meng Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhongwu Bei
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Tinghong Ye
- Department of Gastroenterology and Hepatology, Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer and Frontiers Science Center for Disease-Related Molecular Network and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
14
|
Gajos-Michniewicz A, Czyz M. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities. Genes Dis 2024; 11:727-746. [PMID: 37692481 PMCID: PMC10491942 DOI: 10.1016/j.gendis.2023.02.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/28/2022] [Accepted: 02/14/2023] [Indexed: 09/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a liver cancer, highly heterogeneous both at the histopathological and molecular levels. It arises from hepatocytes as the result of the accumulation of numerous genomic alterations in various signaling pathways, including canonical WNT/β-catenin, AKT/mTOR, MAPK pathways as well as signaling associated with telomere maintenance, p53/cell cycle regulation, epigenetic modifiers, and oxidative stress. The role of WNT/β-catenin signaling in liver homeostasis and regeneration is well established, whereas in development and progression of HCC is extensively studied. Herein, we review recent advances in our understanding of how WNT/β-catenin signaling facilitates the HCC development, acquisition of stemness features, metastasis, and resistance to treatment. We outline genetic and epigenetic alterations that lead to activated WNT/β-catenin signaling in HCC. We discuss the pivotal roles of CTNNB1 mutations, aberrantly expressed non-coding RNAs and complexity of crosstalk between WNT/β-catenin signaling and other signaling pathways as challenging or advantageous aspects of therapy development and molecular stratification of HCC patients for treatment.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, Lodz 92-215, Poland
| |
Collapse
|
15
|
Zeyada MS, Eraky SM, El-Shishtawy MM. Trigonelline mitigates bleomycin-induced pulmonary inflammation and fibrosis: Insight into NLRP3 inflammasome and SPHK1/S1P/Hippo signaling modulation. Life Sci 2024; 336:122272. [PMID: 37981228 DOI: 10.1016/j.lfs.2023.122272] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/31/2023] [Accepted: 11/12/2023] [Indexed: 11/21/2023]
Abstract
AIMS Pulmonary fibrosis (PF) is a chronic interstitial lung disease with an increasing incidence following the COVID-19 outbreak. Pirfenidone (Pirf), an FDA-approved pulmonary anti-fibrotic drug, is poorly tolerated and exhibits limited efficacy. Trigonelline (Trig) is a natural plant alkaloid with diverse pharmacological actions. We investigated the underlying prophylactic and therapeutic mechanisms of Trig in ameliorating bleomycin (BLM)-induced PF and the possible synergistic antifibrotic activity of Pirf via its combination with Trig. MATERIALS AND METHODS A single dose of BLM was administered intratracheally to male Sprague-Dawley rats for PF induction. In the prophylactic study, Trig was given orally 3 days before BLM and then for 28 days. In the therapeutic study, Trig and/or Pirf were given orally from day 8 after BLM until the 28th day. Biochemical assay, histopathology, qRT-PCR, ELISA, and immunohistochemistry were performed on lung tissues. KEY FINDINGS Trig prophylactically and therapeutically mitigated the inflammatory process via targeting NF-κB/NLRP3/IL-1β signaling. Trig activated the autophagy process which in turn attenuated alveolar epithelial cells apoptosis and senescence. Remarkably, Trig attenuated lung SPHK1/S1P axis and its downstream Hippo targets, YAP-1, and TAZ, with a parallel decrease in YAP/TAZ profibrotic genes. Interestingly, Trig upregulated lung miR-375 and miR-27a expression. Consequently, epithelial-mesenchymal transition in lung tissues was reversed upon Trig administration. These results were simultaneously associated with profound improvement in lung histological alterations. SIGNIFICANCE The current study verifies Trig's prophylactic and antifibrotic effects against BLM-induced PF via targeting multiple signaling. Trig and Pirf combination may be a promising approach to synergize Pirf antifibrotic effect.
Collapse
Affiliation(s)
- Menna S Zeyada
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Salma M Eraky
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Mamdouh M El-Shishtawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
16
|
Zhang L, Li W, Liu X, Guo J, Wu X, Wang J. Niclosamide inhibits TGF-β1-induced fibrosis of human Tenon's fibroblasts by regulating the MAPK-ERK1/2 pathway. Exp Eye Res 2023; 235:109628. [PMID: 37619828 DOI: 10.1016/j.exer.2023.109628] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/24/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Preventing postoperative bleb scar formation is an effective way of improving glaucoma filtration surgery (GFS) outcome. Use of more effective antifibrotic drugs with fewer adverse effects may be a good way to address the problem. In the present study, we use a primary cell model, consisting of Tenon's fibroblasts obtained from patients with glaucoma, which were stimulated with TGF-β1 to induce the fibrotic phenotype. We explored the effects of niclosamide on TGF-β1-induced fibrosis in these cells and examined its underlying mechanism of action. A transcriptome sequencing assay was used to explore possible signaling pathways involved. Niclosamide inhibited cell proliferation and migration, and decreased the levels of alpha-smooth muscle actin, type I and type III collagen in human Tenon's fibroblasts induced by TGF-β1. Niclosamide also induced apoptosis and counteracted TGF-β1-induced cytoskeletal changes and extracellular matrix accumulation. Moreover, niclosamide decreased TGF-β1-induced phosphorylated extracellular signal-regulated kinase 1/2 (p-ERK1/2) protein expression in human Tenon's fibroblasts. The results indicate that niclosamide inhibits TGF-β1-induced fibrosis in human Tenon's fibroblasts by blocking the MAPK-ERK1/2 signaling pathway. Thus, niclosamide is a potentially promising antifibrotic drug that could improve glaucoma filtration surgery success rate.
Collapse
Affiliation(s)
- Liyun Zhang
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Wei Li
- Department of Pediatric Respiratory Medicine, Maternal and Child Health Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Xin Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518000, Guangdong, China
| | - Junhong Guo
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518000, Guangdong, China
| | - Xueping Wu
- Jinzhou Medical University, Jinzhou, 121001, Liaoning, China
| | - Jiantao Wang
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
17
|
Bakrania A, To J, Zheng G, Bhat M. Targeting Wnt-β-Catenin Signaling Pathway for Hepatocellular Carcinoma Nanomedicine. GASTRO HEP ADVANCES 2023; 2:948-963. [PMID: 39130774 PMCID: PMC11307499 DOI: 10.1016/j.gastha.2023.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 07/17/2023] [Indexed: 08/13/2024]
Abstract
Hepatocellular carcinoma (HCC) represents a high-fatality cancer with a 5-year survival of 22%. The Wnt/β-catenin signaling pathway presents as one of the most upregulated pathways in HCC. However, it has so far not been targetable in the clinical setting. Therefore, studying new targets of this signaling cascade from a therapeutic aspect could enable reversal, delay, or prevention of hepatocarcinogenesis. Although enormous advancement has been achieved in HCC research and its therapeutic management, since HCC often occurs in the context of other liver diseases such as cirrhosis leading to liver dysfunction and/or impaired drug metabolism, the current therapies face the challenge of safely and effectively delivering drugs to the HCC tumor site. In this review, we discuss how a targeted nano drug delivery system could help minimize the off-target toxicities of conventional HCC therapies as well as enhance treatment efficacy. We also put forward the current challenges in HCC nanomedicine along with some potential therapeutic targets from the Wnt/β-catenin signaling pathway that could be used for HCC therapy. Overall, this review will provide an insight to the current advances, limitations and how HCC nanomedicine could change the landscape of some of the undruggable targets in the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Anita Bakrania
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey To
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Gang Zheng
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Mamatha Bhat
- Toronto General Hospital Research Institute, Toronto, Ontario, Canada
- Ajmera Transplant Program, University Health Network, Toronto, Ontario, Canada
- Division of Gastroenterology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
- Department of Medical Sciences, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Mansour A, Mahmoud MY, Bakr AF, Ghoniem MG, Adam FA, El-Sherbiny IM. Fortified anti-proliferative activity of niclosamide for breast cancer treatment: In-vitro and in-vivo assessment. Life Sci 2023; 316:121379. [PMID: 36623765 DOI: 10.1016/j.lfs.2023.121379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Breast cancer represents one of the top lethal cancer types among the females worldwide. Several factors manipulate the clinical outcome of the treatment as the stage of the cancer upon detection, genetic and hormonal factors, drug resistance and metastasis. Accordingly, drug's repositioning, enhancing the bioavailability and encapsulation into nanoparticles (NPs) are among the predilected pathways for enhanced therapeutic outcome. Niclosamide (NIC) is an anthelmintic drug and has been repositioned as anticancer agent after revealing its anti-neoplastic activity. Piperine (PIP) was used as food spice until its anticancer activity was discovered. However, their hydrophobicity constrains their therapeutic efficiency. The cytotoxicity of both drugs in the free form was tested on MCF-7 cells, and the results indicated a NIC cytotoxicity enhancement by PIP. Then, NIC and PIP were encapsulated successfully into F127-NPs with entrapment efficiency of 97 % and 82 %, respectively. Particle size, zeta potential, TEM and FTIR confirmed the micellization process and drug encapsulation. The developed NIC-NPs and PIP-NPs exerted potent anticancer effect as compared to the free forms. Accordingly, the mixture; NIC-NPs/PIP-NPs was tested and its cytotoxicity exceeded the individually encapsulated drugs. Flowcytometry assessment was performed and demonstrated an induced cell death through the apoptotic stage. Additionally, in-vivo therapeutic efficiency of NIC-NPs/PIP-NPs was assessed through Ehrlich ascites tumor and the nanocombination therapy exerted superior additive anticancer effect when compared to NIC-NPs which is attributed to the PIP-NPs induced bioavailability. The study can be considered the first one investigating the PIP role in bioenhancing the anti-proliferative activity of NIC to combat breast cancer.
Collapse
Affiliation(s)
- Amira Mansour
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578, Giza, Egypt
| | - Mohamed Y Mahmoud
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Alaa F Bakr
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Monira G Ghoniem
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Fatima A Adam
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science, Zewail City of Science and Technology, 6th October City, 12578, Giza, Egypt.
| |
Collapse
|
19
|
Kauerová T, Pérez-Pérez MJ, Kollar P. Salicylanilides and Their Anticancer Properties. Int J Mol Sci 2023; 24:ijms24021728. [PMID: 36675241 PMCID: PMC9861143 DOI: 10.3390/ijms24021728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/17/2023] Open
Abstract
Salicylanilides are pharmacologically active compounds with a wide spectrum of biological effects. Halogenated salicylanilides, which have been used for decades in human and veterinary medicine as anthelmintics, have recently emerged as candidates for drug repurposing in oncology. The most prominent example of salicylanilide anthelmintic, that is intensively studied for its potential anticancer properties, is niclosamide. Nevertheless, recent studies have discovered extensive anticancer potential in a number of other salicylanilides. This potential of their anticancer action is mediated most likely by diverse mechanisms of action such as uncoupling of oxidative phosphorylation, inhibition of protein tyrosine kinase epidermal growth factor receptor, modulation of different signaling pathways as Wnt/β-catenin, mTORC1, STAT3, NF-κB and Notch signaling pathways or induction of B-Raf V600E inhibition. Here we provide a comprehensive overview of the current knowledge about the proposed mechanisms of action of anticancer activity of salicylanilides based on preclinical in vitro and in vivo studies, or structural requirements for such an activity.
Collapse
Affiliation(s)
- Tereza Kauerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
| | | | - Peter Kollar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackého tř. 1946/1, 612 42 Brno, Czech Republic
- Correspondence: ; Tel.: +420-541-562-892
| |
Collapse
|
20
|
Elleithi YA, El-Gayar AM, Amin MN. Simvastatin Induces Apoptosis And Suppresses Hepatocellular Carcinoma Induced In Rats. Appl Biochem Biotechnol 2023; 195:1656-1674. [PMID: 36367620 PMCID: PMC9928804 DOI: 10.1007/s12010-022-04203-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a frequent primary aggressive cancer, a crucial cause of cancer-related mortality globally. Simvastatin is a well-known safe cholesterol-lowering medication that has been recently shown to suppress cancer progression. Apoptosis is a well-organized and controlled cellular process that happens both physiologically and pathologically leading to executing cell death. Apoptosis is frequently downregulated in cancer cells. In the present study, we aimed to test the effect of simvastatin on HCC progression. HCC was induced in experimental rats by means of diethylnitrose amine (DEN) and thioacetamide (TAA) injections. Gross examination and liver index along with biochemical analysis of hepatic function were evaluated. Serum alpha-feto protein (AFP) concentration was measured by ELISA. Histopathological examination was used for assessing necroinflammatory scores and fibrosis degree. Apoptosis was assessed using immunohistochemistry (IHC) and quantitative PCR (qPCR). Simvastatin was found to induce apoptosis successfully in HCC and improve liver fibrosis, overall hepatic function, and necroinflammatory score. Simvastatin, therefore, may be a potential adjunctive therapeutic option in clinical settings of treating HCC.
Collapse
Affiliation(s)
- Yomna A. Elleithi
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 3551 Egypt
| | - Amal M. El-Gayar
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 3551 Egypt
| | - Mohamed N. Amin
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 3551 Egypt ,Biochemistry Department, Faculty of Pharmacy, King Salman International University, Ras Sedr, South Sinai Egypt
| |
Collapse
|
21
|
Jiang H, Li AM, Ye J. The magic bullet: Niclosamide. Front Oncol 2022; 12:1004978. [PMID: 36479072 PMCID: PMC9720275 DOI: 10.3389/fonc.2022.1004978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/12/2022] [Indexed: 08/27/2023] Open
Abstract
The term 'magic bullet' is a scientific concept proposed by the German Nobel laureate Paul Ehrlich in 1907, describing a medicine that could specifically and efficiently target a disease without harming the body. Oncologists have been looking for a magic bullet for cancer therapy ever since. However, the current therapies for cancers-including chemotherapy, radiation therapy, hormone therapy, and targeted therapy-pose either pan-cytotoxicity or only single-target efficacy, precluding their ability to function as a magic bullet. Intriguingly, niclosamide, an FDA-approved drug for treating tapeworm infections with an excellent safety profile, displays broad anti-cancer activity in a variety of contexts. In particular, niclosamide inhibits multiple oncogenic pathways such as Wnt/β-catenin, Ras, Stat3, Notch, E2F-Myc, NF-κB, and mTOR and activates tumor suppressor signaling pathways such as p53, PP2A, and AMPK. Moreover, niclosamide potentially improves immunotherapy by modulating pathways such as PD-1/PDL-1. We recently discovered that niclosamide ethanolamine (NEN) reprograms cellular metabolism through its uncoupler function, consequently remodeling the cellular epigenetic landscape to promote differentiation. Inspired by the promising results from the pre-clinical studies, several clinical trials are ongoing to assess the therapeutic effect of niclosamide in cancer patients. This current review summarizes the functions, mechanism of action, and potential applications of niclosamide in cancer therapy as a magic bullet.
Collapse
Affiliation(s)
- Haowen Jiang
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
| | - Albert M. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Jiangbin Ye
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, United States
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, United States
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
22
|
Elrazik NAA, El-Mesery M, El-Shishtawy MM. Sesamol protects against liver fibrosis induced in rats by modulating lysophosphatidic acid receptor expression and TGF-β/Smad3 signaling pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:1003-1016. [PMID: 35648193 PMCID: PMC9276582 DOI: 10.1007/s00210-022-02259-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022]
Abstract
The present study aimed to investigate the hepatoprotective effect of sesamol (SML), a nutritional phenolic compound obtained from sesame seeds, in liver fibrosis induced by thioacetamide (TAA) in rats and to explore the underlying mechanisms. Thirty-two male Sprague-Dawley rats were equally divided into four groups: control, TAA, TAA + SML 50 mg/kg, and TAA + SML 100 mg/kg groups. Liver functions and hepatic contents of glutathione (GSH) and malondialdehyde (MDA) were measured colorimetrically. Gene expressions of lysophosphatidic acid receptor (LPAR)-1 and -3, connective tissue growth factor (CTGF), transforming growth factor (TGF)-β1, small mothers against decapentaplegic (Smad)-3 and -7, α-smooth muscle actin (α-SMA), and cytokeratin 19 (CK19) were analyzed by qRT-PCR. Moreover, phosphorylated Smad3 (pSmad3) was quantified by ELISA. Additionally, TGF-β1, α-SMA, CK19, and vascular endothelial growth factor (VEGF) protein concentrations were semi-quantitatively analyzed by immunostaining of liver sections. SML treatment markedly improved liver index and liver functions. Moreover, SML protected against liver fibrosis in a dose-dependent manner as indicated by down-regulation of LPAR1, LPAR3, CTGF, TGF-β1/Smad3, and α-SMA expressions and a decrease in pSmad3 level, as well as an up-regulation of Smad7 expression. In addition, SML suppressed ductular reaction hinted by the decrease in CK19 expression. These results reveal the anti-fibrotic effect of SML against liver fibrosis that might be attributed to down-regulation of LPAR1/3 expressions, inhibition of TGF-β1/Smad3 pathway, and ductular reaction.
Collapse
Affiliation(s)
- Nesma A Abd Elrazik
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, P.O. Box, Mansoura, 35516, Egypt
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, P.O. Box, Mansoura, 35516, Egypt
| | - Mamdouh M El-Shishtawy
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, P.O. Box, Mansoura, 35516, Egypt.
| |
Collapse
|
23
|
Singh S, Weiss A, Goodman J, Fisk M, Kulkarni S, Lu I, Gray J, Smith R, Sommer M, Cheriyan J. Niclosamide-A promising treatment for COVID-19. Br J Pharmacol 2022; 179:3250-3267. [PMID: 35348204 PMCID: PMC9111792 DOI: 10.1111/bph.15843] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/09/2022] [Accepted: 02/23/2022] [Indexed: 12/15/2022] Open
Abstract
Vaccines have reduced the transmission and severity of COVID-19, but there remains a paucity of efficacious treatment for drug-resistant strains and more susceptible individuals, particularly those who mount a suboptimal vaccine response, either due to underlying health conditions or concomitant therapies. Repurposing existing drugs is a timely, safe and scientifically robust method for treating pandemics, such as COVID-19. Here, we review the pharmacology and scientific rationale for repurposing niclosamide, an anti-helminth already in human use as a treatment for COVID-19. In addition, its potent antiviral activity, niclosamide has shown pleiotropic anti-inflammatory, antibacterial, bronchodilatory and anticancer effects in numerous preclinical and early clinical studies. The advantages and rationale for nebulized and intranasal formulations of niclosamide, which target the site of the primary infection in COVID-19, are reviewed. Finally, we give an overview of ongoing clinical trials investigating niclosamide as a promising candidate against SARS-CoV-2.
Collapse
Affiliation(s)
- Shivani Singh
- Division of Pulmonary and Critical Care MedicineNYU School of MedicineNew YorkNew YorkUSA
| | - Anne Weiss
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- UNION Therapeutics Research ServicesHellerupDenmark
| | - James Goodman
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Marie Fisk
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Spoorthy Kulkarni
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Ing Lu
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Joanna Gray
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Rona Smith
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Cambridge Clinical Trials UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | - Morten Sommer
- Novo Nordisk Foundation Center for BiosustainabilityTechnical University of DenmarkKongens LyngbyDenmark
- UNION TherapeuticsHellerupDenmark
| | - Joseph Cheriyan
- Department of MedicineCambridge University Hospitals NHS Foundation TrustCambridgeUK
- Cambridge Clinical Trials UnitCambridge University Hospitals NHS Foundation TrustCambridgeUK
| |
Collapse
|
24
|
Graur F, Puia A, Mois EI, Moldovan S, Pusta A, Cristea C, Cavalu S, Puia C, Al Hajjar N. Nanotechnology in the Diagnostic and Therapy of Hepatocellular Carcinoma. MATERIALS (BASEL, SWITZERLAND) 2022; 15:3893. [PMID: 35683190 PMCID: PMC9182427 DOI: 10.3390/ma15113893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is the most common liver malignancy and is among the top five most common cancers. Despite the progress of surgery and chemotherapy, the results are often disappointing, in part due to chemoresistance. This type of tumor has special characteristics that allow the improvement of diagnostic and treatment techniques used in clinical practice, by combining nanotechnology. This article presents a brief review of the literature focused on nano-conditioned diagnostic methods, targeted therapy, and therapeutic implications for the pathology of hepatocellular carcinoma. Within each subdomain, several modern technologies with significant impact were highlighted: serological, imaging, or histopathological diagnosis; intraoperative detection; carrier-type nano-conditioned therapy, thermal ablation, and gene therapy. The prospects offered by nanomedicine will strengthen the hope of more efficient diagnoses and therapies in the future.
Collapse
Affiliation(s)
- Florin Graur
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Aida Puia
- Department of General Practitioner, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania
| | - Emil Ioan Mois
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Septimiu Moldovan
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Alexandra Pusta
- Department of Analytical Chemistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania; (A.P.); (C.C.)
| | - Cecilia Cristea
- Department of Analytical Chemistry, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400347 Cluj-Napoca, Romania; (A.P.); (C.C.)
| | - Simona Cavalu
- Department of Medical Biophysics, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
| | - Cosmin Puia
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| | - Nadim Al Hajjar
- Department of Surgery, University of Medicine and Pharmacy “Iuliu Hatieganu”, 400012 Cluj-Napoca, Romania; (F.G.); (C.P.); (N.A.H.)
- Regional Institute of Gastroenterology and Hepatology “Octavian Fodor”, 400394 Cluj-Napoca, Romania;
| |
Collapse
|
25
|
Hang J, Chen Y, Tian P, Yu R, Wang M, Zhao M. Preparation and pharmacodynamics of niclosamide micelles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Sofias AM, De Lorenzi F, Peña Q, Azadkhah Shalmani A, Vucur M, Wang JW, Kiessling F, Shi Y, Consolino L, Storm G, Lammers T. Therapeutic and diagnostic targeting of fibrosis in metabolic, proliferative and viral disorders. Adv Drug Deliv Rev 2021; 175:113831. [PMID: 34139255 PMCID: PMC7611899 DOI: 10.1016/j.addr.2021.113831] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 02/07/2023]
Abstract
Fibrosis is a common denominator in many pathologies and crucially affects disease progression, drug delivery efficiency and therapy outcome. We here summarize therapeutic and diagnostic strategies for fibrosis targeting in atherosclerosis and cardiac disease, cancer, diabetes, liver diseases and viral infections. We address various anti-fibrotic targets, ranging from cells and genes to metabolites and proteins, primarily focusing on fibrosis-promoting features that are conserved among the different diseases. We discuss how anti-fibrotic therapies have progressed over the years, and how nanomedicine formulations can potentiate anti-fibrotic treatment efficacy. From a diagnostic point of view, we discuss how medical imaging can be employed to facilitate the diagnosis, staging and treatment monitoring of fibrotic disorders. Altogether, this comprehensive overview serves as a basis for developing individualized and improved treatment strategies for patients suffering from fibrosis-associated pathologies.
Collapse
Affiliation(s)
- Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Mildred Scheel School of Oncology (MSSO), Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO(ABCD)), University Hospital Aachen, Aachen, Germany; Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Federica De Lorenzi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Quim Peña
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mihael Vucur
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty at Heinrich-Heine-University, Duesseldorf, Germany
| | - Jiong-Wei Wang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Yang Shi
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lorena Consolino
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| | - Gert Storm
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Nanomedicine Translational Research Programme, Centre for NanoMedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany; Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, the Netherlands.
| |
Collapse
|