1
|
Datsyuk JK, De Rubis G, Paudel KR, Kokkinis S, Oliver BGG, Dua K. Cellular probing using phytoceuticals encapsulated advanced delivery systems in ameliorating lung diseases: Current trends and future prospects. Int Immunopharmacol 2024; 141:112913. [PMID: 39137633 DOI: 10.1016/j.intimp.2024.112913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Chronic respiratory diseases such as Chronic Obstructive Pulmonary Disease (COPD) and asthma have posed a significant healthcare and economic cost over a prolonged duration worldwide. At present, available treatments are limited to a range of preventive medicines, such as mono- or multiple-drug therapy, which necessitates daily use and are not considered as viable treatments to reverse the inflammatory processes of airway remodelling which is inclusive of the alteration of intra and extracellular matrix of the airway tract, death of epithelial cells, the increase in smooth muscle cell and the activation of fibroblasts. Hence, with the problem in mind a considerable body of study has been dedicated to comprehending the underlying factors that contribute to inflammation within the framework of these disorders. Hence, adequate literature that has unveiled the necessary cellular probing to reduce inflammation in the respiratory tract by improving the selectivity and precision of a novel treatment. However, through cellular probing cellular mechanisms such as the downregulation of various markers, interleukin 8, (IL-8), Interleukin 6 (IL-6), interleukin 1β (IL-1β) and tumor necrosis factor-α (TNF-α) have been uncovered. Hence, to target such cellular probes implementation of phytoceuticals encapsulated in an advanced drug delivery system has shown potential to be a solution with in vitro and in vivo studies highlighting their anti-inflammatory and antioxidant effects. However, the high costs associated with advanced drug delivery systems and the limited literature focused exclusively on nanoparticles pose significant challenges. Additionally, the biochemical characteristics of phytoceuticals due to poor solubility, limited bioavailability, and difficulties in mass production makes it difficult to implement this product as a treatment for COPD and asthma. This study aims to examine the integration of many critical features in the context of their application for the treatment of chronic inflammation in respiratory disorders.
Collapse
Affiliation(s)
- Jessica Katrine Datsyuk
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sofia Kokkinis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Brian Gregory George Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, New South Wales, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
2
|
Cleusix L, Pavlova O, Guenova E, Kuonen F. Effect of betablockers on the course of Martorell hypertensive ulcers: a retrospective study. Acta Derm Venereol 2024; 104:adv41087. [PMID: 39508498 PMCID: PMC11559259 DOI: 10.2340/actadv.v104.41087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Martorell hypertensive ulcer (MHU) represents a painful, difficult-to-handle condition associated with peri-pheral, subcutaneous arteriolosclerosis caused by chronic hypertensive disease. Betablockers are effective for and widely used to treat hypertensive disease but are reported to exacerbate peripheral vasoconstriction. The effect of betablockers on pre-existing arteriolosclerosis and the course of MHU is, however, unknown. A retrospective study to assess the effect of betablockers on the course and response to treatment of MHU was conducted. Clinical and histopathological data were collected of patients treated for MHU at the authors' institution between 2014 and 2023 and a side-by-side comparison was performed of patients taking betablockers or not. Analysis focused on MHU severity at presentation, analgesic use, response to therapeutic intervention, and alterations of cutaneous arterioles. The study reports significantly larger ulcers and more frequent use of opioids in patients taking betablockers, while no significant difference was observed in terms of MHU response to treatment. Significantly increased luminal obstruction of peripheral cutaneous arterioles was found in patients taking beta-blockers. Based on these data, betablockers may have a negative effect on the course of MHU and should be carefully assessed in patients with MHU.
Collapse
Affiliation(s)
- Lucy Cleusix
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Olesya Pavlova
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Emmanuella Guenova
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Manti S, Gambadauro A, Galletta F, Ruggeri P, Piedimonte G. Update on the Role of β2AR and TRPV1 in Respiratory Diseases. Int J Mol Sci 2024; 25:10234. [PMID: 39408565 PMCID: PMC11477158 DOI: 10.3390/ijms251910234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Respiratory diseases (RDs) constitute a common public health problem both in industrialized and developing countries. The comprehension of the pathophysiological mechanisms underlying these conditions and the development of new therapeutic strategies are critical for improving the quality of life of affected patients. β2-adrenergic receptor (β2AR) and transient receptor potential vanilloid 1 (TRPV1) are both involved in physiological responses in the airways. β2AR is implicated in bronchodilation, mucociliary clearance, and anti-inflammatory effects, while TRPV1 is involved in the mediation of pain and cough reflexes. In RDs, such as respiratory infections, asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis, the concentration and expression of these receptors can be altered, leading to significant consequences. In this review, we provided an update on the literature about the role of β2AR and TRPV1 in these conditions. We reported how the diminished or defective expression of β2AR during viral infections or prolonged therapy with β2-agonists can increase the severity of these pathologies and impact the prognosis. Conversely, the role of TRPV1 was pivotal in neuroinflammation, and its modulation could lead to innovative treatment strategies in specific patients. We indicate future perspectives and potential personalized treatments in RDs through a comprehensive analysis of the roles of these receptors in the physiological and pathological mechanisms of these pathologies.
Collapse
Affiliation(s)
- Sara Manti
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.G.)
| | - Antonella Gambadauro
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.G.)
| | - Francesca Galletta
- Pediatric Unit, Department of Human Pathology in Adult and Developmental Age “Gaetano Barresi”, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy; (S.M.); (F.G.)
| | - Paolo Ruggeri
- Pulmonology Unit, Department of Biomedical and Dental Sciences, University of Messina, Via Consolare Valeria 1, 98124 Messina, Italy
| | - Giovanni Piedimonte
- Office for Research and Departments of Pediatrics, Biochemistry, and Molecular Biology, Tulane University, New Orleans, LA 70112, USA;
| |
Collapse
|
4
|
Li CL, Liu SF. Exploring Molecular Mechanisms and Biomarkers in COPD: An Overview of Current Advancements and Perspectives. Int J Mol Sci 2024; 25:7347. [PMID: 39000454 PMCID: PMC11242201 DOI: 10.3390/ijms25137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) plays a significant role in global morbidity and mortality rates, typified by progressive airflow restriction and lingering respiratory symptoms. Recent explorations in molecular biology have illuminated the complex mechanisms underpinning COPD pathogenesis, providing critical insights into disease progression, exacerbations, and potential therapeutic interventions. This review delivers a thorough examination of the latest progress in molecular research related to COPD, involving fundamental molecular pathways, biomarkers, therapeutic targets, and cutting-edge technologies. Key areas of focus include the roles of inflammation, oxidative stress, and protease-antiprotease imbalances, alongside genetic and epigenetic factors contributing to COPD susceptibility and heterogeneity. Additionally, advancements in omics technologies-such as genomics, transcriptomics, proteomics, and metabolomics-offer new avenues for comprehensive molecular profiling, aiding in the discovery of novel biomarkers and therapeutic targets. Comprehending the molecular foundation of COPD carries substantial potential for the creation of tailored treatment strategies and the enhancement of patient outcomes. By integrating molecular insights into clinical practice, there is a promising pathway towards personalized medicine approaches that can improve the diagnosis, treatment, and overall management of COPD, ultimately reducing its global burden.
Collapse
Affiliation(s)
- Chin-Ling Li
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
| | - Shih-Feng Liu
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
5
|
Satapathy S, Kumar S, Kurmi BD, Gupta GD, Patel P. Expanding the Role of Chiral Drugs and Chiral Nanomaterials as a Potential Therapeutic Tool. Chirality 2024; 36:e23698. [PMID: 38961803 DOI: 10.1002/chir.23698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 07/05/2024]
Abstract
Chirality, the property of molecules having mirror-image forms, plays a crucial role in pharmaceutical and biomedical research. This review highlights its growing importance, emphasizing how chiral drugs and nanomaterials impact drug effectiveness, safety, and diagnostics. Chiral molecules serve as precise diagnostic tools, aiding in accurate disease detection through unique biomolecule interactions. The article extensively covers chiral drug applications in treating cardiovascular diseases, CNS disorders, local anesthesia, anti-inflammatories, antimicrobials, and anticancer drugs. Additionally, it explores the emerging field of chiral nanomaterials, highlighting their suitability for biomedical applications in diagnostics and therapeutics, enhancing medical treatments.
Collapse
Affiliation(s)
- Sourabh Satapathy
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Shivam Kumar
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | | | - Preeti Patel
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
6
|
Gutiérrez-Mondragón MA, Vellido A, König C. A Study on the Robustness and Stability of Explainable Deep Learning in an Imbalanced Setting: The Exploration of the Conformational Space of G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:6572. [PMID: 38928278 PMCID: PMC11203844 DOI: 10.3390/ijms25126572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
G-protein coupled receptors (GPCRs) are transmembrane proteins that transmit signals from the extracellular environment to the inside of the cells. Their ability to adopt various conformational states, which influence their function, makes them crucial in pharmacoproteomic studies. While many drugs target specific GPCR states to exert their effects-thereby regulating the protein's activity-unraveling the activation pathway remains challenging due to the multitude of intermediate transformations occurring throughout this process, and intrinsically influencing the dynamics of the receptors. In this context, computational modeling, particularly molecular dynamics (MD) simulations, may offer valuable insights into the dynamics and energetics of GPCR transformations, especially when combined with machine learning (ML) methods and techniques for achieving model interpretability for knowledge generation. The current study builds upon previous work in which the layer relevance propagation (LRP) technique was employed to interpret the predictions in a multi-class classification problem concerning the conformational states of the β2-adrenergic (β2AR) receptor from MD simulations. Here, we address the challenges posed by class imbalance and extend previous analyses by evaluating the robustness and stability of deep learning (DL)-based predictions under different imbalance mitigation techniques. By meticulously evaluating explainability and imbalance strategies, we aim to produce reliable and robust insights.
Collapse
Affiliation(s)
- Mario A. Gutiérrez-Mondragón
- Computer Science Department, Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain; (M.A.G.-M.); (A.V.)
| | - Alfredo Vellido
- Computer Science Department, Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain; (M.A.G.-M.); (A.V.)
- Centro de Investigacion Biomédica en Red (CIBER), 28029 Madrid, Spain
| | - Caroline König
- Computer Science Department, Intelligent Data Science and Artificial Intelligence (IDEAI-UPC) Research Center, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain; (M.A.G.-M.); (A.V.)
| |
Collapse
|
7
|
Satori NA, Pacini ESA, Godinho RO. Impact of the cAMP efflux and extracellular cAMP-adenosine pathway on airway smooth muscle relaxation induced by formoterol and phosphodiesterase inhibitors. Chem Biol Interact 2023; 382:110630. [PMID: 37442289 DOI: 10.1016/j.cbi.2023.110630] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/15/2023]
Abstract
β2-adrenoceptors agonists and phosphodiesterase (PDE) inhibitors are effective bronchodilators, due to their ability to increase intracellular cyclic AMP (cAMP) levels and induce airway smooth muscle (ASM) relaxation. We have shown that increment of intracellular cAMP induced by β2-adrenoceptors agonist fenoterol is followed by efflux of cAMP, which is converted by ecto-PDE and ecto-5'-nucleotidases (ecto-5'NT) to adenosine, leading to ASM contraction. Here we evaluate whether other classical bronchodilators used to treat asthma and chronic obstructive pulmonary disease (COPD) could induce cAMP efflux and, as consequence, influence the ASM contractility. Our results showed that β2-adrenoceptor agonists formoterol and PDE inhibitors IBMX, aminophylline and roflumilast induced cAMP efflux and a concentration-dependent relaxation of rat trachea precontracted with carbachol. Pretreatment of tracheas with MK-571 (MRP transporter inhibitor), AMP-CP (ecto-5'NT inhibitor) or CGS-15943 (nonselective adenosine receptor antagonist) potentiated the relaxation induced by β2-adrenoceptor agonists but did not change the relaxation induced by PDE inhibitors. These data showed that all bronchodilators tested were able to induce cAMP efflux. However, only β2-adrenoceptor-induced relaxation of tracheal smooth muscle was affected by cAMP efflux and extracellular cAMP-adenosine pathway.
Collapse
Affiliation(s)
- Naiara Ayako Satori
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Enio Setsuo Arakaki Pacini
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil
| | - Rosely Oliveira Godinho
- Division of Cellular Pharmacology, Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Murabito A, Bhatt J, Ghigo A. It Takes Two to Tango! Protein-Protein Interactions behind cAMP-Mediated CFTR Regulation. Int J Mol Sci 2023; 24:10538. [PMID: 37445715 DOI: 10.3390/ijms241310538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Over the last fifteen years, with the approval of the first molecular treatments, a breakthrough era has begun for patients with cystic fibrosis (CF), the rare genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). These molecules, known as CFTR modulators, have led to unprecedented improvements in the lung function and quality of life of most CF patients. However, the efficacy of these drugs is still suboptimal, and the clinical response is highly variable even among individuals bearing the same mutation. Furthermore, not all patients carrying rare CFTR mutations are eligible for CFTR modulator therapies, indicating the need for alternative and/or add-on therapeutic approaches. Because the second messenger 3',5'-cyclic adenosine monophosphate (cAMP) represents the primary trigger for CFTR activation and a major regulator of different steps of the life cycle of the channel, there is growing interest in devising ways to fine-tune the cAMP signaling pathway for therapeutic purposes. This review article summarizes current knowledge regarding the role of cAMP signalosomes, i.e., multiprotein complexes bringing together key enzymes of the cAMP pathway, in the regulation of CFTR function, and discusses how modulating this signaling cascade could be leveraged for therapeutic intervention in CF.
Collapse
Affiliation(s)
- Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
| | - Janki Bhatt
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
- Kither Biotech S.r.l., 10126 Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, 10126 Torino, Italy
- Kither Biotech S.r.l., 10126 Torino, Italy
| |
Collapse
|
9
|
Wang B, Wang A, Xu C, Tong Z, Wang Y, Zhuo X, Fu L, Yao W, Wang J, Wu Y. Molecular, morphological and behavioral alterations of zebrafish (Danio rerio) embryos/larvae after clorprenaline hydrochloride exposure. Food Chem Toxicol 2023; 176:113776. [PMID: 37059383 DOI: 10.1016/j.fct.2023.113776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 04/16/2023]
Abstract
Chlorprenaline hydrochloride (CLOR) is a typical representative of β-adrenergic agonists that may be used illegally as a livestock feed additive and may have adverse impacts on the environment. In the present study, zebrafish embryos were exposed to CLOR to investigate its developmental toxicity and neurotoxicity. The results demonstrated that CLOR exposure led to adverse effects on developing zebrafish, such as morphological changes, a high heart rate, and increased body length, resulting in developmental toxicity. Moreover, the up-regulation of activities of superoxide dismutase (SOD) and catalase (CAT) and the enhancement of malondialdehyde (MDA) content illustrated that CLOR exposure activated oxidative stress in exposed zebrafish embryos. Meanwhile, CLOR exposure also caused alterations in locomotive behavior in zebrafish embryos, including an increase in acetylcholinesterase (AChE) activity. Quantitative polymerase chain reaction (QPCR) results showed that the transcription of genes related to the central nervous system (CNS) development, namely, mbp, syn2a, α1-tubulin, gap43, shha, and elavl3, indicated that CLOR exposure could lead to neurotoxicity in zebrafish embryos. These results showed that CLOR exposure could cause developmental neurotoxicity in the early stages of zebrafish development and that CLOR might induce neurotoxicity by altering the expression of neuro-developmental genes, elevating AChE activity, and activating oxidative stress.
Collapse
Affiliation(s)
- Binjie Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Anli Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Chengrui Xu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Zan Tong
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yijing Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Xiaocong Zhuo
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou, 311200, China
| | - Lixiang Fu
- Office of Criminal Science and Technology, Xiaoshan District Branch of Hangzhou Public Security Bureau, Hangzhou, 311200, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China
| | - Yuanzhao Wu
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, The Department of Criminal Science and Technology, Zhejiang Police College, Hangzhou, 310051, Zhejiang, China.
| |
Collapse
|
10
|
Development and validation of a high performance liquid chromatography tandem mass spectrometry method for determination of clenproperol residue in milk, yogurt, sausage and livestock meat. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
11
|
Abdulkareem NM, Bhat R, Powell RT, Chikermane S, Yande S, Trinh L, Abdelnasser HY, Tabassum M, Ruiz A, Sobieski M, Nguyen ND, Park JH, Johnson CA, Kaipparettu BA, Bond RA, Johnson M, Stephan C, Trivedi MV. Screening of GPCR drugs for repurposing in breast cancer. Front Pharmacol 2022; 13:1049640. [PMID: 36561339 PMCID: PMC9763283 DOI: 10.3389/fphar.2022.1049640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Drug repurposing can overcome both substantial costs and the lengthy process of new drug discovery and development in cancer treatment. Some Food and Drug Administration (FDA)-approved drugs have been found to have the potential to be repurposed as anti-cancer drugs. However, the progress is slow due to only a handful of strategies employed to identify drugs with repurposing potential. In this study, we evaluated GPCR-targeting drugs by high throughput screening (HTS) for their repurposing potential in triple-negative breast cancer (TNBC) and drug-resistant human epidermal growth factor receptor-2-positive (HER2+) breast cancer (BC), due to the dire need to discover novel targets and drugs in these subtypes. We assessed the efficacy and potency of drugs/compounds targeting different GPCRs for the growth rate inhibition in the following models: two TNBC cell lines (MDA-MB-231 and MDA-MB-468) and two HER2+ BC cell lines (BT474 and SKBR3), sensitive or resistant to lapatinib + trastuzumab, an effective combination of HER2-targeting therapies. We identified six drugs/compounds as potential hits, of which 4 were FDA-approved drugs. We focused on β-adrenergic receptor-targeting nebivolol as a candidate, primarily because of the potential role of these receptors in BC and its excellent long-term safety profile. The effects of nebivolol were validated in an independent assay in all the cell line models. The effects of nebivolol were independent of its activation of β3 receptors and nitric oxide production. Nebivolol reduced invasion and migration potentials which also suggests its inhibitory role in metastasis. Analysis of the Surveillance, Epidemiology and End Results (SEER)-Medicare dataset found numerically but not statistically significant reduced risk of all-cause mortality in the nebivolol group. In-depth future analyses, including detailed in vivo studies and real-world data analysis with more patients, are needed to further investigate the potential of nebivolol as a repurposed therapy for BC.
Collapse
Affiliation(s)
- Noor Mazin Abdulkareem
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states
| | - Raksha Bhat
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states
| | - Reid T. Powell
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United states
| | - Soumya Chikermane
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, United states
| | - Soham Yande
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, United states
| | - Lisa Trinh
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states
| | - Hala Y. Abdelnasser
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states
| | - Mantasha Tabassum
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states
| | - Alexis Ruiz
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states
| | - Mary Sobieski
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United states
| | - Nghi D. Nguyen
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United states
| | - Jun Hyoung Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United states
| | - Camille A. Johnson
- Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states
| | - Benny A. Kaipparettu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United states
| | - Richard A. Bond
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states
| | - Michael Johnson
- Department of Pharmaceutical Health Outcomes and Policy, University of Houston, Houston, TX, United states
| | - Clifford Stephan
- Institute of Bioscience and Technology, Texas A&M University, Houston, TX, United states
| | - Meghana V. Trivedi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston College of Pharmacy, Houston, TX, United states,Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, TX, United states,*Correspondence: Meghana V. Trivedi,
| |
Collapse
|
12
|
Arcoraci V, Squadrito F, Rottura M, Barbieri MA, Pallio G, Irrera N, Nobili A, Natoli G, Argano C, Squadrito G, Corrao S. Beta-Blocker Use in Older Hospitalized Patients Affected by Heart Failure and Chronic Obstructive Pulmonary Disease: An Italian Survey From the REPOSI Register. Front Cardiovasc Med 2022; 9:876693. [PMID: 35651906 PMCID: PMC9149000 DOI: 10.3389/fcvm.2022.876693] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
Beta (β)-blockers (BB) are useful in reducing morbidity and mortality in patients with heart failure (HF) and concomitant chronic obstructive pulmonary disease (COPD). Nevertheless, the use of BBs could induce bronchoconstriction due to β2-blockade. For this reason, both the ESC and GOLD guidelines strongly suggest the use of selective β1-BB in patients with HF and COPD. However, low adherence to guidelines was observed in multiple clinical settings. The aim of the study was to investigate the BBs use in older patients affected by HF and COPD, recorded in the REPOSI register. Of 942 patients affected by HF, 47.1% were treated with BBs. The use of BBs was significantly lower in patients with HF and COPD than in patients affected by HF alone, both at admission and at discharge (admission, 36.9% vs. 51.3%; discharge, 38.0% vs. 51.7%). In addition, no further BB users were found at discharge. The probability to being treated with a BB was significantly lower in patients with HF also affected by COPD (adj. OR, 95% CI: 0.50, 0.37-0.67), while the diagnosis of COPD was not associated with the choice of selective β1-BB (adj. OR, 95% CI: 1.33, 0.76-2.34). Despite clear recommendations by clinical guidelines, a significant underuse of BBs was also observed after hospital discharge. In COPD affected patients, physicians unreasonably reject BBs use, rather than choosing a β1-BB. The expected improvement of the BB prescriptions after hospitalization was not observed. A multidisciplinary approach among hospital physicians, general practitioners, and pharmacologists should be carried out for better drug management and adherence to guideline recommendations.
Collapse
Affiliation(s)
- Vincenzo Arcoraci
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Francesco Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
- SunNutraPharma, Academic Spin-Off Company of the University of Messina, Messina, Italy
| | - Michelangelo Rottura
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Giovanni Pallio
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Natasha Irrera
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alessandro Nobili
- Department of Neuroscience, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Giuseppe Natoli
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D'Alessandro”, PROMISE, University of Palermo, Palermo, Italy
| | - Christiano Argano
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D'Alessandro”, PROMISE, University of Palermo, Palermo, Italy
| | - Giovanni Squadrito
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Salvatore Corrao
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D'Alessandro”, PROMISE, University of Palermo, Palermo, Italy
- Department of Internal Medicine, National Relevance and High Specialization Hospital Trust ARNAS Civico, Palermo, Italy
| |
Collapse
|
13
|
Liu R, Tang X, Xiong R, Li L, Du X, He L. Simultaneous determination of fourteen β 2-agonist enantiomers in food animal muscles by liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1193:123169. [PMID: 35180545 DOI: 10.1016/j.jchromb.2022.123169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/21/2022] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
Abstract
Illegal drug residues in animal derived foods are closely related to human's life and health. Studies on illegal drug residues and the metabolism, such as β2-agonists in animals have attracted more and more attention. In most cases, β2-agonists are suppliedand used astheracemate. The metabolic process and distribution of the two enantiomers in animal tissues are different. Therefore, it is very necessary to develop a simple and fast method for chiral resolution of these drugs in animal tissues. In this paper, a reliable resolution and determination method was presented using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for fourteen enantiomers of seven β2-agonist racemates, clenbuterol (CLE), salbutamol (SAL), cimaterol (CIM), terbutaline (TER), clorprenaline (CLO), tulobuterol (TUL), penbuterol (PEN) in pork, beef, and lamb muscle samples. The samples were added the internal standard solution (IS) and extracted in the alkaline medium with acetonitrile. The further sample purification was accomplished through MCX solid phase extraction cartridge. Chromatographic chiral separation was carried out on a VancoShell chiral column (100 mm × 4.6 mm, 2.7 μm) with an isocratic mobile phase consisting of methanol and 10 mmol mL-1 ammonium formate aqueous solution (85:15, v/v). Under the optimized conditions, the resolution (R) of CIM was 2.0, CLE and PEN were 1.5, the others were all greater than 1.0. Enantiomeric determination was performed in the positive electrospray ionization mode using multiple reaction monitoring (MRM). The correlation coefficient (r) in the range of 0.2-25.0 μg L-1 was above 0.993. The average recoveries at the three spiking levels ranged from 95.3% to 117.7% with the relative standard deviation (RSD) lower than 15%. The limit of detection (LOD) and the limit of quantification (LOQ) of β2-agonist enantiomers was 0.2 μg kg-1 and 0.5 μg kg-1 respectively. The method was successfully applied in the analysis and evaluation of β2-agonist enantiomers in positive food animal muscle samples, CLE, SAL, TEB and CIM enantiomers were detected. The concentrations of the corresponding enantiomers were in the range of 1.06-17.3 μg kg-1, the lowest enantiomer fraction (EF) value was 0.42, and the highest value was 0.69. The work is expected to provide a method for chiral separation and enantiomeric determination of the further study of pharmacology, toxicity and residue elimination of β2-agonist enantiomers.
Collapse
Affiliation(s)
- Rong Liu
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Xiaoling Tang
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Renping Xiong
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Lu Li
- National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxi Du
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China
| | - Limin He
- Quality Supervision, Inspection and Testing Center for Domestic Animal Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou 510642, China; National Reference Laboratory of Veterinary Drug Residues (SCAU), College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Rodrigues SDO, da Cunha CMC, Soares GMV, Silva PL, Silva AR, Gonçalves-de-Albuquerque CF. Mechanisms, Pathophysiology and Currently Proposed Treatments of Chronic Obstructive Pulmonary Disease. Pharmaceuticals (Basel) 2021; 14:979. [PMID: 34681202 PMCID: PMC8539950 DOI: 10.3390/ph14100979] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/13/2021] [Accepted: 08/28/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is one of the leading global causes of morbidity and mortality. A hallmark of COPD is progressive airflow obstruction primarily caused by cigarette smoke (CS). CS exposure causes an imbalance favoring pro- over antioxidants (oxidative stress), leading to transcription factor activation and increased expression of inflammatory mediators and proteases. Different cell types, including macrophages, epithelial cells, neutrophils, and T lymphocytes, contribute to COPD pathophysiology. Alteration in cell functions results in the generation of an oxidative and inflammatory microenvironment, which contributes to disease progression. Current treatments include inhaled corticosteroids and bronchodilator therapy. However, these therapies do not effectively halt disease progression. Due to the complexity of its pathophysiology, and the risk of exacerbating symptoms with existing therapies, other specific and effective treatment options are required. Therapies directly or indirectly targeting the oxidative imbalance may be promising alternatives. This review briefly discusses COPD pathophysiology, and provides an update on the development and clinical testing of novel COPD treatments.
Collapse
Affiliation(s)
- Sarah de Oliveira Rodrigues
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
| | - Carolina Medina Coeli da Cunha
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Giovanna Martins Valladão Soares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
| | - Pedro Leme Silva
- Laboratório de Investigação Pulmonar, Carlos Chagas Filho, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Instituto Biomédico, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20211-010, Brazil; (C.M.C.d.C.); (G.M.V.S.)
- Programa de Pós-Graduação em Ciências e Biotecnologia, Universidade Federal Fluminense, Rio de Janeiro 24020-140, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro 20210-010, Brazil
| |
Collapse
|