1
|
Qiu Z, Huang A, Li Z, Qin S, Chen J, Li B, Liu B, He L. Hydrogen-rich water ameliorates imiquimod-induced psoriasis-like skin lesions and regulates macrophage polarization in dyslipidemic ApoE-deficient mice. Eur J Pharmacol 2025; 992:177363. [PMID: 39923825 DOI: 10.1016/j.ejphar.2025.177363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Psoriasis is a complex immune-mediated disease that has been closely associated with obesity and lipid metabolism disorders. This study investigated the effects of hydrogen-rich water (HRW) on imiquimod-induced psoriasis-like skin inflammation in ApoE-deficient mice. Psoriasis severity as well as the lipid levels and inflammatory markers were evaluated. The results revealed that HRW significantly reduced plasma triglyceride and total cholesterol levels, increased high-density lipoprotein cholesterol levels, and alleviated skin lesions in mice. Transcriptomic data of the skin tissues indicated significant changes in the inflammatory and lipid metabolism pathways after HRW treatment and quantitative PCR validated the regulation of inflammatory cytokine expression. In addition, HRW promoted M2 macrophage polarization and reduced M1 macrophage polarization in the skin. These results suggest that the consumption of HRW may be a potential therapeutic strategy for psoriasis accompanied by abnormal lipid metabolism.
Collapse
Affiliation(s)
- Zhihui Qiu
- Department of Dermatology and Venereology, The Affiliated Hospital of Chengde Medical University, Hebei Key Laboratory of Panvascular Disease, Chengde, China; Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Ailing Huang
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Zhuohui Li
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Shucun Qin
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Jun Chen
- Department of Dermatology and Venereology, The Affiliated Hospital of Chengde Medical University, Hebei Key Laboratory of Panvascular Disease, Chengde, China
| | - Baoqiang Li
- Department of Dermatology and Venereology, The Affiliated Hospital of Chengde Medical University, Hebei Key Laboratory of Panvascular Disease, Chengde, China
| | - Boyan Liu
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.
| | - Lei He
- Department of Dermatology and Venereology, The Affiliated Hospital of Chengde Medical University, Hebei Key Laboratory of Panvascular Disease, Chengde, China.
| |
Collapse
|
2
|
Wu F, Ma J, Xue J, Jiang X, Liu J, Zhang J, Xue Y, Liu B, Qin S. Effects of hydrogen-rich water on blood uric acid in patients with hyperuricemia: A randomized placebo-controlled trial. Heliyon 2024; 10:e36401. [PMID: 39258191 PMCID: PMC11385766 DOI: 10.1016/j.heliyon.2024.e36401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024] Open
Abstract
Background Consumption of hydrogen-rich water (HRW) has been shown to have anti-inflammatory and metabolic-modulatory benefits. Objective A randomized, placebo-controlled trial was conducted to assess the potential blood uric acid-lowering effects of HRW consumption with different doses (low and high doses) and duration (4 and 8 weeks) in patients with hyperuricemia. Methods The Placebo group consumed three bottles of ordinary drinking water (330 mL per bottle), the Low-HRW group consumed two bottles of HRW (330 mL per bottle, H2 ≥ 4.66 mg/L) and a bottle of ordinary water, and the High-HRW group consumed three bottles of HRW daily for 8 weeks. The primary outcome was the blood uric acid levels following different time points (4 and 8 weeks) compared to baseline. Results A total of 100 participants completed the entire trial (32 in Placebo, 35 in Low-HRW, and 33 in High-HRW groups). The high-dose of HRW was more effective than low-dose HRW in controlling blood uric acid. Following an 8-week period, the High-HRW group exhibited a significant reduction in blood uric acid levels compared to the baseline (488.2 ± 54.1 μmol/L to 446.8 ± 57.1 μmol/L, P < 0.05). Conclusion As a rather safe agent, the prolonged consumption of HRW may be feasible in the management of hyperuricemia. Clinical trial registration chictr.org.cn, identifier ChiCTR2200066369.
Collapse
Affiliation(s)
- Fenglin Wu
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
- College of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Jun Ma
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Junli Xue
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Xue Jiang
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Jinyu Liu
- College of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Jiashuo Zhang
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
- Taishan Vocational College of Nursing, Tai'an, China
| | - Yazhuo Xue
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
- College of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Boyan Liu
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| | - Shucun Qin
- Shandong Provincial Key Medical and Health Laboratory of Hydrogen Biomedical Research & Key Laboratory of Major Diseases and Hydrogen Medical Translational Applications in Universities of Shandong Province, Taishan Institute for Hydrogen Biomedical Research, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, China
| |
Collapse
|
3
|
Jamialahmadi H, Khalili-Tanha G, Rezaei-Tavirani M, Nazari E. The Effects of Hydrogen-Rich Water on Blood Lipid Profiles in Metabolic Disorders Clinical Trials: A Systematic Review and Meta-analysis. Int J Endocrinol Metab 2024; 22:e148600. [PMID: 39839806 PMCID: PMC11742746 DOI: 10.5812/ijem-148600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/17/2024] [Accepted: 08/26/2024] [Indexed: 01/23/2025] Open
Abstract
Context Metabolic disorders are a growing global concern, especially in developed countries, due to their increasing prevalence. Serum lipid profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL), are commonly used clinical biomarkers for monitoring the progression of these metabolic abnormalities. In recent decades, hydrogen-rich water (HRW) has gained attention as a safe and effective treatment, with regulatory effects on lipid peroxidation and inflammatory responses in clinical trials. Objectives This systematic review and meta-analysis aim to evaluate the effectiveness of HRW therapy on blood lipid profiles in randomized controlled trials (RCTs) for metabolic disorders. Methods Following the PRISMA guidelines, a search for RCT studies was conducted in the PubMed, Web of Science, Embase, and Google Scholar databases up to January 2024. Eight studies that met all eligibility criteria, including RCTs involving metabolic dysfunctions and evaluations of lipid profiles, were included for further analysis. Data extraction was followed by quality evaluation using the Jadad scoring system. Meta-analysis was conducted using STATA software. Results The eight selected RCTs included a total of 357 patients with various metabolic disorders. All studies showed either no or low risk of bias. The overall levels of TG [95% CI: -0.27 (-0.47, -0.07)], TC [95% CI: -0.07 (-0.32, -0.18)], and LDL [95% CI: -0.06 (-0.28, 0.15)] demonstrated slight decreases across the studies. However, there was some heterogeneity in HDL levels [95% CI: -0.11 (-0.37, 0.14)] among the studies (I² = 37.32%). Meta-regression analysis further indicated a positive association between the outcomes and the duration of the intervention as a moderating factor. Conclusions Hydrogen-rich water demonstrated modest lipid-lowering effects in patients with metabolic disorders. However, due to the observed heterogeneity in HDL variations, further long-term trials involving larger populations are needed to clarify these inconsistencies.
Collapse
Affiliation(s)
- Hamid Jamialahmadi
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Nazari
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Chen Y, Wei Y, Tang W. The role of hydrogen in the prevention and treatment of coronary atherosclerotic heart disease. Eur J Pharmacol 2024; 972:176586. [PMID: 38615891 DOI: 10.1016/j.ejphar.2024.176586] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Coronary atherosclerotic heart disease (CHD) is a primary cardiovascular disease caused by atherosclerosis (AS), which is characterized by chronic inflammation and lipid oxidative deposition. Molecular hydrogen (H2) is an effective anti-inflammatory agent and has potential to ameliorate glycolipid metabolism disorders, which is believed to exert beneficial effects on the prevention and treatment of CHD. It is suggested that H2 reduces inflammation in CHD by regulating multiple pathways, including NF-κB inflammatory pathway, pyroptosis, mitophagy, endoplasmic reticulum (ER) stress, and Nrf2 antioxidant pathway. Additionally, H2 may improve glycolipid metabolism by mediation of PI3K and AMPK signalling pathways, contributing to inhibition of the occurrence and development of CHD. This review elaborates pathogenesis of CHD and evaluates the role of H2 in CHD. Moreover, possible molecular mechanisms have been discussed and speculated, aiming to provide more strategies and directions for subsequent studies of H2 in CHD.
Collapse
Affiliation(s)
- Yunxi Chen
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, PR China
| | - Youzhen Wei
- Hydrogen Medicine Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, Shandong, 271000, PR China; Research Center for Translational Medicine, Jinan People's Hospital, Shandong First Medical University, Jinan, Shandong, 271100, PR China.
| | - Wenjie Tang
- Research Institute of Heart Failure, Research Center for Translational Medicine & Key Laboratory of Arrhythmias of the Ministry of Education of China, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, PR China; Research Institute of Regenerative Medicine, East Hospital, Tongji University, 1800 Yuntai Road, Shanghai, 200123, PR China.
| |
Collapse
|
5
|
Huang C, Zhang J, Huang J, Li H, Wen K, Bao J, Wu X, Sun R, Abudukeremu A, Wang Y, He Z, Chen Q, Huang X, Wang H, Zhang Y. Proteomic and functional analysis of HDL subclasses in humans and rats: a proof-of-concept study. Lipids Health Dis 2023; 22:86. [PMID: 37386457 DOI: 10.1186/s12944-023-01829-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/07/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND The previous study investigated whether the functions of small, medium, and large high density lipoprotein (S/M/L-HDL) are correlated with protein changes in mice. Herein, the proteomic and functional analyses of high density lipoprotein (HDL) subclasses were performed in humans and rats. METHODS After purifying S/M/L-HDL subclasses from healthy humans (n = 6) and rats (n = 3) using fast protein liquid chromatography (FPLC) with calcium silica hydrate (CSH) resin, the proteomic analysis by mass spectrometry was conducted, as well as the capacities of cholesterol efflux and antioxidation was measured. RESULTS Of the 120 and 106 HDL proteins identified, 85 and 68 proteins were significantly changed in concentration among the S/M/L-HDL subclasses in humans and rats, respectively. Interestingly, it was found that the relatively abundant proteins in the small HDL (S-HDL) and large HDL (L-HDL) subclasses did not overlap, both in humans and in rats. Next, by searching for the biological functions of the relatively abundant proteins in the HDL subclasses via Gene Ontology, it was displayed that the relatively abundant proteins involved in lipid metabolism and antioxidation were enriched more in the medium HDL (M-HDL) subclass than in the S/L-HDL subclasses in humans, whereas in rats, the relatively abundant proteins associated with lipid metabolism and anti-oxidation were enriched in M/L-HDL and S/M-HDL, respectively. Finally, it was confirmed that M-HDL and L-HDL had the highest cholesterol efflux capacity among the three HDL subclasses in humans and rats, respectively; moreover, M-HDL exhibited higher antioxidative capacity than S-HDL in both humans and rats. CONCLUSIONS The S-HDL and L-HDL subclasses are likely to have different proteomic components during HDL maturation, and results from the proteomics-based comparison of the HDL subclasses may explain the associated differences in function.
Collapse
Affiliation(s)
- Canxia Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Critical Care Medicine Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jie Zhang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jingjing Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hongwei Li
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Kexin Wen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jinlan Bao
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Comprehensive Department, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaoying Wu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Runlu Sun
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ayiguli Abudukeremu
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Yue Wang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zhijian He
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qiaofei Chen
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xinyi Huang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Hong Wang
- Centers for Metabolic & Cardiovascular Research, Department of Pharmacology, Temple University School of Medicine, Philadelphia, PA, 19140, USA.
| | - Yuling Zhang
- Guangdong Province Key Laboratory of Arrhythmia and Electrophysiology, Guangzhou, 510120, China.
- Department of Cardiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
6
|
Xie F, Song Y, Yi Y, Jiang X, Ma S, Ma C, Li J, Zhanghuang Z, Liu M, Zhao P, Ma X. Therapeutic Potential of Molecular Hydrogen in Metabolic Diseases from Bench to Bedside. Pharmaceuticals (Basel) 2023; 16:ph16040541. [PMID: 37111299 PMCID: PMC10141176 DOI: 10.3390/ph16040541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/29/2023] Open
Abstract
Oxidative stress and chronic inflammation have been implicated in the pathophysiology of metabolic diseases, including diabetes mellitus (DM), metabolic syndrome (MS), fatty liver (FL), atherosclerosis (AS), and obesity. Molecular hydrogen (H2) has long been considered a physiologically inert gas. In the last two decades, accumulating evidence from pre-clinical and clinical studies has indicated that H2 may act as an antioxidant to exert therapeutic and preventive effects on various disorders, including metabolic diseases. However, the mechanisms underlying the action of H2 remain unclear. The purpose of this review was to (1) provide an overview of the current research on the potential effects of H2 on metabolic diseases; (2) discuss the possible mechanisms underlying these effects, including the canonical anti-oxidative, anti-inflammatory, and anti-apoptotic effects, as well as suppression of ER stress, activation of autophagy, improvement of mitochondrial function, regulation of gut microbiota, and other possible mechanisms. The potential target molecules of H2 will also be discussed. With more high-quality clinical trials and in-depth mechanism research, it is believed that H2 will eventually be applied to clinical practice in the future, to benefit more patients with metabolic disease.
Collapse
Affiliation(s)
- Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Yifei Song
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Yang Yi
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Xue Jiang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Shiwen Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Chen Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Junyu Li
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Ziyi Zhanghuang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
| |
Collapse
|
7
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
8
|
Liu B, Jiang X, Xie Y, Jia X, Zhang J, Xue Y, Qin S. The effect of a low dose hydrogen-oxygen mixture inhalation in midlife/older adults with hypertension: A randomized, placebo-controlled trial. Front Pharmacol 2022; 13:1025487. [PMID: 36278221 PMCID: PMC9585236 DOI: 10.3389/fphar.2022.1025487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/21/2022] [Indexed: 04/04/2024] Open
Abstract
Objective: To explore the effect of a low-dose hydrogen-oxygen (H2-O2) mixture inhalation in midlife/older adults with hypertension. Methods: This randomized, placebo-controlled trial included 60 participants with hypertension aged 50-70 years who were randomly divided into Air group (inhaled placebo air) or H2-O2 group [inhaled H2-O2 mixture (66% H2/33% O2)]. Participants in both groups were treated 4 h per day for 2 weeks. Four-limb blood pressure and 24-h ambulatory blood pressure were monitored before and after the intervention, and levels of plasma hormones related to hypertension were determined. Results: A total of 56 patients completed the study (27 in the Air group and 29 in the H2-O2 group). The right and left arm systolic blood pressure (SBP) were significantly decreased in H2-O2 group compared with the baseline levels (151.9 ± 12.7 mmHg to 147.1 ± 12.0 mmHg, and 150.7 ± 13.3 mmHg to 145.7 ± 13.0 mmHg, respectively; all p < 0.05). Meanwhile, the H2-O2 intervention significantly decreased diastolic nighttime ambulatory blood pressure by 2.7 ± 6.5 mmHg (p < 0.05). All blood pressures were unaffected in placebo group (all p > 0.05). When stratified by age (aged 50-59 years versus aged 60-70 years), participants in the older H2-O2 group showed a larger reduction in right arm SBP compared with that in the younger group (p < 0.05). In addition, the angiotensin II, aldosterone, and cortisol levels as well as the aldosterone-to-renin ratio in plasma were significantly lower in H2-O2 group compared with baseline (p < 0.05). No significant differences were observed in the Air group before and after the intervention. Conclusion: Inhalation of a low-dose H2-O2 mixture exerts a favorable effect on blood pressure, and reduces the plasma levels of hormones associated with hypertension on renin-angiotensin-aldosterone system and stress in midlife/older adults with hypertension.
Collapse
Affiliation(s)
- Boyan Liu
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Xue Jiang
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
- College of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Yunbo Xie
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Xiubin Jia
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Jiashuo Zhang
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Yazhuo Xue
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
- College of Nursing, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| | - Shucun Qin
- Taishan Institute for Hydrogen Biomedicine, the Second Affiliated Hospital of Shandong First Medical University and Shandong Academy of Medical Sciences, Tai’an, Shandong, China
| |
Collapse
|
9
|
Liang X, Luo X, Lin H, Han F, Qin JG, Chen L, Xu C, Li E. Growth, Health, and Gut Microbiota of Female Pacific White Shrimp, Litopenaeus vannamei Broodstock Fed Different Phospholipid Sources. Antioxidants (Basel) 2022; 11:antiox11061143. [PMID: 35740040 PMCID: PMC9219652 DOI: 10.3390/antiox11061143] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/04/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Phospholipids have an important antioxidant effect on animals. The effects of different dietary phospholipid sources on the growth, antioxidant activity, immunity, and gut microbiota of female broodstock of Pacific white shrimp Litopenaeus vannamei were investigated. Four isoproteic and isolipid semi-purified diets containing 4% soybean lecithin (SL), egg yolk lecithin (EL), or krill oil (KO) and a control diet without phospholipid supplementation were fed to female broodstock of L. vannamei (34.7 ± 4.2 g) for 28 days. The growth performance, antioxidative capacity, and innate immunity of the female broodstock fed phospholipid supplemented diets were improved regardless of sources compared with the control shrimp. The effects on growth and antioxidant capacity in female shrimp fed the KO diet were highest. The innate immunity of female shrimp fed the EL and KO diets were significantly higher than shrimp fed the SL diet. Dietary phospholipid supplementation increased gut microbiota diversity and richness, and the Chao1 and ACE values in the KO group were significantly higher than in the control group. The richness of Proteobacteria, Photobacterium, and Vibrio decreased, whereas the richness of Firmicutes and Bacteroidetes increased in the shrimp fed the KO diet compared with the shrimp fed the SL and EL diets. The interactions of gut microbiota in shrimp fed the KO diet were the most complex, and the positive interaction was the largest among all the treatments. The functional genes of gut microbiota in shrimp fed the KO diet were significantly enriched in lipid metabolism and terpenoid/polyketide metabolism pathways. Spearman correlation analysis showed that Fusibacter had significantly positive correlations with antioxidant activity (total antioxidant capacity, superoxide dismutase, glutathione peroxidase), immune enzyme activity (phenoloxidase and lysozyme), and immune gene expression (C-type lectin 3, Caspase-1). All findings suggest that dietary phospholipids supplementation can improve the growth and health status of female L. vananmei broodstock. Krill oil is more beneficial in improving the antioxidant capacity and innate immunity than other dietary phospholipid sources. Furthermore, krill oil can help establish the intestinal immune barrier by increasing the richness of Fusibacter and promote the growth of female shrimp. Fusibacter may be involved in iron metabolism to improve the antioxidant capacity of female shrimp.
Collapse
Affiliation(s)
- Xiaolong Liang
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
| | - Xiaolong Luo
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
| | - Hongxing Lin
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
| | - Fenglu Han
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
| | - Jian G. Qin
- School of Biological Sciences, Flinders University, Adelaide, SA 5001, Australia;
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai 200241, China;
| | - Chang Xu
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
- Correspondence: (C.X.); (E.L.)
| | - Erchao Li
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Hainan Aquaculture Breeding Engineering Research Center, College of Marine Sciences, Hainan University, Haikou 570228, China; (X.L.); (X.L.); (H.L.); (F.H.)
- Correspondence: (C.X.); (E.L.)
| |
Collapse
|
10
|
Liu B, Xie Y, Chen J, Xue J, Zhang X, Zhao M, Jia X, Wang Y, Qin S. Protective Effect of Molecular Hydrogen Following Different Routes of Administration on D-Galactose-Induced Aging Mice. J Inflamm Res 2021; 14:5541-5550. [PMID: 34737603 PMCID: PMC8558637 DOI: 10.2147/jir.s332286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/14/2021] [Indexed: 12/30/2022] Open
Abstract
Background Molecular hydrogen (H2) has been recognized as an effective antioxidant with no or little side effects. While it is known that oxidative stress is closely associated with aging, the beneficial effect of H2 on oxidative stress-related aging is still unclear. In this study, a mouse model of D-galactose-induced aging was employed to investigate the protective effects of H2. Methods The mice were administrated of H2 via different routes (4% H2 inhalation, H2-rich water drinking, and H2-rich saline injection), the aging-related biomarkers in plasma and the oxidative stress in different tissues were measured. Results The results showed that H2 improved aging-related biomarkers, ie, total antioxidant capacity, advanced glycation end products, tumor necrosis factor-α, free fatty acids, and alanine aminotransferase in plasma. Furthermore, H2 alleviated oxidative stress in the liver, brain, and heart by reducing the levels of lipid peroxidation and malondialdehyde and increasing the activity of superoxide dismutase. In addition, it seems that 4% H2 inhalation was the most effective regarding the amount of H2 taken up and in reducing the markers of oxidative stress in some of the tissues; however, the other routes of administration resulted in the same efficacy in most indicators. Conclusion H2 can prevent oxidative stress in D-galactose-induced aging mice when administered by different routes.
Collapse
Affiliation(s)
- Boyan Liu
- The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, People's Republic of China.,Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, People's Republic of China.,College of Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People's Republic of China
| | - Yunbo Xie
- Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, People's Republic of China.,Department of General Practice, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, People's Republic of China
| | - Jun Chen
- Department of General Practice, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, People's Republic of China
| | - Junli Xue
- The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, People's Republic of China.,Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, People's Republic of China.,College of Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, People's Republic of China
| | - Xiaoyi Zhang
- Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, People's Republic of China
| | - Min Zhao
- Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, People's Republic of China
| | - Xiubin Jia
- Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, People's Republic of China
| | - Yiwei Wang
- Department of General Practice, The Affiliated Hospital of Chengde Medical University, Chengde, 067000, People's Republic of China
| | - Shucun Qin
- The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, People's Republic of China.,Taishan Institute for Hydrogen Biomedicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, 271000, People's Republic of China
| |
Collapse
|
11
|
Liu L, Yang C, Qiu T, Shen X, Liu B, Qi X, Song G. Hydrogen alleviates acute lung injury induced by limb ischaemia/reperfusion in mice. Life Sci 2021; 279:119659. [PMID: 34052293 DOI: 10.1016/j.lfs.2021.119659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 01/18/2023]
Abstract
AIMS Limb ischaemia/reperfusion (LIR) occurs in various clinical conditions including critical limb ischaemia, abdominal aortic aneurysm, and traumatic arterial injury. Reperfusion of the acutely ischemic limb can lead to a systemic inflammation response and multiple organ dysfunction syndrome, further resulting in significant morbidity and mortality. Molecular hydrogen exhibits therapeutic activity for the treatment and prevention of many diseases. Our study investigated the possible therapeutic effects of hydrogen and its mechanism of action in a LIR-induced acute lung injury (ALI) model. MATERIALS AND METHODS Limb ischaemia/-reperfusion model was established in mice. The hydrogen-saturated saline was administered by intraperitoneal injection. Protein level of nuclear factor erythroid 2-related factor 2 (Nrf2), haem oxygenase-1 (HO1) and nicotinamide adenine dinucleotide phosphate quinone oxidoreductase 1 (NQO1) was evaluated by immunohistochemistry staining and western blotting. Autophagy-related molecules were evaluated by western blotting. Malondialdehyde (MDA) and superoxide dismutase (SOD) were determined by assay kits. Quantification of ceramides in lung was performed by high-performance liquid chromatography-tandem mass spectrometry. KEY FINDINGS Molecular hydrogen exhibited a protective effect on the LIR-induced ALI model. Hydrogen decreased malondialdehyde and increased superoxide dismutase activity in lung tissues. Additionally, hydrogen activated Nrf2 signalling in lung tissues. Hydrogen could inhibit the upregulation of autophagy in the present rodent model. Furthermore, ceramide was accumulated in lung tissues because of LIR; however, hydrogen altered the accumulation status. SIGNIFICANCE Molecular hydrogen was found to be therapeutically effective in the LIR-induced ALI model; the mechanisms of action included modulation of antioxidation and autophagy.
Collapse
Affiliation(s)
- Ling Liu
- Taian City central Hospital of Shandong Province, Taian 271000, China
| | - Chao Yang
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China
| | - Tingting Qiu
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China
| | - Xin Shen
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China
| | - Boyan Liu
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China
| | - Xufeng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China.
| | - Guohua Song
- College of Basic Medical Sciences and Institute of Atherosclerosis, Shandong First Medical University & Shandong Academy of Medical Science, Taian 271000, China.
| |
Collapse
|