1
|
Huang J, Wang B, Wu Q, Wang L, Guan C. LncRNA EGFR‑AS1 promotes lung cancer cell proliferation, invasion and metastasis via regulation of miR‑449a/HDAC1. Exp Ther Med 2025; 29:27. [PMID: 39720671 PMCID: PMC11667440 DOI: 10.3892/etm.2024.12777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/10/2024] [Indexed: 12/26/2024] Open
Abstract
There is increasing evidence that long non-coding (lnc)RNA EGFR-AS1 is involved in the development of numerous types of cancer, including non-small-cell lung cancer (NSCLC). The Cancer Genome Atlas (TCGA) demonstrates that EGFR-AS1 is highly expressed in NSCLC. Downregulation of EGFR-AS1 in A549 and PC9 NSCLC cells demonstrates inhibition of NSCLC proliferation, invasion and metastasis. The present study demonstrated that lncRNA EGFR-AS1 was essential for the development of NSCLC through its function as a competitive endogenous RNA binding to miR-449a and upregulating histone deacetylase 1. In brief, it identified a novel signaling pathway that mediated the invasion and metastasis of NSCLC and may therefore provide a new treatment target for NSCLC.
Collapse
Affiliation(s)
- Jie Huang
- Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Xuhui, Shanghai 200031, P.R. China
| | - Baoqing Wang
- Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Xuhui, Shanghai 200031, P.R. China
- Department of Respiratory Medicine, Zhongshan Hospital, Fudan University, Xuhui, Shanghai 200031, P.R. China
| | - Qin Wu
- Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Xuhui, Shanghai 200031, P.R. China
| | - Liming Wang
- Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Xuhui, Shanghai 200031, P.R. China
| | - Chao Guan
- Department of Respiratory Medicine, Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Fudan University, Xuhui, Shanghai 200031, P.R. China
| |
Collapse
|
2
|
Hashemi Sheikhshabani S, Ghafouri-Fard S, Amini-Farsani Z, Modarres P, Khazaei Feyzabad S, Amini-Farsani Z, Shaygan N, Omrani MD. In Silico Prediction of Functional SNPs Interrupting Antioxidant Defense Genes in Relation to COVID-19 Progression. Biochem Genet 2025; 63:499-525. [PMID: 38460087 DOI: 10.1007/s10528-024-10705-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/16/2024] [Indexed: 03/11/2024]
Abstract
The excessive production of reactive oxygen species and weakening of antioxidant defense system play a pivotal role in the pathogenesis of different diseases. Extensive differences observed among individuals in terms of affliction with cancer, cardiovascular disorders, diabetes, bacterial, and viral infections, as well as response to treatments can be partly due to their genomic variations. In this work, we attempted to predict the effect of SNPs of the key genes of antioxidant defense system on their structure, function, and expression in relation to COVID-19 pathogenesis using in silico tools. In addition, the effect of SNPs on the target site binding efficiency of SNPs was investigated as a factor with potential to change drug response or susceptibility to COVID-19. According to the predicted results, only six missense SNPs with minor allele frequency (MAF) ≥ 0.1 in the coding region of genes GPX7, GPX8, TXNRD2, GLRX5, and GLRX were able to strongly affect their structure and function. Our results predicted that 39 SNPs with MAF ≥ 0.1 led to the generation or destruction of miRNA-binding sites on target antioxidant genes from GPX, PRDX, GLRX, TXN, and SOD families. The results obtained from comparing the expression profiles of mild vs. severe COVID-19 patients using GEO2R demonstrated a significant change in the expression of approximately 250 miRNAs. The binding efficiency of 21 of these miRNAs was changed due to the elimination or generation of target sites in these genes. Altogether, this study reveals the fundamental role of the SNPs of antioxidant defense genes in COVID-19 progression and susceptibility of individuals to this virus. In addition, different responses of COVID-19 patients to antioxidant defense system enhancement drugs may be due to presence of these SNPs in different individuals.
Collapse
Affiliation(s)
- Somayeh Hashemi Sheikhshabani
- Student Research Committee, Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Student Research Committee, Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Amini-Farsani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parastoo Modarres
- Department of Cell and Molecular Biology and Microbiology, University of Isfahan, Isfahan, Iran
| | - Sharareh Khazaei Feyzabad
- Department of Laboratory Sciences, School of Paramedical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Amini-Farsani
- Bayesian Imaging and Spatial Statistics Group, Institute of Statistics, Ludwig-Maximilian-Universität München, Ludwigstraße 33, 80539, Munich, Germany
| | - Nasibeh Shaygan
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Duan X, Xing Z, Qiao L, Qin S, Zhao X, Gong Y, Li X. The role of histone post-translational modifications in cancer and cancer immunity: functions, mechanisms and therapeutic implications. Front Immunol 2024; 15:1495221. [PMID: 39620228 PMCID: PMC11604627 DOI: 10.3389/fimmu.2024.1495221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/18/2024] [Indexed: 12/11/2024] Open
Abstract
Histones play crucial roles in both promoting and repressing gene expression, primarily regulated through post-translational modifications (PTMs) at specific amino acid residues. Histone PTMs, including methylation, acetylation, ubiquitination, phosphorylation, lactylation, butyrylation, and propionylation, act as important epigenetic markers. These modifications influence not only chromatin compaction but also gene expression. Their importance extends to the treatment and prevention of various human diseases, particularly cancer, due to their involvement in key cellular processes. Abnormal histone modifications and the enzymes responsible for these alterations often serve as critical drivers in tumor cell proliferation, invasion, apoptosis, and stemness. This review introduces key histone PTMs and the enzymes responsible for these modifications, examining their impact on tumorigenesis and cancer progression. Furthermore, it explores therapeutic strategies targeting histone PTMs and offers recommendations for identifying new potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaohong Duan
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Zhiyao Xing
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| | - Lu Qiao
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shan Qin
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xuejing Zhao
- Tianjin University and Health-Biotech United Group Joint Laboratory of Innovative Drug Development and Translational Medicine, School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Yanhua Gong
- School of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Institute of Disaster and Emergency Medicine, Faculty of Medicine, Tianjin University, Tianjin, China
- Medical School, Faculty of Medicine, Tianjin University, Tianjin, China
| | - Xueren Li
- Department of Respiratory Medicine, Jinnan Hospital, Tianjin University, Tianjin, China
- Department of Respiratory Medicine, Tianjin Jinnan Hospital, Tianjin, China
| |
Collapse
|
4
|
Debbarma M, Sarkar K, Sil SK. Dissecting the epigenetic orchestra of HDAC isoforms in breast cancer development: a review. Med Oncol 2024; 42:1. [PMID: 39532757 DOI: 10.1007/s12032-024-02553-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Epigenetic modulators have recently emerged as potential targets in cancer therapy. Breast cancer, the second leading cause of cancer-related deaths among women globally and the most common cancer in India, continues to have a low survival rate despite available treatments. This underscores the urgent need for more effective therapeutic strategies. Histone deacetylases (HDACs), a prominent class of epigenetic modulators, are frequently overexpressed in various cancers, including breast cancer, making them and their downstream pathways, a focus of current research, aiming to develop more effective and less invasive treatments that could help overcome chemoresistance and enhance patient outcomes. Despite the growing body of evidences, a comprehensive and consolidated review on molecular intricacy behind the HDAC-mediated epigenetic regulation of breast cancer is conspicuously absent. Therefore, this review aims to open doors for future research by exploring the evolving role of HDACs, their molecular mechanisms, and their potential as therapeutic targets in breast cancer treatment.
Collapse
Affiliation(s)
- Maria Debbarma
- Molecular Genetics & Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Kakali Sarkar
- Molecular Genetics & Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Samir Kumar Sil
- Molecular Genetics & Cancer Biology Laboratory, Department of Human Physiology, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
5
|
Chuang YT, Yen CY, Tang JY, Wu KC, Chang FR, Tsai YH, Chien TM, Chang HW. Marine anticancer drugs in modulating miRNAs and antioxidant signaling. Chem Biol Interact 2024; 399:111142. [PMID: 39019423 DOI: 10.1016/j.cbi.2024.111142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Several marine drugs exert anticancer effects by inducing oxidative stress, which becomes overloaded and kills cancer cells when redox homeostasis is imbalanced. The downregulation of antioxidant signaling induces oxidative stress, while its upregulation attenuates oxidative stress. Marine drugs have miRNA-modulating effects against cancer cells. However, the potential antioxidant targets of such drugs have been rarely explored. This review aims to categorize the marine-drug-modulated miRNAs that downregulate their antioxidant targets, causing oxidative stress in anticancer treatments. We also categorize the downregulation of oxidative-stress-inducing miRNAs in antioxidant protection among non-cancer cells. We summarize the putative antioxidant targets of miRNA-modulating marine drugs by introducing a bioinformatics tool (miRDB). Finally, the marine drugs affecting antioxidant targets are surveyed. In this way, the connections between marine drugs and their modulating miRNA and antioxidant targets are innovatively categorized to provide a precise network for exploring their potential anticancer functions and protective effects on non-cancer cells.
Collapse
Affiliation(s)
- Ya-Ting Chuang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Ching-Yu Yen
- School of Dentistry, Taipei Medical University, Taipei, 11031, Taiwan; Department of Oral and Maxillofacial Surgery, Chi-Mei Medical Center, Tainan, 71004, Taiwan.
| | - Jen-Yang Tang
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Kuo-Chuan Wu
- Department of Computer Science and Information Engineering, National Pingtung University, Pingtung, 900392, Taiwan.
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
| | - Yi-Hong Tsai
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung, 907101, Taiwan.
| | - Tsu-Ming Chien
- School of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan; Department of Urology, Kaohsiung Gangshan Hospital, Kaohsiung Medical University, Kaohsiung 820111, Taiwan.
| | - Hsueh-Wei Chang
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Sciences, College of Life Science, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
6
|
Saranya KR, Vimina ER, Pinto FR. TransNeT-CGP: A cluster-based comorbid gene prioritization by integrating transcriptomics and network-topological features. Comput Biol Chem 2024; 110:108038. [PMID: 38461796 DOI: 10.1016/j.compbiolchem.2024.108038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/11/2024] [Accepted: 02/25/2024] [Indexed: 03/12/2024]
Abstract
The local disruptions caused by the genes of one disease can influence the pathways associated with the other diseases resulting in comorbidity. For gene therapies, it is necessary to prioritize the key genes that regulate common biological mechanisms to tackle the issues caused by overlapping diseases. This work proposes a clustering-based computational approach for prioritising the comorbid genes within the overlapping disease modules by analyzing Protein-Protein Interaction networks. For this, a sub-network with gene interactions of the disease pair was extracted from the interactome. The edge weights are assigned by combining the pairwise gene expression correlation and betweenness centrality scores. Further, a weighted graph clustering algorithm is applied and dominant nodes of high-density clusters are ranked based on clustering coefficients and neighborhood connectivity. Case studies based on neurodegenerative diseases such as Amyotrophic Lateral Sclerosis- Spinal Muscular Atrophy (ALS-SMA) pair and cancers such as Ovarian Carcinoma-Invasive Ductal Breast Carcinoma (OC-IDBC) pair were conducted to examine the efficacy of the proposed method. To identify the mechanistic role of top-ranked genes, we used Functional and Pathway enrichment analysis, connectivity analysis with leave-one-out (LOO) method, analysis of associated disease-related protein complexes, and prioritization tools such as TOPPGENE and Heml2.0. From pathway analysis, it was observed that the top 10 genes obtained using the proposed method were associated with 10 pathways in ALS-SMA comorbidity and 15 in the case of OC-IDBC, while that in similar methods like SAPDSB and S2B were 4, 6 respectively for ALS-SMA and 9, 10 respectively for OC-IDBC. In both case studies, 70 % of the disease-specific benchmark protein complexes were linked to top-ranked genes of the proposed method while that of SAPDSB and S2B were 55 % and 60 % respectively. Additionally, it was found that the removal of the top 10 genes disconnect the network into 14 distinct components in the case of ALS-SMA and 9 in the case of OC-IDBC. The experimental results shows that the proposed method can be effectively used for identifying key genes in comorbidity and can offer insights about the intricate molecular relationship driving comorbid diseases.
Collapse
Affiliation(s)
- K R Saranya
- Department of Computer Science & IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| | - E R Vimina
- Department of Computer Science & IT, School of Computing, Amrita Vishwa Vidyapeetham, Kochi Campus, India.
| | - F R Pinto
- Chemistry and Biochemistry Department, Faculty of Sciences, University of Lisbon, Portugal.
| |
Collapse
|
7
|
Malla R, Viswanathan S, Makena S, Kapoor S, Verma D, Raju AA, Dunna M, Muniraj N. Revitalizing Cancer Treatment: Exploring the Role of Drug Repurposing. Cancers (Basel) 2024; 16:1463. [PMID: 38672545 PMCID: PMC11048531 DOI: 10.3390/cancers16081463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Cancer persists as a global challenge necessitating continual innovation in treatment strategies. Despite significant advancements in comprehending the disease, cancer remains a leading cause of mortality worldwide, exerting substantial economic burdens on healthcare systems and societies. The emergence of drug resistance further complicates therapeutic efficacy, underscoring the urgent need for alternative approaches. Drug repurposing, characterized by the utilization of existing drugs for novel clinical applications, emerges as a promising avenue for addressing these challenges. Repurposed drugs, comprising FDA-approved (in other disease indications), generic, off-patent, and failed medications, offer distinct advantages including established safety profiles, cost-effectiveness, and expedited development timelines compared to novel drug discovery processes. Various methodologies, such as knowledge-based analyses, drug-centric strategies, and computational approaches, play pivotal roles in identifying potential candidates for repurposing. However, despite the promise of repurposed drugs, drug repositioning confronts formidable obstacles. Patenting issues, financial constraints associated with conducting extensive clinical trials, and the necessity for combination therapies to overcome the limitations of monotherapy pose significant challenges. This review provides an in-depth exploration of drug repurposing, covering a diverse array of approaches including experimental, re-engineering protein, nanotechnology, and computational methods. Each of these avenues presents distinct opportunities and obstacles in the pursuit of identifying novel clinical uses for established drugs. By examining the multifaceted landscape of drug repurposing, this review aims to offer comprehensive insights into its potential to transform cancer therapeutics.
Collapse
Affiliation(s)
- RamaRao Malla
- Cancer Biology Laboratory, Department of Biochemistry and Bioinformatics, GITAM School of Science, GITAM (Deemed to be University), Visakhapatnam 530045, Andhra Pradesh, India
| | - Sathiyapriya Viswanathan
- Department of Biochemistry, ACS Medical College and Hospital, Chennai 600007, Tamil Nadu, India;
| | - Sree Makena
- Maharajah’s Institute of Medical Sciences and Hospital, Vizianagaram 535217, Andhra Pradesh, India
| | - Shruti Kapoor
- Department of Genetics, University of Alabama, Birmingham, AL 35233, USA
| | - Deepak Verma
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Manikantha Dunna
- Center for Biotechnology, Jawaharlal Nehru Technological University, Hyderabad 500085, Telangana, India
| | - Nethaji Muniraj
- Center for Cancer and Immunology Research, Children’s National Hospital, 111, Michigan Ave NW, Washington, DC 20010, USA
| |
Collapse
|
8
|
Yadollahi Farsani M, Amini Farsani Z, Teimuri S, Kolahdouzan M, Eshraghi Samani R, Teimori H. Deregulation of miR-1245b-5p and miR-92a-3p and their potential target gene, GATA3, in epithelial-mesenchymal transition pathway in breast cancer. Cancer Rep (Hoboken) 2024; 7:e1955. [PMID: 38173189 PMCID: PMC10849934 DOI: 10.1002/cnr2.1955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small molecules that have prominent roles in tumor development and metastasis and can be used for diagnostic and therapeutic purposes. This study evaluated the expression of miR-92a-3p and miR-1245b-5p and their potential target gene, GATA3 in patients with breast cancer (BC). MATERIALS AND METHODS In the search for BC-related microRNAs, miR-124b-5p and miR-92a-3p were selected using Medline through PubMed, miR2disease, miRcancer and miRTarBase. Moreover, target gene GATA3 and their possible interaction in the regulating epithelial-mesenchymal transition (EMT) and invasion was evaluated using in silico tools including miRTarBase, TargetScan, STRING-db, and Cytoscape. The expression level of miR-92a-3p, miR1245b-5p, and GATA3 were assessed on extracted RNAs of tumor and nontumor tissues from 36 patients with BC using qPCR. Additionally, clinical-pathologic characteristics, such as tumor grade, tumor stage, lymph node were taken into consideration and the diagnostic power of these miRNAs and GATA3 was evaluated using the ROC curve analysis. RESULTS In silico evaluation of miR-92a-3p and miR-1245b-5p supports their potential association with EMT and invasion signaling pathways in BC pathogenesis. Comparing tumor tissues to nontumor tissues, we found a significant downregulation of miR-1245b-5p and miR-92a-3p and upregulation of GATA3. Patients with BC who had decreased miR-92a-3p expression also had higher rates of advanced stage/grade and ER expression, whereas decreased miR-1245b-5p expression was only linked to ER expression and was not associated with lymph node metastasis. The AUC of miR-1245b-5p, miR-92a-3p, and GATA3 using ROC curve was determined 0.6449 (p = .0239), 0.5980 (p = .1526), and 0.7415 (p < .0001), respectively, which showed a significant diagnostic accuracy of miR-1245b-5p and GATA3 between the BC patients and healthy individuals. CONCLUSION MiR-1245b-5p, miR-92a-3p, and GATA3 gene contribute to BC pathogenesis and they may be having potential regulatory roles in signaling pathways involved in invasion and EMT pathways in BC pathogenesis, as a result of these findings. More research is needed to determine the regulatory mechanisms that they control.
Collapse
Affiliation(s)
- Mahtab Yadollahi Farsani
- Department of Medical Biotechnology, School of Advanced TechnologiesShahrekord University of Medical SciencesShahrekordIran
| | - Zeinab Amini Farsani
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| | | | - Mohsen Kolahdouzan
- Department of Surgery, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Reza Eshraghi Samani
- Department of Surgery, School of MedicineIsfahan University of Medical SciencesIsfahanIran
| | - Hossein Teimori
- Cellular and Molecular Research Center, Basic Health Sciences InstituteShahrekord University of Medical SciencesShahrekordIran
| |
Collapse
|
9
|
Amini-Farsani Z, Hashemi Sheikhshabani S, Shaygan N, Asgharzade S. The impact of oleuropein on miRNAs regulating cell death signaling pathway in human cervical cancer cells. Biotechnol Appl Biochem 2024; 71:61-71. [PMID: 37849224 DOI: 10.1002/bab.2521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/01/2023] [Indexed: 10/19/2023]
Abstract
Cervical cancer is known as the second most pervasive malignancy in women across the globe. The role played by microRNAs (miRNAs) in the initiation, progression, and metastasis of this cancer has received specific attention. The use of natural compounds leading cancer cells toward apoptosis is a feasible strategy for cancer therapy. Oleuropein, an olive-extracted phenolic substance, displays anticancer properties. Here, it was attempted to assess the role played by oleuropein in cell viability in cervical cancer and changes in the expression of some miRNAs associated with cervical cancer as well as some of their possible target genes selected using bioinformatics analysis. For this purpose, HeLa cell line was exposed to several oleuropein concentrations for 48 and 72 h. After that, 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and flow cytometry were employed to assess cell viability and apoptosis, respectively. In addition, to conduct bioinformatics analysis, Cytoscape computer program was used based on STRING database. Furthermore, to examine the role played by oleuropein in the expression of miRNAs of interest as well as their potential target genes, real-time PCR was employed. The findings indicated that oleuropein reduced cell viability through inducing apoptosis. As a result of treatment with oleuropein, miR-34a, miR-125b, and miR-29a showed increased expression levels, whereas miR-181b, miR-221, and miR-16 showed decreased expression levels. Furthermore, oleuropein reduced the expression of the anti-apoptotic genes Bcl-2 and Mcl1, whereas it elevated the expression of the pro-apoptotic Bid, Fas, and TNFRSF10B genes and the p53 tumor suppressor. Our results indicate that the apoptosis induction is a mechanism of action of oleuropein in HeLa cells. Because of its effect on the reflation of the expression of genes and miRNAs effective in the pathogenesis of cervical cancer, oleuropein shows potential as an effective research tool for developing new natural drugs for treating cervical cancer.
Collapse
Affiliation(s)
- Zeinab Amini-Farsani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Nasibeh Shaygan
- Department of Plant Breeding and Biotechnology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular, Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
10
|
Jiao CN, Zhou F, Liu BM, Zheng CH, Liu JX, Gao YL. Multi-Kernel Graph Attention Deep Autoencoder for MiRNA-Disease Association Prediction. IEEE J Biomed Health Inform 2024; 28:1110-1121. [PMID: 38055359 DOI: 10.1109/jbhi.2023.3336247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Accumulating evidence indicates that microRNAs (miRNAs) can control and coordinate various biological processes. Consequently, abnormal expressions of miRNAs have been linked to various complex diseases. Recognizable proof of miRNA-disease associations (MDAs) will contribute to the diagnosis and treatment of human diseases. Nevertheless, traditional experimental verification of MDAs is laborious and limited to small-scale. Therefore, it is necessary to develop reliable and effective computational methods to predict novel MDAs. In this work, a multi-kernel graph attention deep autoencoder (MGADAE) method is proposed to predict potential MDAs. In detail, MGADAE first employs the multiple kernel learning (MKL) algorithm to construct an integrated miRNA similarity and disease similarity, providing more biological information for further feature learning. Second, MGADAE combines the known MDAs, disease similarity, and miRNA similarity into a heterogeneous network, then learns the representations of miRNAs and diseases through graph convolution operation. After that, an attention mechanism is introduced into MGADAE to integrate the representations from multiple graph convolutional network (GCN) layers. Lastly, the integrated representations of miRNAs and diseases are input into the bilinear decoder to obtain the final predicted association scores. Corresponding experiments prove that the proposed method outperforms existing advanced approaches in MDA prediction. Furthermore, case studies related to two human cancers provide further confirmation of the reliability of MGADAE in practice.
Collapse
|
11
|
Yadollahi-Farsani M, Amini-Farsani Z, Moayedi F, Khazaei N, Yaghoobi H. MiR-548k suppresses apoptosis in breast cancer cells by affecting PTEN/PI3K/AKT signaling pathway. IUBMB Life 2023; 75:97-116. [PMID: 36309967 DOI: 10.1002/iub.2688] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/26/2022] [Indexed: 02/02/2023]
Abstract
Breast cancer is the most aggressive and fatal form of cancer among women globally. Although the role of some miRNAs that are often dysregulated in breast cancer has been deciphered, the regulatory function of others still remains unknown. The current study was aimed at determining the biological role and underlying mechanism of miR-548k in breast cancer. In this study, the significant overexpression of miR-548k in breast cancer tissues compared to adjacent normal tissues was confirmed. Also, bioinformatics analysis indicated that PTEN, as a negative regulator of PI3K/AKT signaling pathway, was a potential target of miR-548k, and its expression was downregulated in breast cancer tissues rather than normal tissues. Furthermore, the ectopic increase of miR-548k decreased the expression of PTEN in breast cancer, suggesting that PTEN is one of the potential downstream targets of miR-548k. Besides, functional analysis was conducted to assess the capability of miR-548k to alter apoptosis along with the changed expression levels of miR-548k in breast cancer cells. Based on this investigation, forced increase of miR-548k disrupted programmed cell death in MCF-7 cells. Apart from this, in silico study of miR-548 family supported its association with the main components of PI3K/Akt signaling pathway, opening a prospective research area in cancer therapy. In brief, suppression of PTEN partly mediated by miR-548k diminished apoptosis and promoted cell proliferation through PI3K/Akt pathway in breast cancer, suggesting a novel therapeutic axis, miR-548k/PTEN/ PI3K/Akt, for treatment of breast cancer in the future.
Collapse
Affiliation(s)
- Mahtab Yadollahi-Farsani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zeinab Amini-Farsani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Moayedi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Niusha Khazaei
- Department of human genetics, McGill University, Montreal, Quebec, Canada.,Research Institute of the McGill University Health Center, Quebec, Montreal, Canada
| | - Hajar Yaghoobi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
12
|
The role and application of transcriptional repressors in cancer treatment. Arch Pharm Res 2023; 46:1-17. [PMID: 36645575 DOI: 10.1007/s12272-023-01427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/03/2023] [Indexed: 01/17/2023]
Abstract
Gene expression is modulated through the integration of many regulatory elements and their associated transcription factors (TFs). TFs bind to specific DNA sequences and either activate or repress transcriptional activity. Through decades of research, it has been established that aberrant expression or functional abnormalities of TFs can lead to uncontrolled cell division and the development of cancer. Initial studies on transcriptional regulation in cancer have focused on TFs as transcriptional activators. However, recent studies have demonstrated several different mechanisms of transcriptional repression in cancer, which could be potential therapeutic targets for the development of specific anti-cancer agents. In the first section of this review, "Emerging roles of transcriptional repressors in cancer development," we summarize the current understanding of transcriptional repressors and their involvement in the molecular processes of cancer progression. In the subsequent section, "Therapeutic applications," we provide an updated overview of the available therapeutic targets for drug discovery and discuss the new frontier of such applications.
Collapse
|
13
|
Kundu R, Banerjee S, Baidya SK, Adhikari N, Jha T. A quantitative structural analysis of AR-42 derivatives as HDAC1 inhibitors for the identification of promising structural contributors. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:861-883. [PMID: 36412121 DOI: 10.1080/1062936x.2022.2145353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Alteration and abnormal epigenetic mechanisms can lead to the aberration of normal biological functions and the occurrence of several diseases. The histone deacetylase (HDAC) family of enzymes is one of the prime regulators of epigenetic functions modifying the histone proteins, and thus, regulating epigenetics directly. HDAC1 is one of those HDACs which have important contributions to cellular epigenetics. The abnormality of HDAC is correlated to the occurrence, progression, and poor prognosis in several disease conditions namely neurodegenerative disorders, cancer cell proliferation, metastasis, chemotherapy resistance, and survival in various cancers. Therefore, the progress of potent and effective HDAC1 inhibitors is one of the prime approaches to combat such diseases. In this study, both regression and classification-based molecular modelling studies were conducted on some AR-42 derivatives as HDAC1 inhibitors to elucidate the crucial structural aspects that are responsible for regulating their biological responses. This study revealed that the molecular polarizability, van der Waals volume, the presence of aromatic rings as well as the higher number of hydrogen bond acceptors might affect prominently their inhibitory activity and might be responsible for proper fitting and interactions at the HDAC1 active site to pertain effective inhibition.
Collapse
Affiliation(s)
- R Kundu
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
14
|
Shen L, Li Y, Li N, Shen L, Li Z. Comprehensive analyses reveal the role of histone deacetylase genes in prognosis and immune response in low-grade glioma. PLoS One 2022; 17:e0276120. [PMID: 36227941 PMCID: PMC9560174 DOI: 10.1371/journal.pone.0276120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 09/28/2022] [Indexed: 11/19/2022] Open
Abstract
Many studies have shown that Histone deacetylases (HDAC) is involved in the occurrence of malignant tumors and regulates the occurrence, proliferation, invasion, and migration of malignant tumors through a variety of signaling pathways. In the present, we explored the role of Histone deacetylases genes in prognosis and immune response in low-grade glioma. Using consensus clustering, we built the new molecular clusters. Using HDAC genes, we constructed and validated the prognostic model in two independent cohort datasets. Patients were divided into high-risk and low-risk groups. Then, we explored the molecular characteristics, clinical characteristics, tumor microenvironment and immune infiltration levels of two clusters and risk groups. Receiver operating characteristic analyses were built for model assessment. We finally detected the expression levels of signature genes between tumor and normal tissues. Low-grade can be separated into two molecular clusters using 11 HDACs genes. Two clusters had different clinical characteristics and prognosis. Nex, we constructed a prognosis model using six HDAC genes (HDAC1, HDAC4, HDAC5, HDAC7, HDAC9, and HDAC10), which was also validated in an independent cohort dataset. Furthermore, multivariate cox regression indicated that the calculated risk score was independently associated with prognosis in low-grade glioma, and risk score can predict the five-year survival probability of low-grade glioma well. High-risk patients can be attributed to multiple complex function and molecular signaling pathways, and the genes alterations of high- and low-risk patients were significantly different. We also found that different survival outcomes of high- and low- risk patients could be involved in the differences of immune filtration level and tumor microenvironment. Subsequently, using signature genes, we identified several small molecular compounds that could be useful for low-grade glioma patients' treatment. Finally, we detected the expression levels of signature genes in tumor tissues. our study uncovers the biology function role of HDAC genes in low-grade glioma. We identified new molecular subtypes and established a prognostic model based on six HDAC genes, which was well applied in two independent cohort data. The regulation of HDAC genes in low-grade glioma involved in multiple molecular function and signaling pathways and immune infiltration levels. Further experiments in vivo and vitro were required to confirm the present findings.
Collapse
Affiliation(s)
- Lin Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Yanyan Li
- Department of Nursing, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Na Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Liangfang Shen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| | - Zhanzhan Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan Province, P.R. China
| |
Collapse
|
15
|
Amini-Farsani Z, Yadollahi-Farsani M, Arab S, Forouzanfar F, Yadollahi M, Asgharzade S. Prediction and analysis of microRNAs involved in COVID-19 inflammatory processes associated with the NF-kB and JAK/STAT signaling pathways. Int Immunopharmacol 2021; 100:108071. [PMID: 34482267 PMCID: PMC8378592 DOI: 10.1016/j.intimp.2021.108071] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 is the cause of a pandemic associated with substantial morbidity and mortality. As yet, there is no available approved drug to eradicate the virus. In this review article, we present an alternative study area that may contribute to the development of therapeutic targets for COVID-19. Growing evidence is revealing further pathophysiological mechanisms of COVID-19 related to the disregulation of inflammation pathways that seem to play a critical role toward COVID-19 complications. The NF-kB and JAK/STAT signaling pathways are highly activated in acute inflammation, and the excessive activity of these pathways in COVID-19 patients likely exacerbates the inflammatory responses of the host. A group of non-coding RNAs (miRNAs) manage certain features of the inflammatory process. In this study, we discuss recent advances in our understanding of miRNAs and their connection to inflammatory responses. Additionally, we consider the link between perturbations in miRNA levels and the onset of COVID-19 disease. Furthermore, previous studies published in the online databases, namely web of science, MEDLINE (PubMed), and Scopus, were reviewed for the potential role of miRNAs in the inflammatory manifestations of COVID-19. Moreover, we disclosed the interactions of inflammatory genes using STRING DB and designed interactions between miRNAs and target genes using Cityscape software. Several miRNAs, particularly miR-9, miR-98, miR-223, and miR-214, play crucial roles in the regulation of NF-kB and JAK-STAT signaling pathways as inflammatory regulators. Therefore, this group of miRNAs that mitigate inflammatory pathways can be further regarded as potential targets for far-reaching-therapeutic strategies in COVID-19 diseases.
Collapse
Affiliation(s)
- Zeinab Amini-Farsani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Biology, University of Sistan and Baluchestan, Zahedan, Iran
| | - Mahtab Yadollahi-Farsani
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samaneh Arab
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mitra Yadollahi
- Department of Operative Dentistry, School of Dentistry, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Samira Asgharzade
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
16
|
Wawruszak A, Halasa M, Okon E, Kukula-Koch W, Stepulak A. Valproic Acid and Breast Cancer: State of the Art in 2021. Cancers (Basel) 2021; 13:3409. [PMID: 34298623 PMCID: PMC8306563 DOI: 10.3390/cancers13143409] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Valproic acid (2-propylpentanoic acid, VPA) is a short-chain fatty acid, a member of the group of histone deacetylase inhibitors (HDIs). VPA has been successfully used in the treatment of epilepsy, bipolar disorders, and schizophrenia for over 50 years. Numerous in vitro and in vivo pre-clinical studies suggest that this well-known anticonvulsant drug significantly inhibits cancer cell proliferation by modulating multiple signaling pathways. Breast cancer (BC) is the most common malignancy affecting women worldwide. Despite significant progress in the treatment of BC, serious adverse effects, high toxicity to normal cells, and the occurrence of multi-drug resistance (MDR) still limit the effective therapy of BC patients. Thus, new agents which improve the effectiveness of currently used methods, decrease the emergence of MDR, and increase disease-free survival are highly needed. This review focuses on in vitro and in vivo experimental data on VPA, applied individually or in combination with other anti-cancer agents, in the treatment of different histological subtypes of BC.
Collapse
Affiliation(s)
- Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Marta Halasa
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Estera Okon
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (M.H.); (E.O.); (A.S.)
| |
Collapse
|
17
|
Oleuropein reduces cisplatin resistance in ovarian cancer by targeting apoptotic pathway regulators. Life Sci 2021; 278:119525. [PMID: 33894272 DOI: 10.1016/j.lfs.2021.119525] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
AIMS Despite many attempts to treat ovarian cancer, 13,940 individuals perish annually due to this disease worldwide. Chemotherapy is the main approach to ovarian cancer treatment, but the development of drug resistance is a major obstacle to the successful treatment. Oleuropein is a phenolic ingredient with anticancer characteristics. This study was aimed at investigating the effect of oleuropein on cell viability, cisplatin resistance, and apoptosis, as well as the expression levels of miR-34a, miR-125b, miR16, miR-21, and some of their potential target genes in ovarian cancer cells. MAIN METHODS A2780S and A2780/CP cell lines were exposed to different concentrations of oleuropein alone or in combination with cisplatin for 48 h and 72 h. After that, the cell viability and apoptosis were evaluated using MTT assay and flow cytometry, respectively. Bioinformatics analyses were conducted using STRING database and Cytoscape software. The effect of oleuropein and/or cisplatin on the expression of miRNAs and target genes was assessed via Real-time PCR. KEY FINDINGS Upon treatment with oleuropein, the expression of P21, P53, and TNFRSF10B increased while that of Bcl-2 and Mcl1 decreased. Moreover, this is the 1st report of a significant decrease in the expression of miR-21 and increase in the expression of miR-34a, miR-125b, and miR16 by oleuropein and/or cisplatin in ovarian cancer cells. SIGNIFICANCE Altogether, these data revealed that oleuropein regulated the expression of the above-mentioned miRNAs in ovarian cancer cells, which potentially resulted in apoptosis induction, cell proliferation inhibition, and cisplatin resistance decline in ovarian cancer cells. To confirm the results of this study, it is suggested that similar experiments be performed in animal models of ovarian cancer.
Collapse
|