1
|
Zhu Y, Cao S. Unraveling the Complexities of Myeloid-Derived Suppressor Cells in Inflammatory Bowel Disease. Int J Mol Sci 2025; 26:3291. [PMID: 40244120 PMCID: PMC11989781 DOI: 10.3390/ijms26073291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) regulate immune responses in many pathological conditions, one of which is inflammatory bowel disease (IBD), an incurable chronic disorder of the digestive tract and beyond. The pathophysiology of IBD remains unclear, likely involving aberrant innate and adaptive immunity. Studies have reported altered population of MDSCs in patients with IBD. However, their distribution varies among patients and different preclinical models of IBD. The expansion and activation of MDSCs are likely driven by various stimuli during intestinal inflammation, but the in-depth mechanisms remain poorly understood. The role of MDSCs in the pathogenesis of IBD appears to be paradoxical. In addition to intestinal inflammation, suppressive MDSCs may promote colitis-to-colon cancer transition. In this Review, we summarize recent progresses on the features, activation, and roles of MDSCs in the development of IBD and IBD-associated colon cancer.
Collapse
Affiliation(s)
| | - Siyan Cao
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA;
| |
Collapse
|
2
|
Zeng L, Wang Y, Huang Y, Yang W, Zhou P, Wan Y, Tao K, Li R. IRG1/itaconate enhances efferocytosis by activating Nrf2-TIM4 signaling pathway to alleviate con A induced autoimmune liver injury. Cell Commun Signal 2025; 23:63. [PMID: 39910615 PMCID: PMC11796036 DOI: 10.1186/s12964-025-02075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Immune response gene 1 (IRG1) is highly expressed in mitochondria of macrophages in a pro-inflammatory state. IRG1 and its metabolites play important roles in infection, immune-related diseases and tumor progression by exerting resistance of pathogens, attenuating inflammation and producing antioxidant substances through various pathways and mechanisms. IRG1 deficiency aggravates liver injury. Efferocytosis is a vital mechanism for preventing the progression of inflammatory tissue damage. However, the mechanism by how IRG1/itaconate regulates efferocytosis in autoimmune hepatitis has yet to be fully understood. Therefore, we explored the influence of IRG1-/- on efferocytosis and its effects on regulating the nuclear factor erythroid 2-associated factor 2 (Nrf2)-T-cell immunoglobulin domain and mucin domain 4 (TIM4) pathway and autoimmune liver injury. An autoimmune hepatitis model was established by injecting Con A into wild-type and IRG1-/- mice via the tail vein. Liver injury and inflammatory response were assessed. The efferocytosis role of IRG1-/- macrophages and its potential regulatory mechanisms were also analysed. Exogenous 4-octyl itaconate (OI) supplementation promoted the expression of Nrf2 and TIM4 and restored IRG1-/- bone marrow-derived macrophage (BMDM) efferocytosis, whereas inhibition of Nrf2 mediated by ML385 led to impaired efferocytosis of BMDMs, decreased expression of TIM4, and aggravated liver inflammation injury. Additionally, after supplementing Nrf2-/- BMDMs with exogenous OI, we evaluated the changes in its efferocytosis effect, efferocytosis did not change, and the protective effect of OI disappeared. However, when TIM4 was blocked, the efferocytotic effect of BMDMs was attenuated, inflammatory liver injury and oxidative stress were aggravated. OI promoted the transformation of macrophages into M2 macrophages, and this was inhibited when TIM4 was blocked. To our best understanding, this is the initial exploration to show that TIM4, a downstream molecule of the IRG1/itaconate-Nrf2 pathway, regulates macrophage efferocytosis. These findings suggest a new mechanism and potential treatment for promoting the resolution of inflammation and efferocytosis in autoimmune hepatitis.
Collapse
Affiliation(s)
- Liwu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yongzhou Huang
- Department of General Surgery, First Affiliated Hospital of Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Wenchang Yang
- Department of Gastroenterology Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Yaqi Wan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
3
|
He Z, Zhou Q, Du J, Huang Y, Wu B, Xu Z, Wang C, Cheng X. Integrated single-cell and bulk RNA sequencing reveals CREM is involved in the pathogenesis of ulcerative colitis. Heliyon 2024; 10:e27805. [PMID: 38496850 PMCID: PMC10944264 DOI: 10.1016/j.heliyon.2024.e27805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
Background Ulcerative colitis (UC) is an inflammatory bowel disease characterized by persistent colonic inflammation. Here, we performed a systematic analysis to gain better insights into UC pathogenesis. Methods We analyzed two UC-related datasets extracted from the gene expression omnibus database using several bioinformatics tools. The primary cell types and key subgroups of primary cells associated with UC and differentially expressed genes (DEGs) between UC and control samples were identified. The molecular regulation of the key genes was also predicted. The gene ontology and Kyoto encyclopedia of genes and genomes enrichment analyses of marker genes of key cell subgroups and model genes were performed. The expression of key enriched genes was validated in 10 clinical samples using real-time quantitative polymerase chain reaction (RT-qPCR). Results Monocytes were identified as the major cell type. Ten differentially expressed marker genes were obtained by intersecting the 3121 DEGs, 38 marker genes in major cell types, and 104 marker genes in key cell subgroups. Four essential genes, associated with immune response, were obtained using support vector machine recursive feature elimination and least absolute shrinkage and selection operator analyses. The four essential genes were highly expressed in Cluster 0 during differentiation. Validation of the four key genes in colonic mucosal biopsy specimens from 10 normal and 10 UC patients revealed that CREM was highly expressed in both the lesion-free sites and lesion sites colonic mucosa of UC patients compared with normal adults. Conclusions We identified CREM involved in UC pathogenesis, which is expected to provide a new therapeutic target for UC.
Collapse
Affiliation(s)
- Zongqi He
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Qing Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, PR China
| | - Jun Du
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Yuyu Huang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Bensheng Wu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Zhizhong Xu
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Chao Wang
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| | - Xudong Cheng
- Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, 215009, PR China
| |
Collapse
|
4
|
Bekić M, Tomić S. Myeloid-derived suppressor cells in the therapy of autoimmune diseases. Eur J Immunol 2023; 53:e2250345. [PMID: 37748117 DOI: 10.1002/eji.202250345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are well recognized as critical factors in the pathology of tumors. However, their roles in autoimmune diseases are still unclear, which hampers the development of efficient immunotherapies. The role of different MDSCs subsets in multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and systemic lupus erythematosus displayed different mechanisms of immune suppression, and several studies pointed to MDSCs' capacity to induce T-helper (Th)17 cells and tissue damage. These results also suggested that MDSCs could be present in different functional states and utilize different mechanisms for controlling the activity of T and B cells. Therefore, various therapeutic strategies should be employed to restore homeostasis in autoimmune diseases. The therapies harnessing MDSCs could be designed either as cell therapy or rely on the expansion and activation of MDSCs in vivo, or their depletion. Cumulatively, MDSCs are inevitable players in autoimmunity, and rational approaches in developing therapies are required to avoid the adverse effects of MDSCs and harness their suppressive mechanisms to improve the overall efficacy of autoimmunity therapy.
Collapse
Affiliation(s)
- Marina Bekić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| | - Sergej Tomić
- Institute for the Application of Nuclear Energy, University in Belgrade, Beograd, Serbia
| |
Collapse
|
5
|
Wang Z, Chen C, Su Y, Ke N. Function and characteristics of TIM‑4 in immune regulation and disease (Review). Int J Mol Med 2022; 51:10. [PMID: 36524355 PMCID: PMC9848438 DOI: 10.3892/ijmm.2022.5213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
T‑cell/transmembrane immunoglobulin and mucin domain containing 4 (TIM‑4) is a phosphatidylserine receptor that is mainly expressed on antigen‑presenting cells and is involved in the recognition and efferocytosis of apoptotic cells. TIM‑4 has been found to be expressed in immune cells such as natural killer T, B and mast cells and to participate in multiple aspects of immune regulation, suggesting that TIM‑4 may be involved in a variety of immune‑related diseases. Recent studies have confirmed that TIM‑4 is also abnormally expressed in a variety of malignant tumor cells and is closely associated with the occurrence and development of tumors and the tumor immune microenvironment. The present study aimed to describe the expression and functional characteristics of TIM‑4 in detail and to comprehensively discuss its role in pathophysiological processes such as infection, allergy, metabolism, autoimmunity and tumor immunity. The current review provided a comprehensive understanding of the functions and characteristics of TIM‑4, as well as novel ideas for the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Ziyao Wang
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chen Chen
- Department of Radiology, The First People's Hospital of Chengdu, Chengdu, Sichuan 610095, P.R. China
| | - Yingzhen Su
- Kunming University School of Medicine, Kunming University School, Kunming, Yunnan 650124, P.R. China
| | - Nengwen Ke
- Department of Pancreatic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China,Correspondence to: Professor Nengwen Ke, Department of Pancreatic Surgery, West China Hospital, Sichuan University, 37 Guoxue Lane, Chengdu, Sichuan 610041, P.R. China, E-mail:
| |
Collapse
|
6
|
Zhao F, Gong W, Song J, Shen Z, Cui D. The paradoxical role of MDSCs in inflammatory bowel diseases: From bench to bedside. Front Immunol 2022; 13:1021634. [PMID: 36189262 PMCID: PMC9520533 DOI: 10.3389/fimmu.2022.1021634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of bone marrow derived heterogeneous cells, which is known for their immunosuppressive functions especially in tumors. Recently, MDSCs have receiving increasing attention in pathological conditions like infection, inflammation and autoimmune diseases. Inflammatory bowel diseases (IBD) are a series of immune-dysfunctional autoimmune diseases characterized by relapsing intestinal inflammation. The role of MDSCs in IBD remains controversial. Although most studies in vitro demonstrated its anti-inflammatory effects by inhibiting the proliferation and function of T cells, it was reported that MDSCs failed to relieve inflammation but even promoted inflammatory responses in experimental IBD. Here we summarize recent insights into the role of MDSCs in the development of IBD and the potential of MDSCs-targeted therapy.
Collapse
Affiliation(s)
- Fan Zhao
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jiaojiao Song
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhe Shen, ; Dawei Cui,
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Zhe Shen, ; Dawei Cui,
| |
Collapse
|