1
|
Yu Z, Zhang F, Hao Z, Liu J, Guo H, Li X, Zhang R, Zhang L. Precision reactive species scavenging enabled by engineered manganese-doped bimetallic MOF for tailored stem cell fate regulation. NANOSCALE 2025; 17:11634-11645. [PMID: 40259797 DOI: 10.1039/d5nr00890e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The development of highly efficient antioxidant nanomaterials is crucial for protecting stem cells from oxidative stress, a major challenge in advancing stem cell therapy and tissue regeneration. While most existing materials focus on scavenging reactive oxygen species (ROS), the often-overlooked contribution of reactive nitrogen species (RNS) further amplifies oxidative damage, limiting therapeutic efficacy. Here, we report a manganese-doped bimetallic metal-organic framework (MOF), Dex@(Mn, Zn)EZIF-8, with a hollow architecture designed for precise ROS/RNS scavenging and osteogenic regulation. This MOF is synthesized via a one-pot method, followed by tannic acid-assisted etching and Dex loading. The incorporation of Mn, a transition metal with tunable valence states, significantly enhances catalase-like activity for ROS degradation, while tannic acid etching introduces additional sites for RNS neutralization. By mitigating oxidative stress, Dex@(Mn, Zn)EZIF-8 preserves the viability and essential functions of bone mesenchymal stem cells, including adhesion, proliferation, and migration, while also promoting osteogenic differentiation. Furthermore, the sustained release of Dex amplifies osteogenesis, as evidenced by the upregulated expression of key markers such as alkaline phosphatase, osteopontin, and osteocalcin. This multifunctional biocatalyst effectively integrates precision oxidative stress regulation with osteogenic promotion, offering a powerful strategy for stem cell protection and regenerative medicine, particularly in oxidative microenvironments.
Collapse
Affiliation(s)
- Ziyan Yu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.
| | - Fanghua Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.
| | - Zhe Hao
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.
| | - Jinzheng Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.
| | - Huan Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.
| | - Xiyan Li
- Institute of Photoelectronic Thin Film Devices and Technology, Solar Energy Conversion Center, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, Nankai University, Tianjin 300350, P. R. China
| | - Ruizhong Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.
| | - Libing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.
| |
Collapse
|
2
|
Peng E, Zeng Y, He D, Tan X, Xu D, Zhao X. Intrauterine infusion of autologous endometrial stem cells for the treatment of moderate and severe intrauterine adhesions: a before-and-after study. Stem Cell Res Ther 2025; 16:219. [PMID: 40312421 PMCID: PMC12044799 DOI: 10.1186/s13287-025-04359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/23/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Intrauterine adhesions (IUAs) can easily cause female infertility or recurrent abortion, but there is still no effective treatment to improve the pregnancy and live birth rates in patients with IUAs. In recent years, great advances have been made in stem cell therapy; however, additional clarity is needed on the clinical efficacy of endometrial stem cells in the treatment of IUAs. MATERIALS AND METHODS Fifteen patients with moderate-to-severe IUAs were included in the study at Xiangtan Central Hospital from 2018 to 2020. Patients were treated with endometrial stem cells and sodium hyaluronate gel by intrauterine perfusion in combination with estrogen and acetylsalicylic acid support therapy. Then, data on the pregnancy and live birth status was collected within two years after treatment. To explore the underlying mechanism, primary endometrial stem cells from healthy individuals and IUA patients, as well as fifth-generation endometrial stem cells from IUA patients, were further conducted with RNA sequencing to screen for differentially expressed genes, which were subsequently used for functional enrichment analysis. RESULTS After endometrial stem cell transplantation into the uterine cavity, the American Fertility Society scores of all patients decreased, and hysteroscopy revealed an improvement in the uterine condition and a reduction in adhesion symptoms. The total pregnancy rate of the 15 patients was 60.0% and the live birth rate was 53.3%. In addition, RNA sequencing analysis revealed that the cytokine - cytokine receptor interaction was associated with endometrial repair by endometrial stem cells. CONCLUSIONS Intrauterine infusion of autologous endometrial stem cells is highly effective for patients with moderate-to-severe IUA, and is a promising treatment strategy. TRIAL REGISTRATION Chinese Clinical Trial Registry, CHICTR1800016769, Registered 22 June 2018- Retrospectively registered, https://www.chictr.org.cn/showproj.html?proj=27042 .
Collapse
Affiliation(s)
- Enuo Peng
- Department of Gynecology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China
- Reproductive Center, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Yayue Zeng
- Reproductive Center, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Da He
- Reproductive Center, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Xiaojun Tan
- Reproductive Center, Xiangtan Central Hospital, Xiangtan, Hunan, China
| | - Dabao Xu
- Department of Gynecology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xingping Zhao
- Department of Gynecology, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Jiangwan Research Institute, Central South University, Changsha, Hunan, China.
- Postdoctoral Station of Clinical Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
3
|
Hu M, Zhang Q, Xu J, Xu L, Xu X, Wang J, Song Y. New considerations in selecting donors for dental pulp stem cells: a pilot study. Biomed Eng Online 2025; 24:37. [PMID: 40119437 PMCID: PMC11929365 DOI: 10.1186/s12938-025-01367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/13/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND/PURPOSE Tissue engineering based on stem cell therapy necessitates a substantial quantity of high-quality stem cells. However, current sources face limitations, including narrow donor pools, compromised biological properties due to cryopreservation, and cellular senescence resulting from in vitro passaging and expansion. This study examines the impact of mild periodontitis on the biological performance of dental pulp stem cells (DPSCs) to explore the potential of broadening the donor pool for these cells. MATERIALS AND METHODS The experiment included two variables: age and the presence of periodontitis. DPSCs were isolated from six healthy subjects and six patients with mild periodontitis. Healthy subjects were categorized into Groups A (28-32 years) and B (52-54 years), and patients with mild periodontitis were categorized into Groups C (31-33 years) and D (50-53 years). The analyses included cell morphology, proliferation rate, multilineage differentiation capacity, apoptosis, and surface marker expression. RESULT No significant differences in cell morphology, pluripotency, or senescence were observed between healthy controls and periodontitis patients across age groups. Additionally, data on proliferation, pluripotency, and senescence were not significantly different. In healthy subjects, increased age was correlated with more elongated, flattened, and broader cells, alongside greater heterogeneity and intercellular granules. The proliferation and differentiation capacities decreased, whereas the degree of apoptosis increased. Similar trends were noted in patients with periodontitis. CONCLUSION The biological properties of DPSCs remain unchanged in teeth with mild periodontitis, providing valuable insights for addressing the shortage of DPSCs in tissue engineering. Teeth with mild periodontitis have the potential to be pulp stem cell donors.
Collapse
Affiliation(s)
- Mingchang Hu
- School of Stomatology, Qingdao University, Qingdao, China
| | - Qianqian Zhang
- Department of Orthodontics, Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong, China
| | - Jidong Xu
- Department of Stomatology, Jiaozhou Central Hospital of Qingdao, Qingdao, China
| | - Linlin Xu
- School of Stomatology, Qingdao University, Qingdao, China
| | - Xuecheng Xu
- Department of Orthodontics, Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong, China
| | - Jiajia Wang
- School of Stomatology, Binzhou Medical University, Yantai, China
| | - Yu Song
- Department of Orthodontics, Qingdao Stomatological Hospital Affiliated to Qingdao University, No.17 Dexian Road, Shinan District, Qingdao, 266001, Shandong, China.
| |
Collapse
|
4
|
Kedar P, Saraf A, Maheshwari R, Sharma M. Advances in Dendritic Systems and Dendronized Nanoparticles: Paradigm Shifts in Cancer Targeted Therapy and Diagnostics. Mol Pharm 2025; 22:28-57. [PMID: 39707984 DOI: 10.1021/acs.molpharmaceut.4c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
Cancer has emerged as a global health crisis, claiming millions of lives annually. Dendrimers and dendronized nanoparticles, a novel class of nanoscale molecules with highly branched three-dimensional macromolecular structures, have gained significant attention in cancer treatment and diagnosis due to their unique properties. These dendritic macromolecules offer a precisely controlled branching architecture, enabling functionalization with specific targeting molecules to enhance the selective delivery of therapeutic agents to tumor cells while minimizing systemic toxicity. Through surface modifications and the incorporation of various components, dendrimers demonstrate remarkable adaptability as nanocarriers for biomedical imaging and theranostic applications. Surface functionalization strategies, including PEGylation and ligand attachment (e.g., folic acid, RGD peptide, lactobionic acid), further enhance biocompatibility and facilitate targeted tumor cell imaging. Leveraging their improved biocompatibility and target specificity, dendritic nanosystems offer heightened sensitivity and precision in cancer diagnostics. Notably, the encapsulation of metal nanoparticles within dendrimers, such as gold nanoparticles, has shown promise in enhancing tumor imaging capabilities. Ongoing advancements in nanotechnology are poised to increase the sophistication and complexity of dendrimer-based systems, highlighting their potential as nanocarriers in drug delivery platforms, with a growing number of clinical trials on the horizon. This review provides a comprehensive overview of the potential and future prospects of dendrimers and dendrimer-based nanocarriers in targeted cancer therapy and diagnosis, exploring their ability to enhance biocompatibility, reduce toxicity, and improve therapeutic outcomes across various malignancies.
Collapse
Affiliation(s)
- Pawan Kedar
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| | - Apeksha Saraf
- School of Pharmacy, Devi Ahilya Vishwavidyalaya, Takshashila Campus, Khandwa Road, Indore, Madhya Pradesh 452001, India
| | - Rahul Maheshwari
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Hyderabad 509301, India
| | - Mayank Sharma
- School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Deemed to be University, Shirpur, Dhule, Maharashtra 425405, India
| |
Collapse
|
5
|
Feng X, Zhang H, Yang S, Cui D, Wu Y, Qi X, Su Z. From stem cells to pancreatic β-cells: strategies, applications, and potential treatments for diabetes. Mol Cell Biochem 2025; 480:173-190. [PMID: 38642274 DOI: 10.1007/s11010-024-04999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/22/2024]
Abstract
Loss and functional failure of pancreatic β-cells results in disruption of glucose homeostasis and progression of diabetes. Although whole pancreas or pancreatic islet transplantation serves as a promising approach for β-cell replenishment and diabetes therapy, the severe scarcity of donor islets makes it unattainable for most diabetic patients. Stem cells, particularly induced pluripotent stem cells (iPSCs), are promising for the treatment of diabetes owing to their self-renewal capacity and ability to differentiate into functional β-cells. In this review, we first introduce the development of functional β-cells and their heterogeneity and then turn to highlight recent advances in the generation of β-cells from stem cells and their potential applications in disease modeling, drug discovery and clinical therapy. Finally, we have discussed the current challenges in developing stem cell-based therapeutic strategies for improving the treatment of diabetes. Although some significant technical hurdles remain, stem cells offer great hope for patients with diabetes and will certainly transform future clinical practice.
Collapse
Affiliation(s)
- Xingrong Feng
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Daxin Cui
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Yanting Wu
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Xiaocun Qi
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China.
| |
Collapse
|
6
|
Li N, Du X, Zhao Y, Zeng Q, Han C, Xiong D, He L, Zhang G, Liu W. Exploring stem cell technology: Pioneering new pathways for female fertility preservation and restoration. Reprod Biol 2024; 24:100958. [PMID: 39393314 DOI: 10.1016/j.repbio.2024.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 09/28/2024] [Indexed: 10/13/2024]
Abstract
The fertility of women is crucial for the well-being of individuals and families. However, various factors such as chemotherapy, lifestyle changes, among others, may lead to a decline in female fertility, thus emphasizing the significance of preserving and restoring fertility. Stem cells, with their unique capacity for self-renewal and pluripotent differentiation, have made significant strides in areas such as ovarian tissue cryopreservation, in vitro culture of frozen-thawed ovarian tissue, and construction of ovarian-like organs. This review aims to summarize the latest findings in these fields, highlighting the pivotal role, mechanisms, and future prospects of stem cell technology in preserving and restoring female fertility. Additionally, the importance of interdisciplinary collaboration is underscored, as personalized stem cell therapy regimens tailored through interdisciplinary cooperation between reproductive medicine and stem cell fields hold promise in providing reliable solutions for the preservation and restoration of female fertility.
Collapse
Affiliation(s)
- Ningjing Li
- School of Medicine and life sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xinrong Du
- School of Medicine and life sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuhong Zhao
- College of Laboratory Medicine, Chengdu Medical College, Chengdu 610500, China
| | - Qin Zeng
- Sichuan Provincial Woman's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China
| | - Changli Han
- School of Medicine and life sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dongsheng Xiong
- Sichuan Provincial Woman's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China
| | - Libing He
- Sichuan Provincial Woman's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China
| | - Guohui Zhang
- Sichuan Provincial Woman's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| | - Weixin Liu
- Sichuan Provincial Woman's and Children's Hospital / The Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu 610045, China.
| |
Collapse
|
7
|
Pampanella L, Petrocelli G, Forcellini F, Cruciani S, Ventura C, Abruzzo PM, Facchin F, Canaider S. Oxytocin, the Love Hormone, in Stem Cell Differentiation. Curr Issues Mol Biol 2024; 46:12012-12036. [PMID: 39590307 PMCID: PMC11592854 DOI: 10.3390/cimb46110713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Oxytocin (OXT) is a neurohypophysial nonapeptide that exerts its effects mainly through the oxytocin receptor (OXTR). Several studies have pointed out the role of OXT in the modulation of stem cell (SC) fate and properties. SCs are undifferentiated cells characterized by a remarkable ability to self-renew and differentiate into various cell types of the body. In this review, we focused on the role of OXT in SC differentiation. Specifically, we summarize and discuss the scientific research examining the effects of OXT on mesodermal SC-derived lineages, including cardiac, myogenic, adipogenic, osteogenic, and chondrogenic differentiation. The available studies related to the effects of OXT on SC differentiation provide little insights about the molecular mechanism mediated by the OXT-OXTR pathway. Further research is needed to fully elucidate these pathways to effectively modulate SC differentiation and develop potential therapeutic applications in regenerative medicine.
Collapse
Affiliation(s)
- Luca Pampanella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Giovannamaria Petrocelli
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Federica Forcellini
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Carlo Ventura
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- National Laboratory of Molecular Biology and Stem Cell Bioengineering, National Institute of Biostructures and Biosystems (NIBB), Via di Corticella 183, 40129 Bologna, Italy
| | - Provvidenza Maria Abruzzo
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
| | - Federica Facchin
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Silvia Canaider
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (L.P.); (G.P.); (F.F.); (C.V.); (S.C.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Massarenti 9, 40138 Bologna, Italy
| |
Collapse
|
8
|
Xing N, Gao L, Xie W, Deng H, Yang F, Liu D, Li A, Pang Q. Mining of potentially stem cell-related miRNAs in planarians. Mol Biol Rep 2024; 51:1045. [PMID: 39377855 DOI: 10.1007/s11033-024-09977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
Stem cells and regenerative medicine have recently become important research topics. However, the complex stem cell regulatory networks involved in various microRNA (miRNA)-mediated mechanisms have not yet been fully elucidated. Planarians are ideal animal models for studying stem cells owing to their rich stem cell populations (neoblasts) and extremely strong regeneration capacity. The roles of planarian miRNAs in stem cells and regeneration have long attracted attention. However, previous studies have generally provided simple datasets lacking integrative analysis. Here, we have summarized the miRNA family reported in planarians and highlighted conservation in both sequence and function. Furthermore, we summarized miRNA data related to planarian stem cells and regeneration and screened potential involved candidates. Nevertheless, the roles of these miRNAs in planarian regeneration and stem cells remain unclear. The identification of potential stem cell-related miRNAs offers more precise suggestions and references for future investigations of miRNAs in planarians. Furthermore, it provides potential research avenues for understanding the mechanisms of stem cell regulatory networks. Finally, we compiled a summary of the experimental methods employed for studying planarian miRNAs, with the aim of highlighting special considerations in certain procedures and providing more convenient technical support for future research endeavors.
Collapse
Affiliation(s)
- Nianhong Xing
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Lili Gao
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| | - Wenshuo Xie
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Hongkuan Deng
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Fengtang Yang
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Dongwu Liu
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Ao Li
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Qiuxiang Pang
- Anti-aging & Regenerative Medicine Research Institute, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| |
Collapse
|
9
|
Maji A, Himaja A, Nikhitha S, Rana S, Paul A, Samanta A, Shee U, Mukhopadhyay C, Ghosh B, Maity TK. Synthesis and antiproliferative potency of 1,3,4-thiadiazole and 1,3-thiazolidine-4-one based new binary heterocyclic molecules: in vitro cell-based anticancer studies. RSC Med Chem 2024; 15:3057-3069. [PMID: 39309361 PMCID: PMC11411633 DOI: 10.1039/d4md00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024] Open
Abstract
Herein, we report the synthesis and anticancer properties of 21 new 1,3,4-thiadiazole-2-yl-imino-thiazolidine-4-one containing binary heterocyclic molecules. Cytotoxicity of the synthesized molecules was evaluated on various in vitro cancer cell lines (MCF-7, PC3, 4T1, MDA-MB-231, and MOC2) and normal human embryonic cell lines (HEK-293) via MTT assay. The cytotoxicity data of developed compounds was compared with the reference anticancer molecule BG45, a selective inhibitor of the HDAC3 enzyme. All compounds showed a significant cytotoxic effect higher than BG45 on tested cancer cell lines. Moreover, the compounds exhibited better selectivity on cancer cells than on normal cells. Among the molecules, compound 6e is the most potent in cytotoxic activity on MCF-7 cell lines (IC50 value of 3.85 μM). Additional mechanistic investigation revealed that compound 6e promotes apoptosis (25.3%) and G0/G1 phase cell cycle arrest of MCF-7 cells. Also, compound 6e induces intracellular ROS accumulation and subsequent nuclear fragmentation. Hence, this research finds new hybrid molecules active against in vitro cancer cells.
Collapse
Affiliation(s)
- Avik Maji
- Synthetic and Natural Products Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University Kolkata-700032 West Bengal India
| | - Ambati Himaja
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus Hyderabad-500078 India
| | - Sripathi Nikhitha
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus Hyderabad-500078 India
| | - Soumitra Rana
- Department of Chemistry, University of Calcutta Kolkata-700009 West Bengal India
| | - Abhik Paul
- Synthetic and Natural Products Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University Kolkata-700032 West Bengal India
| | - Ajeya Samanta
- Synthetic and Natural Products Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University Kolkata-700032 West Bengal India
| | - Uday Shee
- Department of Chemistry, Jadavpur University Kolkata-700032 West Bengal India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta Kolkata-700009 West Bengal India
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani Hyderabad Campus Hyderabad-500078 India
| | - Tapan Kumar Maity
- Synthetic and Natural Products Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University Kolkata-700032 West Bengal India
| |
Collapse
|
10
|
Banerjee T, Sarkar A, Ali SZ, Bhowmik R, Karmakar S, Halder AK, Ghosh N. Bioprotective Role of Phytocompounds Against the Pathogenesis of Non-alcoholic Fatty Liver Disease to Non-alcoholic Steatohepatitis: Unravelling Underlying Molecular Mechanisms. PLANTA MEDICA 2024; 90:675-707. [PMID: 38458248 DOI: 10.1055/a-2277-4805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), with a global prevalence of 25%, continues to escalate, creating noteworthy concerns towards the global health burden. NAFLD causes triglycerides and free fatty acids to build up in the liver. The excessive fat build-up causes inflammation and damages the healthy hepatocytes, leading to non-alcoholic steatohepatitis (NASH). Dietary habits, obesity, insulin resistance, type 2 diabetes, and dyslipidemia influence NAFLD progression. The disease burden is complicated due to the paucity of therapeutic interventions. Obeticholic acid is the only approved therapeutic agent for NAFLD. With more scientific enterprise being directed towards the understanding of the underlying mechanisms of NAFLD, novel targets like lipid synthase, farnesoid X receptor signalling, peroxisome proliferator-activated receptors associated with inflammatory signalling, and hepatocellular injury have played a crucial role in the progression of NAFLD to NASH. Phytocompounds have shown promising results in modulating hepatic lipid metabolism and de novo lipogenesis, suggesting their possible role in managing NAFLD. This review discusses the ameliorative role of different classes of phytochemicals with molecular mechanisms in different cell lines and established animal models. These compounds may lead to the development of novel therapeutic strategies for NAFLD progression to NASH. This review also deliberates on phytomolecules undergoing clinical trials for effective management of NAFLD.
Collapse
Affiliation(s)
- Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sk Zeeshan Ali
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| | - Amit Kumar Halder
- Dr. B. C. Roy College of Pharmacy and Allied Health Sciences, Dr. Meghnad Saha Sarani, Bidhannagar, Durgapur, West Bengal, India
| | - Nilanjan Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, India
| |
Collapse
|
11
|
Meretsky CR, Polychronis A, Schiuma AT. A Comparative Analysis of the Advances in Stem Cell Therapy in Plastic Surgery: A Systematic Review of Current Applications and Future Directions. Cureus 2024; 16:e67067. [PMID: 39286681 PMCID: PMC11404395 DOI: 10.7759/cureus.67067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Stem cell (SC) therapy is revolutionizing the field of plastic surgery by harnessing the regenerative abilities of SCs derived from adipose tissue and bone marrow to boost tissue repair and enhance aesthetic outcomes. This groundbreaking method enhances results in procedures such as fat grafting, facial rejuvenation, and wound healing. As studies advance, SC therapy shows potential for more sophisticated uses in both reconstructive and cosmetic surgery. The objective of this review is to comprehensively examine the advances in SC therapy within the field of plastic surgery, highlighting its current applications and exploring future directions. The systematic review was conducted on SC therapy in plastic surgery adhering to Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and specific search criteria. This systematic review highlights these main outcomes, and SC therapy in plastic surgery enhances tissue repair and aesthetic outcomes by utilizing mesenchymal SCs such as adipose-derived SCs (ADSCs) and bone marrow-derived SCs (BMSCs), with platelet-rich plasma (PRP) providing additional support. Techniques such as scaffolds and cellular reprogramming are employed to guide SC growth, enabling tailored tissue engineering for complex regenerative procedures. This innovative approach accelerates healing, reduces scarring in reconstructive surgeries, improves skin texture, and ensures the natural integration of treated areas, ultimately yielding enhanced aesthetic results and transforming facial rejuvenation processes. SC therapy in plastic surgery holds great promise, but challenges such as protocol standardization, cost, and regulations still need to be addressed. SC therapy is leading innovative advancements in plastic surgery, offering superior outcomes and improved quality of life for patients. Interestingly, the future of plastic surgery is focused on integrating SC therapy for personalized and transformative treatments. Furthermore, interdisciplinary collaboration among bioengineers, clinicians, and regulatory bodies is essential for overcoming challenges and advancing SC research into clinical practice.
Collapse
Affiliation(s)
| | - Andreas Polychronis
- General Surgery, St. George's University School of Medicine, Great River, USA
| | | |
Collapse
|
12
|
Sun T, Liu Y, Yuan P, Jia Z, Yang J. Bibliometric and Visualization Analysis of Stem Cell Therapy for Erectile Dysfunction. Drug Des Devel Ther 2024; 18:731-746. [PMID: 38476204 PMCID: PMC10929656 DOI: 10.2147/dddt.s448483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose As a common male disease, erectile dysfunction (ED) seriously affects the physical and mental health of patients. In recent years, studies have continued to point out the great potential of stem cell therapy (SCT) in the treatment of ED. The purpose of this study is to comprehensively analyze the research of SCT for ED and understand the development trends and research frontiers in this field. Methods Publications regarding SCT and ED were retrieved and collected from the Web of Science Core Collection. CiteSpace and VOSviewer software were then utilized for bibliometric and visualization analysis. Results A total of 524 publications were eventually included in this study. The annual number of publications in this field was increasing year by year. China and the USA were the two most productive countries. Lin GT, Lue TF and Lin CS, and the University of California San Francisco where they worked were the most productive research group and institution, respectively. The journal with the largest number of publications was The Journal of Sexual Medicine, and the following were mostly professional journals of urology and andrology. Diabetes mellitus-induced ED and cavernous nerve injury-related ED were the two most commonly constructed models of ED in studies. Concerning the types of stem cells, mesenchymal stem cells derived from adipose and bone marrow were most frequently used. Moreover, future research would mainly focus on exosomes, tissue engineering technology, extracorporeal shockwave therapy, and clinical translation. Conclusion The research of SCT for ED will receive increasing global attention in the future. Our study provided bibliometric and visualization analysis of published literature, helping researchers understand the global landscape and frontiers in this field. More preclinical and clinical studies should be conducted to more deeply explore the underlying mechanisms of treatment and promote clinical translation.
Collapse
Affiliation(s)
- Taotao Sun
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Yipiao Liu
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Penghui Yuan
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Zhankui Jia
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| | - Jinjian Yang
- Department of Urology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People’s Republic of China
| |
Collapse
|
13
|
Maji A, Paul A, Sarkar A, Nahar S, Bhowmik R, Samanta A, Nahata P, Ghosh B, Karmakar S, Kumar Maity T. Significance of TRAIL/Apo-2 ligand and its death receptors in apoptosis and necroptosis signalling: Implications for cancer-targeted therapeutics. Biochem Pharmacol 2024; 221:116041. [PMID: 38316367 DOI: 10.1016/j.bcp.2024.116041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/04/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The human immune defensesystem routinely expresses the tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL), which is the most prevalent element for antitumor immunity. TRAIL associates with its death receptors (DRs), DR4 (TRAIL-R1), and DR5 (TRAIL-R2), in cancer cells to initiate the intracellular apoptosis cascade. Accordingly, numerous academic institutions and pharmaceutical companies havetried to exploreTRAIL's capacity to kill tumourcells by producing recombinant versions of it (rhTRAIL) or TRAIL receptor agonists (TRAs) [monoclonal antibody (mAb), synthetic and natural compounds, etc.] and molecules that sensitize TRAIL signalling pathway for therapeutic applications. Recently, several microRNAs (miRs) have been found to activate or inhibit death receptor signalling. Therefore, pharmacological regulation of these miRs may activate or resensitize the TRAIL DRs signal, and this is a novel approach for developing anticancer therapeutics. In this article, we will discuss TRAIL and its receptors and molecular pathways by which it induces various cell death events. We will unravel potential innovative applications of TRAIL-based therapeutics, and other investigated therapeutics targeting TRAIL-DRs and summarize the current preclinical pharmacological studies and clinical trials. Moreover, we will also emphasizea few situations where future efforts may be addressed to modulate the TRAIL signalling pathway.
Collapse
Affiliation(s)
- Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Rudranil Bhowmik
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| | - Balaram Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata-700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata 700 032, India.
| |
Collapse
|
14
|
Paul A, Nahar S, Nahata P, Sarkar A, Maji A, Samanta A, Karmakar S, Maity TK. Synthetic GPR40/FFAR1 agonists: An exhaustive survey on the most recent chemical classes and their structure-activity relationships. Eur J Med Chem 2024; 264:115990. [PMID: 38039791 DOI: 10.1016/j.ejmech.2023.115990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Free fatty acid receptor 1 (FFAR1 or GPR40) is a potential target for treating type 2 diabetes mellitus (T2DM) and related disorders that have been extensively researched for many years. GPR40/FFAR1 is a promising anti-diabetic target because it can activate insulin, promoting glucose metabolism. It controls T2DM by regulating glucose levels in the body through two separate mechanisms: glucose-stimulated insulin secretion and incretin production. In the last few years, various synthetic GPR40/FFAR1 agonists have been discovered that fall under several chemical classes, viz. phenylpropionic acid, phenoxyacetic acid, and dihydrobenzofuran acetic acid. However, only a few synthetic agonists have entered clinical trials due to various shortcomings like poor efficacy, low lipophilicity and toxicity issues. As a result, pharmaceutical firms and research institutions are interested in developing synthetic GPR40/FFAR1 agonists with superior effectiveness, lipophilicity, and safety profiles. This review encompasses the most recent research on synthetic GPR40/FFAR1 agonists, including their chemical classes, design strategies and structure-activity relationships. Additionally, we have emphasised the structural characteristics of the most potent GPR40/FFAR1 agonists from each chemical class of synthetic derivatives and analysed their chemico-biological interactions. This work will hopefully pave the way for developing more potent and selective synthetic GPR40/FFAR1 agonists for treating T2DM and related disorders.
Collapse
Affiliation(s)
- Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Sourin Nahar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Pankaj Nahata
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Ajeya Samanta
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| | - Sanmoy Karmakar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India; Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700 032, India.
| |
Collapse
|
15
|
Xuan SS, Zhao Y, Zheng Y, Zhu J, Li H, Lu PP, Shao SJ, Guo HD, Mou FF. Electroacupuncture improves cardiac function after myocardial infarction by regulating the mobilization and migration of endogenous stem cells. Acupunct Med 2023; 41:354-363. [PMID: 37337652 DOI: 10.1177/09645284231169485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
OBJECTIVE The aim of this study was to explore the role and mechanisms of electroacupuncture (EA) in the regulation of chemokines in endogenous stem cell mobilization and myocardial regeneration after myocardial infarction (MI). METHODS An MI model was constructed in adult male Sprague-Dawley rats by ligating the left anterior descending coronary artery. After 4 weeks of treatment, echocardiography was used to detect changes in cardiac function, and Masson's trichrome staining was used to detect collagen deposition. In addition, immunofluorescence staining was applied to examine von Willebrand factor (vWF)-positive vessels, the expression of cardiac troponin T (cTnT) and proliferation marker Ki67, and the number of c-kit-positive, C-X-C chemokine receptor type 4 (CXCR4)-positive, and Sca-1-positive endogenous stem cells in the infarcted area. In addition, the expression of stromal cell-derived factor (SDF)-1 and stem cell factor (SCF) was detected. RESULTS EA increased the ejection fraction after MI, reduced collagen deposition and cellular apoptosis, and increased the number of blood vessels compared with an untreated model group. EA significantly promoted cellular proliferation, except for myocardial cells, and significantly increased the number of c-kit-, CXCR4- and Sca-1-positive stem cells. Moreover, the expression of SDF-1 and SCF in myocardial tissue in the EA group was significantly higher than that in the (untreated) MI group. CONCLUSIONS EA appears to promote angiogenesis and reduce collagen deposition, thus improving the cardiac function of rats with MI. The underlying mechanism of action may involve endogenous stem cell mobilization mediated by SDF-1/CXCR4 and SCF/c-kit.
Collapse
Affiliation(s)
- Shou-Song Xuan
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Yue Zhao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Zheng
- Jiading Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Jing Zhu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Han Li
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping-Ping Lu
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shui-Jin Shao
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hai-Dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fang-Fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
Luo Z, Chen S, Zhou J, Wang C, Li K, Liu J, Tang Y, Wang L. Application of aptamers in regenerative medicine. Front Bioeng Biotechnol 2022; 10:976960. [PMID: 36105606 PMCID: PMC9465253 DOI: 10.3389/fbioe.2022.976960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/03/2022] Open
Abstract
Regenerative medicine is a discipline that studies how to use biological and engineering principles and operation methods to repair and regenerate damaged tissues and organs. Until now, regenerative medicine has focused mainly on the in-depth study of the pathological mechanism of diseases, the further development and application of new drugs, and tissue engineering technology strategies. The emergence of aptamers has supplemented the development methods and types of new drugs and enriched the application elements of tissue engineering technology, injecting new vitality into regenerative medicine. The role and application status of aptamers screened in recent years in various tissue regeneration and repair are reviewed, and the prospects and challenges of aptamer technology are discussed, providing a basis for the design and application of aptamers in long-term transformation.
Collapse
Affiliation(s)
- Zhaohui Luo
- Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Shimin Chen
- Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jing Zhou
- Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Chong Wang
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan, Guangdong, China
| | - Kai Li
- Academy of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
- *Correspondence: Kai Li, ; Jia Liu, ; Yujin Tang,
| | - Jia Liu
- Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- *Correspondence: Kai Li, ; Jia Liu, ; Yujin Tang,
| | - Yujin Tang
- Guangxi Key Laboratory of basic and translational research of Bone and Joint Degenerative Diseases, Guangxi Biomedical Materials Engineering Research Center for Bone and Joint Degenerative Diseases, Department of Orthopedics, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- *Correspondence: Kai Li, ; Jia Liu, ; Yujin Tang,
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Wharton’s Jelly Mesenchymal Stem Cells on a Novel Aloe Vera-Polycaprolactone (A-PCL) Composite Scaffold in Burns. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2022. [DOI: 10.1007/s40883-021-00241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
18
|
Abstract
Sperm selection in the female reproductive tract (FRT) is sophisticated. Only about 1,000 sperm out of millions in an ejaculate reach the fallopian tube and thus have a chance of fertilizing an oocyte. In assisted reproduction techniques, sperm are usually selected using their density or motility, characteristics that do not reflect their fertilization competence and, therefore, might result in failure to fertilize the oocyte. Although sperm processing in in vitro fertilization (IVF) and intrauterine insemination (IUI) bypasses many of the selection processes in the FRT, selection by the cumulus mass and the zona pellucida remain intact. By contrast, the direct injection of a sperm into an oocyte in intracytoplasmic sperm injection (ICSI) bypasses all natural selection barriers and, therefore, increases the risk of transferring paternal defects such as fragmented DNA and genomic abnormalities in sperm to the resulting child. Research into surrogate markers of fertilization potential and into simulating the natural sperm selection processes has progressed. However, methods of sperm isolation - such as hyaluronic acid-based selection and microfluidic isolation based on sperm tactic responses - use only one or two parameters and are not comparable with the multistep sperm selection processes naturally occurring within the FRT. Fertilization-competent sperm require a panel of molecules, including zona pellucida-binding proteins and ion channel proteins, that enable them to progress through the FRT to achieve fertilization. The optimal artificial sperm selection method will, therefore, probably need to use a multiparameter tool that incorporates the molecular signature of sperm with high fertilization potential, and their responses to external cues, within a microfluidic system that can replicate the physiological processes of the FRT in vitro.
Collapse
|
19
|
Cai B, Gong Y, Wang Z, Wang L, Chen W. Microneedle arrays integrated with living organisms for smart biomedical applications. Theranostics 2021; 11:10012-10029. [PMID: 34815801 PMCID: PMC8581439 DOI: 10.7150/thno.66478] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/02/2021] [Indexed: 02/06/2023] Open
Abstract
Various living organisms have proven to influence human health significantly, either in a commensal or pathogenic manner. Harnessing the creatures may remarkably improve human healthcare and cure the intractable illness that is challenged using traditional drugs or surgical approaches. However, issues including limited biocompatibility, poor biosafety, inconvenience for personal handling, and low patient compliance greatly hinder the biomedical and clinical applications of living organisms when adopting them for disease treatment. Microneedle arrays (MNAs), emerging as a promising candidate of biomedical devices with the functional diversity and minimal invasion, have exhibited great potential in the treatment of a broad spectrum of diseases, which is expected to improve organism-based therapies. In this review, we systemically summarize the technologies employed for the integration of MNAs with specific living organisms including diverse viruses, bacteria, mammal cells and so on. Moreover, their applications such as vaccination, anti-infection, tumor therapy and tissue repairing are well illustrated. Challenges faced by current strategies, and the perspectives of integrating more living organisms, adopting smarter materials, and developing more advanced technologies in MNAs for future personalized and point-of-care medicine, are also discussed. It is believed that the combination of living organisms with functional MNAs would hold great promise in the near future due to the advantages of both biological and artificial species.
Collapse
Affiliation(s)
- Bo Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zheng Wang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory for Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|