1
|
Gao R, Mao J. Noncoding RNA-Mediated Epigenetic Regulation in Hepatic Stellate Cells of Liver Fibrosis. Noncoding RNA 2024; 10:44. [PMID: 39195573 DOI: 10.3390/ncrna10040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Liver fibrosis is a significant contributor to liver-related disease mortality on a global scale. Despite this, there remains a dearth of effective therapeutic interventions capable of reversing this condition. Consequently, it is imperative that we gain a comprehensive understanding of the underlying mechanisms driving liver fibrosis. In this regard, the activation of hepatic stellate cells (HSCs) is recognized as a pivotal factor in the development and progression of liver fibrosis. The role of noncoding RNAs (ncRNAs) in epigenetic regulation of HSCs transdifferentiation into myofibroblasts has been established, providing new insights into gene expression changes during HSCs activation. NcRNAs play a crucial role in mediating the epigenetics of HSCs, serving as novel regulators in the pathogenesis of liver fibrosis. As research on epigenetics expands, the connection between ncRNAs involved in HSCs activation and epigenetic mechanisms becomes more evident. These changes in gene regulation have attracted considerable attention from researchers in the field. Furthermore, epigenetics has contributed valuable insights to drug discovery and the identification of therapeutic targets for individuals suffering from liver fibrosis and cirrhosis. As such, this review offers a thorough discussion on the role of ncRNAs in the HSCs activation of liver fibrosis.
Collapse
Affiliation(s)
- Ruoyu Gao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Jingwei Mao
- Department of Gastroenterology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| |
Collapse
|
2
|
Chen X, Lv X, Han M, Hu Y, Zheng W, Xue H, Li Z, Li K, Tan W. EMP1 as a Potential Biomarker in Liver Fibrosis: A Bioinformatics Analysis. Gastroenterol Res Pract 2023; 2023:2479192. [PMID: 37008256 PMCID: PMC10060069 DOI: 10.1155/2023/2479192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/16/2022] [Accepted: 09/05/2022] [Indexed: 04/04/2023] Open
Abstract
Liver fibrosis is a wound-healing response to chronic injury, which may result in cirrhosis and liver failure. Studies have been carried on the mechanisms and pathogenesis of liver fibrosis. However, the potential cell-specific expressed marker genes involved in fibrotic processes remain unknown. In this study, we combined a publicly accessible single-cell transcriptome of human liver with microarray datasets to evaluate the cell-specific expression patterns of differentially expressed genes in the liver. We noticed that EMP1 (epithelial membrane protein 1) is significantly active not only in CCl4 (carbon tetrachloride)-treated mouse liver fibrosis but also in BDL (bile duct ligation)-induced liver fibrosis and even in human fibrotic liver tissues such as alcoholic hepatitis, NASH (nonalcoholic steatohepatitis), and advanced stage liver fibrosis. Furthermore, we demonstrated that EMP1 is a specific fibrotic gene expressed in HSCs (hepatic stellate cells) and endothelial cells using the Protein Atlas single-cell transcriptome RNA-sequencing clustering. Its expression was significantly elevated in fibrotic HSCs or CCl4 and NASH-induced fibroblasts. Previous research revealed that EMP1 plays a role in proliferation, migration, metastasis, and tumorigeneses in different cancers via a variety of mechanisms. Because HSC activation and proliferation are two important steps following liver injury, it would be interesting to investigate the role of EMP1 in these processes. All of this information suggested that EMP1 could be used as a novel fibrotic liver marker and a possible target in the future.
Collapse
Affiliation(s)
- Xuchen Chen
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Wenzhou, Zhejiang, China
| | - Xinliang Lv
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University Lishui, Zhejiang, China
| | - Manman Han
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Wenzhou, Zhejiang, China
| | - Yexiao Hu
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Wenzhou, Zhejiang, China
| | - Wanqiong Zheng
- Department of General Surgery, Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine Wenzhou, Zhejiang, China
| | - Haibo Xue
- Department of Gastroenterology, The First Affiliated Hospital of Wenzhou Medical University Wenzhou, Zhejiang, China
| | - Zhuokai Li
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University Lishui, Zhejiang, China
| | - Kui Li
- Department of Blood Transfusion, Lishui Central Hospital, Fifth Affiliated Hospital of Wenzhou Medical College Lishui, Zhejiang, China
| | - Wei Tan
- Department of Hepatobiliary and Pancreatic Surgery, Lishui Municipal Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University Lishui, Zhejiang, China
| |
Collapse
|
3
|
Bhat SA, Farooq Z, Ismail H, Corona-Avila I, Khan MW. Unraveling the Sweet Secrets of HCC: Glucometabolic Rewiring in Hepatocellular Carcinoma. Technol Cancer Res Treat 2023; 22:15330338231219434. [PMID: 38083797 PMCID: PMC10718058 DOI: 10.1177/15330338231219434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/06/2023] [Accepted: 11/13/2017] [Indexed: 12/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the primary form of liver cancer. It causes ∼ 800 000 deaths per year, which is expected to increase due to increasing rates of obesity and metabolic dysfunction associated steatotic liver disease (MASLD). Current therapies include immune checkpoint inhibitors, tyrosine kinase inhibitors, and monoclonal antibodies, but these therapies are not satisfactorily effective and often come with multiple side effects and recurrences. Metabolic reprogramming plays a significant role in HCC progression and is often conserved between tumor types. Thus, targeting rewired metabolic pathways could provide an attractive option for targeting tumor cells alone or in conjunction with existing treatments. Therefore, there is an urgent need to identify novel targets involved in cancer-mediated metabolic reprogramming in HCC. In this review, we provide an overview of molecular rewiring and metabolic reprogramming of glucose metabolism in HCC to understand better the concepts that might widen the therapeutic window against this deadly cancer.
Collapse
Affiliation(s)
- Sheraz Ahmad Bhat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
- Sri Pratap College, Cluster University Srinagar, Srinagar, Jammu & Kashmir, India
| | - Zeenat Farooq
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Hagar Ismail
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Irene Corona-Avila
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| | - Md. Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
4
|
Chen QT, Zhang ZY, Huang QL, Chen HZ, Hong WB, Lin T, Zhao WX, Wang XM, Ju CY, Wu LZ, Huang YY, Hou PP, Wang WJ, Zhou D, Deng X, Wu Q. HK1 from hepatic stellate cell-derived extracellular vesicles promotes progression of hepatocellular carcinoma. Nat Metab 2022; 4:1306-1321. [PMID: 36192599 PMCID: PMC9584821 DOI: 10.1038/s42255-022-00642-5] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/17/2022] [Indexed: 01/20/2023]
Abstract
Extracellular vesicles play crucial roles in intercellular communication in the tumor microenvironment. Here we demonstrate that in hepatic fibrosis, TGF-β stimulates the palmitoylation of hexokinase 1 (HK1) in hepatic stellate cells (HSCs), which facilitates the secretion of HK1 via large extracellular vesicles in a TSG101-dependent manner. The large extracellular vesicle HK1 is hijacked by hepatocellular carcinoma (HCC) cells, leading to accelerated glycolysis and HCC progression. In HSCs, the nuclear receptor Nur77 transcriptionally activates the expression of depalmitoylase ABHD17B to inhibit HK1 palmitoylation, consequently attenuating HK1 release. However, TGF-β-activated Akt functionally represses Nur77 by inducing Nur77 phosphorylation and degradation. We identify the small molecule PDNPA that binds Nur77 to generate steric hindrance to block Akt targeting, thereby disrupting Akt-mediated Nur77 degradation and preserving Nur77 inhibition of HK1 release. Together, this study demonstrates an overlooked function of HK1 in HCC upon its release from HSCs and highlights PDNPA as a candidate compound for inhibiting HCC progression.
Collapse
Affiliation(s)
- Qi-Tao Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Zhi-Yuan Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qiao-Ling Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hang-Zi Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| | - Wen-Bin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Tianwei Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wen-Xiu Zhao
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University Affiliated ZhongShan Hospital, Xiamen, China
| | - Xiao-Min Wang
- Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen University Affiliated ZhongShan Hospital, Xiamen, China
| | - Cui-Yu Ju
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Liu-Zheng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ya-Ying Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Pei-Pei Hou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Wei-Jia Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Qiao Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China.
| |
Collapse
|
5
|
Garcia AN, Casanova NG, Kempf CL, Bermudez T, Valera DG, Song JH, Sun X, Cai H, Moreno-Vinasco L, Gregory T, Oita RC, Hernon VR, Camp SM, Rogers C, Kyubwa EM, Menon N, Axtelle J, Rappaport J, Bime C, Sammani S, Cress AE, Garcia JGN. eNAMPT Is a Novel Damage-associated Molecular Pattern Protein That Contributes to the Severity of Radiation-induced Lung Fibrosis. Am J Respir Cell Mol Biol 2022; 66:497-509. [PMID: 35167418 PMCID: PMC9116358 DOI: 10.1165/rcmb.2021-0357oc] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
The paucity of therapeutic strategies to reduce the severity of radiation-induced lung fibrosis (RILF), a life-threatening complication of intended or accidental ionizing radiation exposure, is a serious unmet need. We evaluated the contribution of eNAMPT (extracellular nicotinamide phosphoribosyltransferase), a damage-associated molecular pattern (DAMP) protein and TLR4 (Toll-like receptor 4) ligand, to the severity of whole-thorax lung irradiation (WTLI)-induced RILF. Wild-type (WT) and Nampt+/- heterozygous C57BL6 mice and nonhuman primates (NHPs, Macaca mulatta) were exposed to a single WTLI dose (9.8 or 10.7 Gy for NHPs, 20 Gy for mice). WT mice received IgG1 (control) or an eNAMPT-neutralizing polyclonal or monoclonal antibody (mAb) intraperitoneally 4 hours after WTLI and weekly thereafter. At 8-12 weeks after WTLI, NAMPT expression was assessed by immunohistochemistry, biochemistry, and plasma biomarker studies. RILF severity was determined by BAL protein/cells, hematoxylin and eosin, and trichrome blue staining and soluble collagen assays. RNA sequencing and bioinformatic analyses identified differentially expressed lung tissue genes/pathways. NAMPT lung tissue expression was increased in both WTLI-exposed WT mice and NHPs. Nampt+/- mice and eNAMPT polyclonal antibody/mAb-treated mice exhibited significantly attenuated WTLI-mediated lung fibrosis with reduced: 1) NAMPT and trichrome blue staining; 2) dysregulated lung tissue expression of smooth muscle actin, p-SMAD2/p-SMAD1/5/9, TGF-β, TSP1 (thrombospondin-1), NOX4, IL-1β, and NRF2; 3) plasma eNAMPT and IL-1β concentrations; and 4) soluble collagen. Multiple WTLI-induced dysregulated differentially expressed lung tissue genes/pathways with known tissue fibrosis involvement were each rectified in mice receiving eNAMPT mAbs.The eNAMPT/TLR4 inflammatory network is essentially involved in radiation pathobiology, with eNAMPT neutralization an effective therapeutic strategy to reduce RILF severity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hua Cai
- Department of Anesthesiology, University of California Los Angeles, Los Angeles, California
| | | | | | | | | | | | | | | | | | | | - Jay Rappaport
- Tulane National Primate Research Center, New Orleans, Louisiana
| | | | | | - Anne E. Cress
- Department of Cell and Molecular Medicine, University of Arizona Health Sciences, Tucson, Arizona
| | | |
Collapse
|
6
|
Abstract
Hepatic fibrosis is a reversible wound healing process following liver injury. Although this process is necessary for maintaining liver integrity, severe excessive extracellular matrix accumulation (ECM) could lead to permanent scar formation and destroy the liver structure. The activation of hepatic stellate cells (HSCs) is a key event in hepatic fibrosis. Previous studies show that most antifibrotic therapies focus on the apoptosis of HSCs and the prevention of HSC activation. Noncoding RNAs (ncRNAs) play a substantial role in HSC activation and are likely to be biomarkers or therapeutic targets for the treatment of hepatic fibrosis. This review summarizes and discusses the previously reported ncRNAs, including the microRNAs, long noncoding RNAs, and circular RNAs, highlighting their regulatory roles and interactions in the signaling pathways that regulate HSC activation in hepatic fibrosis.
Collapse
|
7
|
Tai Y, Zhao C, Lan T, Zhang L, Xiao Y, Tong H, Liu R, Tang C, Gao J. Integrated Analysis of Hepatic miRNA and mRNA Expression Profiles in the Spontaneous Reversal Process of Liver Fibrosis. Front Genet 2021; 12:706341. [PMID: 34367261 PMCID: PMC8340883 DOI: 10.3389/fgene.2021.706341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023] Open
Abstract
Liver fibrosis results from the imbalance between extracellular matrix (ECM) production and degradation, which is a common pathological consequence of various chronic liver diseases. Although many miRNAs have been reported in liver fibrosis progression, miRNA-mRNA interactions in its reversal process remain to be elucidated. In the current study, we performed an integrated analysis of miRNA and mRNA expression profiles in the mouse model with the spontaneous reversal potency of liver fibrosis. A total of 102 miRNA and 2,845 mRNAs showed significant differential expression in reversal mice compared to fibrotic mice. Moreover, 3,769 putative negatively correlated miRNA-mRNA pairs were revealed to be potentially implicated in the biological function regulation of small molecule metabolism and ECM organization. By integrating miRNA-mRNA regulatory networks, mmu-miR-1843a-5p, mmu-miR-193a-5p, mmu-miR-194-2-3p, and mmu-miR-30c-2-3p were identified as lysyl oxidases-specific miRNAs that were correlated with fibrosis reversal. Our results provided potential candidate targets for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yang Tai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Linhao Zhang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xiao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Tong
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Liu
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|