1
|
Hashemi M, Khosroshahi EM, Chegini MK, Abedi M, Matinahmadi A, Hosnarody YSD, Rezaei M, Saghari Y, Fattah E, Abdi S, Entezari M, Nabavi N, Rashidi M, Raesi R, Taheriazam A. miRNAs and exosomal miRNAs in lung cancer: New emerging players in tumor progression and therapy response. Pathol Res Pract 2023; 251:154906. [PMID: 37939448 DOI: 10.1016/j.prp.2023.154906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Non-coding RNAs have shown key roles in cancer and among them, short RNA molecules are known as microRNAs (miRNAs). These molecules have length less than 25 nucleotides and suppress translation and expression. The functional miRNAs are produced in cytoplasm. Lung cancer is a devastating disease that its mortality and morbidity have undergone an increase in recent years. Aggressive behavior leads to undesirable prognosis and tumors demonstrate abnormal proliferation and invasion. In the present review, miRNA functions in lung cancer is described. miRNAs reduce/increase proliferation and metastasis. They modulate cell death and proliferation. Overexpression of oncogenic miRNAs facilitates drug resistance and radio-resistance in lung cancer. Tumor microenvironment components including macrophages and cancer-associated fibroblasts demonstrate interactions with miRNAs in lung cancer. Other factors such as HIF-1α, lncRNAs and circRNAs modulate miRNA expression. miRNAs have also value in the diagnosis of lung cancer. Understanding such interactions can pave the way for developing novel therapeutics in near future for lung cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Kalhor Chegini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Matinahmadi
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun, Poland
| | - Yasaman Sotodeh Dokht Hosnarody
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahdi Rezaei
- Faculty of Medicine, Shahed University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Fattah
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Abdi
- Department of Physics, Safadasht Branch, Islamic Azad university, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
HUS1 as a Potential Therapeutic Target in Urothelial Cancer. J Clin Med 2022; 11:jcm11082208. [PMID: 35456300 PMCID: PMC9031773 DOI: 10.3390/jcm11082208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 12/04/2022] Open
Abstract
Platinum-based chemotherapy is the standard of care with concern to first-line systemic therapy for metastatic disease in urothelial cancer (UC). Resistance to chemotherapy despite an initial response is linked with the ability to remove platinum-based DNA adducts and to repair chemotherapy-induced DNA lesions by various DNA repair proteins. The Rad9-Rad1-HUS1 complex that is loaded onto DNA at sites of damage is involved in checkpoint activation as well as DNA repair. Here, we addressed for the first time the potential influence of HUS1 expression in urothelial carcinogenesis (using two human basal urothelial cancer cell lines UM-UC-3 and HT1197) and its role as a potential therapeutic target for predicting responses to platinum-based chemotherapy. Specific inhibition of HUS1 expression in both cell lines was achieved by specific siRNA and validated by Western blot. In order to define the possible importance of HUS1 in the regulation of cellular proliferation, parental and resistant cells were treated with increasing concentrations of either control or HUS1 siRNA. HUS1 protein expression was observed in both human basal urothelial cancer cell lines UM-UC-3 and HT1197. In cisplatin-sensitive cells, knock-down of HUS1 inhibited cellular proliferation in the presence of cisplatin. On the contrary, knock-down of HUS1 in resistant cells did not result in a re-sensitization to cisplatin. Finally, RNAseq data from the Cancer Genome Atlas provided evidence that HUS1 expression is a significant prognostic factor for poor survival in UC patients. In summary, HUS1 may acts as an oncogene in UC and might be a key determinant of the cellular response to cisplatin-based chemotherapy.
Collapse
|
3
|
Valacchi G, Pambianchi E, Coco S, Pulliero A, Izzotti A. MicroRNA Alterations Induced in Human Skin by Diesel Fumes, Ozone, and UV Radiation. J Pers Med 2022; 12:176. [PMID: 35207665 PMCID: PMC8880698 DOI: 10.3390/jpm12020176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Epigenetic alterations are a driving force of the carcinogenesis process. MicroRNAs play a role in silencing mutated oncogenes, thus defending the cell against the adverse consequences of genotoxic damages induced by environmental pollutants. These processes have been well investigated in lungs; however, although skin is directly exposed to a great variety of environmental pollutants, more research is needed to better understand the effect on cutaneous tissue. Therefore, we investigated microRNA alteration in human skin biopsies exposed to diesel fumes, ozone, and UV light for over 24 h of exposure. UV and ozone-induced microRNA alteration right after exposure, while the peak of their deregulations induced by diesel fumes was reached only at the end of the 24 h. Diesel fumes mainly altered microRNAs involved in the carcinogenesis process, ozone in apoptosis, and UV in DNA repair. Accordingly, each tested pollutant induced a specific pattern of microRNA alteration in skin related to the intrinsic mechanisms activated by the specific pollutant. These alterations, over a short time basis, reflect adaptive events aimed at defending the tissue against damages. Conversely, whenever environmental exposure lasts for a long time, the irreversible alteration of the microRNA machinery results in epigenetic damage contributing to the pathogenesis of inflammation, dysplasia, and cancer induced by environmental pollutants.
Collapse
Affiliation(s)
- Giuseppe Valacchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
- Department of Environmental Sciences and Prevention, University of Ferrara, 44121 Ferrara, Italy
- Department of Food and Nutrition, Kyung Hee University, Seoul 130-701, Korea
| | - Erika Pambianchi
- Animal Science Department, Plants for Human Health Institute, North Carolina State University, Research Campus Kannapolis, Kannapolis, NC 28081, USA; (G.V.); (E.P.)
| | - Simona Coco
- Lung Cancer Unit, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy;
| | | | - Alberto Izzotti
- Department of Experimental Medicine, University of Genova, 16132 Genova, Italy
- UOC Mutagenesis and Cancer Prevention, IRCCS San Martino Hospital, 16132 Genova, Italy
| |
Collapse
|