1
|
Abdelaala N, El-Shoura EAM, Khalaf MM, Zafaar D, A N Ahmed A, Atwa AM, Abdel-Wahab BA, Ahmed YH, Abomandour A, Salem EA. Reno-protective impact of diosmin and perindopril in amikacin-induced nephrotoxicity rat model: modulation of SIRT1/p53/C-FOS, NF-κB-p65, and keap-1/Nrf2/HO-1 signaling pathways. Immunopharmacol Immunotoxicol 2025; 47:287-304. [PMID: 40017009 DOI: 10.1080/08923973.2025.2469220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025]
Abstract
PURPOSE Amikacin (AMC), an aminoglycoside antibiotic known for its rapid and potent bactericidal activity, is also associated with nephrotoxicity. Diosmin and perindopril have been reported to improve renal function and hold promise as therapeutic agents for preventing drug-induced nephrotoxicity. This study aimed to investigate the protective effect of Diosmin and perindopril, either alone or in combination, against renal damage induced by AMC toxicity and to elucidate the underlying mechanisms. MATERIALS AND METHODS The researchers evaluated the impact of Diosmin (50 mg/kg, orally) and perindopril (2 mg/kg, intraperitoneally) on AMC-induced kidney injury (1.2 g/kg, intraperitoneally) in rats. Invasive blood pressure, serum kidney function and toxicity parameters, oxidative stress biomarkers, and inflammatory cytokine levels in serum and renal tissue were assessed. Histopathological changes in the kidney were examined using hematoxylin and eosin (H&E) staining, electron microscopy, and immunohistochemical analysis. The molecular mechanisms underlying the protective effect of the combination pretreatment on kidney injury were investigated using enzyme-linked immunosorbent assay (ELISA) and Western blotting techniques. RESULTS The findings demonstrated that the combination therapy improved kidney function by attenuating pathological changes observed in H&E staining including tubular necrosis and glomerular damage, in addition to reducing levels of kidney function including serum levels of creatinine compared to the AMC group, blood urea nitrogen (BUN) uric acid, and albumin. Mean arterial blood pressure, and toxicity markers including Kidney Injury Molecule-1 (KIM-1), Cystatin-c were also decreased in samples of combination group compared to AMC group. Furthermore, the protective combination therapy downregulated NF-κB-p65, P53, Keap-1, and C-FOS, while upregulating Mammalian sirtuin 1 (SIRT1), inhibitor of nuclear factor kappa B (Iκβ), nuclear factor erythroid 2-related factor 2 (Nrf2), and Heme oxygenase-1 (HO-1) levels. CONCLUSIONS The findings reveal the potential clinical application of combining Diosmin and perindopril to reduce AMC-induced nephrotoxicity, which requires further research in clinical settings.
Collapse
Affiliation(s)
- Nashwa Abdelaala
- GI Medical Oncology Department, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ehab A M El-Shoura
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Marwa M Khalaf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Dalia Zafaar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Giza, Egypt
| | - Ahmed A N Ahmed
- Pharmacology Department, Faculty of Medicine, Al-Azhar University, Assuit, Egypt
| | - Ahmed M Atwa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian of Egyptian Russian University, Cairo, Egypt
- College of Pharmacy, Al-Ayen Iraqi University, AUIQ, An Nasiriyah, Iraq
| | - Basel A Abdel-Wahab
- Pharmacology Department, College of Pharmacy, Najran University, Najran, Saudia Arabia
| | - Yasmine H Ahmed
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ahmed Abomandour
- Clinical Pharmacy Department, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Esraa A Salem
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Sheibin Elkom, Egypt
| |
Collapse
|
2
|
Rashid S. Impact of thymoquinone on the Nrf2/HO-1 and MAPK/NF-κB axis in mitigating 5-fluorouracil-induced acute kidney injury in vivo. Front Oncol 2025; 15:1572095. [PMID: 40492124 PMCID: PMC12146898 DOI: 10.3389/fonc.2025.1572095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 04/15/2025] [Indexed: 06/11/2025] Open
Abstract
Background Chemotherapy-induced organ toxicity is one of the most common toxic effects of 5-fluorouracil (5-FU) in cancer patients. Therefore, new strategies are needed to prevent chemotherapy-induced kidney toxicity. Thymoquinone (TQ), a constituent of the plant Nigella sativa from the family Renunculaceae, has been found to be antiapoptotic, antioxidant, antimicrobial, anti-inflammatory, and protective against renal damage. This study aims to evaluate the effect of TQ in preventing nephrotoxicity induced by 5-FU treatment. Method Male albino Wistar rats were divided into four groups and administered saline (group I), 5-FU (150 mg/kg; group II), 5-FU+TQ (50 mg/kg; group III), and 5-FU+TQ (100 mg/kg; group IV). On the 21st day, rats were killed, and biochemical, histological, serological, and molecular analyses were conducted using kidney tissues and blood samples. Results 5-FU induced kidney injury, as evidenced by alterations in kidney function markers (BUN, Cr, LDH, KIM-1), lipid peroxidation (LPO), ROS generation, histological changes, and a reduction in antioxidant defense mechanism (GSH, GR, GPx, and CAT). Additionally, 5-FU triggered crosstalk between Nrf2 and NF-κB/p38MAPK axis by significantly upregulating p-p38, p-JNK, p-ERK1/2, p-NF-κB, TNF-α, IL-1β, TGF-β, and IL-6, while downregulating Nrf2 and HO-1, resulting in kidney damage. Pre-, post-, and cotreatment with TQ alleviated kidney injury by replenishing antioxidant reserves, reducing serum toxicity, decreasing ROS generation and lipid peroxidation, downregulating p38 MAPK/NF-κB axis/pathway proteins, and upregulating Nrf2 and HO-1, thereby enhancing antioxidant axis and restoring kidney architecture. Conclusion Based on the results obtained in the present study, TQ appears to be a beneficial agent that could be used as an adjuvant therapy for the prevention of 5-FU-induced nephrotoxicity.
Collapse
Affiliation(s)
- Summya Rashid
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
3
|
Liu Y, Ren Q, Qin H, Huang M, Mao J, Xi B, Zhang S. Comparative study on the anti-alcoholic liver disease efficiency of the ethanol- and water-soluble polysaccharides from Baijiu vinasses. Int J Biol Macromol 2025; 299:140087. [PMID: 39842569 DOI: 10.1016/j.ijbiomac.2025.140087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/10/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Ethanol- and water-soluble polysaccharides were extracted from Baijiu vinasses (EP and WP), respectively. EP was dominantly composed by arabinose, glucose and xylose with molar ratio of 8.81: 76.82: 6.9. While, WP was dominantly composed by galactose, glucose and mannose with molar ratio of 8.32: 56.05: 25.19. The molecular weights and reducing sugar contents in EP and WP were 6.2 kDa vs. 16.1 kDa and 24.52 ± 0.97 % vs. 19.77 ± 0.75 %, respectively. Alterations in activation of the Nrf2/HO-1 signalling pathway and increases in the abundance of Lachnospiraceae and Akkermansia and their associated metabolisms could be the general mechanism by which Baijiu vinasses (BV) polysaccharides alleviated alcohol-induced liver disease (ALD) in mice. Due to the different physicochemical characteristics, the ALD alleviation efficiency was different. EP exhibited higher efficiency in oxidative stress suppressing and lipid alternation by activating the peroxisome proliferators-activated receptors (PPAR) signalling pathway. WP exhibited higher efficiency in liver damage repairing with the controlment in tryptophan metabolism pathway. This study exhibited the potential biofunction of BV polysaccharides in ALD alleviation and could promote the BV upcycling.
Collapse
Affiliation(s)
- Yizhou Liu
- Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China; School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Qingxi Ren
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hui Qin
- Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Mengyang Huang
- Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China
| | - Jian Mao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Beidou Xi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Suyi Zhang
- Luzhou Laojiao Co, Ltd, Luzhou, Sichuan 646000, China; National Engineering Research Center of Solid-State Brewing, Luzhou, Sichuan 646000, China.
| |
Collapse
|
4
|
Guo L, Luo H, Lei Y, Gu L, Wang Y, Wang S, Lian Z, Li Y, Xiang Y, Du G, Shao R, Tian X, Zhang H, Shen L, Chen J, Wang Y, Huang N, Niu X, Li J. Diosmetin Inhibits NETs Formation in Neutrophils Through Regulating Nrf2 Signaling. Thorac Cancer 2025; 16:e70040. [PMID: 40110767 PMCID: PMC11923709 DOI: 10.1111/1759-7714.70040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) are important pieces of equipment for neutrophils. Excess NETs play promoting roles in cancer-associated thrombosis (CAT). Therefore, directing NETs formation is a promising therapeutic strategy in thrombosis and related diseases. Diosmetin, an antioxidant flavonoid derived from dietary sources, might be involved in NETs formation and CAT. METHODS Firstly, the tests of cell-free DNA and Immunofluorescence were applied to evaluate the NETs levels of neutrophils. Luminol-based chemiluminescence and the DCFH-DA probe were used to detect the levels of reactive oxygen species (ROS) in neutrophils. Then, network pharmacological analysis and molecular docking were used to predict potential target molecules of diosmetin. The RT-qPCR was performed to measure the levels of Nrf2 and HO-1. A series of functional assays of neutrophils were used to examine the effect of diosmetin on other neutrophil functions. Finally, an animal model of deep vein thrombosis was constructed to assess the effect of diosmetin on thrombosis. RESULTS Diosmetin reduced NETs and ROS levels in neutrophils. Then, molecular mechanisms analysis suggested that Nrf2 might be the primary target of diosmetin. Diosmetin treatment increased the levels of Nrf2 and HO-1 in NETs-generating neutrophils. An inhibitor of Nrf2 diminished the negative effect of diosmetin on NETs generation. Lastly, the murine thrombosis model results indicated that diosmetin treatment reduced thrombosis via NETs formation. CONCLUSION Diosmetin exerts as anti-NETs effect through Nrf2 signaling in neutrophils, showing the therapeutic potential in thromboembolism and related pathological processes, such as CAT.
Collapse
Affiliation(s)
- Lijuan Guo
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Hongyang Luo
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Yuxin Lei
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Leiyan Gu
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Yaohui Wang
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Siyuan Wang
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Zihan Lian
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Yuhao Li
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Yanlan Xiang
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Guanhua Du
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Rui Shao
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Xiaoxuan Tian
- State Key Laboratory of Chinese Medicine ModernizationTianjin University of Traditional Chinese MedicineTianjinChina
| | - Han Zhang
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Linjie Shen
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Junli Chen
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Yi Wang
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Ning Huang
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
| | - Xiaoyu Niu
- Department of Obstetrics and GynecologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan UniversityChengduSichuanChina
| | - Jingyu Li
- Department of PathophysiologyWest China School of Basic Medical Sciences and Forensic Medicine, Sichuan UniversityChengduSichuanChina
- State Key Laboratory of Component‐Based Chinese MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
5
|
Albukhari TA, Bagadood RM, Bokhari BT, Filimban WA, Sembawa H, Nasreldin N, Gadalla HE, El-Boshy ME. Chrysin Attenuates Gentamicin-Induced Renal Injury in Rats Through Modulation of Oxidative Damage and Inflammation via Regulation of Nrf2/AKT and NF-kB/KIM-1 Pathways. Biomedicines 2025; 13:271. [PMID: 40002685 PMCID: PMC11853687 DOI: 10.3390/biomedicines13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND Gentamicin (GM) is extensively used as an antibiotic for the treatment of infections caused by Gram-negative bacteria. Oxidative stress and proinflammatory cytokines are implicated in GM-induced renal damage. Chrysin (CH), also known as 5,7-dihydroxyflavone, has been used in traditional medicine to treat various kidney disorders. The aim of this study was to investigate the antioxidant, anti-apoptotic, and anti-inflammatory effects of CH against nephrotoxicity induced by GM. METHODS Male rats were separated into four equal groups: a negative control group (NC), a CH-treated group (100 mg/kg/day per os), a group treated with GM (100 mg/kg/day IM), and a group treated with both GM and CH (100 mg/kg/day), for 10 days. Blood and urine renal markers were investigated. RESULTS GM caused increases in the serum creatinine and urea levels and decreases in creatinine clearance, urine flow, and urine volume in the GM-treated rats. Moreover, there were increases in the levels of IL-1β, TNF-α, IL-18, and MDA in the renal tissues, with an augmented expression of NF-κB/KIM-1, as well as decreases in antioxidant marker (GSH, GPx, CAT, and SOD) activities and decreased expressions of the anti-inflammatory transcription factors Nrf2 and AKT. The simultaneous treatment with CH in the GM-treated group protected renal tissues against the nephrotoxicity induced by GM, as demonstrated by the normalization of renal markers and improvement in histopathological damage. CONCLUSIONS This study reveals that CH may attenuate GM-induced renal toxicity in rats.
Collapse
Affiliation(s)
- Talat A. Albukhari
- Department of Hematology and Immunology, Faculty of Medicine, Umm Alqura University, Makkah 24382, Saudi Arabia
| | - Rehab M. Bagadood
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (R.M.B.); (B.T.B.)
| | - Bayan T. Bokhari
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia; (R.M.B.); (B.T.B.)
| | - Waheed A. Filimban
- Pathology Department, Faculty of Medicine, Umm Alqura University, Makkah 24382, Saudi Arabia;
| | - Hatem Sembawa
- Department of Surgery, Faculty of Medicine, Umm Alqura University, Makkah 24382, Saudi Arabia;
| | - Nani Nasreldin
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga P.O. Box 72511, Egypt;
| | - Hossam E. Gadalla
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura P.O. Box 35516, Egypt;
| | - Mohamed E. El-Boshy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura P.O. Box 35516, Egypt;
| |
Collapse
|
6
|
Albadrani GM, Altyar AE, Kensara OA, Haridy MA, Sayed AA, Mohammedsaleh ZM, Al-Ghadi MQ, Saleem RM, Abdel-Daim MM. Lycopene alleviates 5-fluorouracil-induced nephrotoxicity by modulating PPAR-γ, Nrf2/HO-1, and NF-κB/TNF-α/IL-6 signals. Ren Fail 2024; 46:2423843. [PMID: 39540361 PMCID: PMC11565692 DOI: 10.1080/0886022x.2024.2423843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 10/05/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
5-Fluorouracil (5-FU) is one of the most used anticancer drugs. However, its nephrotoxicity-associated drawback is of clinical concern. Lycopene (LYC) is a red carotenoid with remarkable anti-inflammatory and anti-oxidative properties. In this study, rats were divided randomly into five groups: control, lycopene (10 mg) (10 mg/kg/day; P.O), 5-FU (30 mg/kg/day; i.p.), Lycopene (5 mg) + 5-FU (5 mg/kg + 30 mg/kg/day), and lycopene (10 mg) + 5-FU (10 mg/kg + 30 mg/kg/day). LYC attenuated the loss of renal function induced by 5-FU in a dose-dependent manner. Rats co-treated with LYC had lower serum urea, creatinine, uric acid and KIM-1 levels, and a higher serum albumin level than those receiving 5-FU alone. Furthermore, co-treatment with the high dose of LYC maintained renal oxidant-antioxidant balance by ameliorating/preventing the loss of antioxidants and the elevation of malondialdehyde. Rats treated with 5-FU had markedly lower renal levels of PPAR-gamma, HO-1, Nfr2, and Il-10 and higher levels of NF-kB, TNF-alpha, and IL6 compared to the control rats. Co-treatment with LYC attenuated the reduction in PPAR-gamma, HO-1, Nfr2, and IL-10 levels and moderated the elevated levels of NF-kB, TNF-alpha, and IL-6. The kidneys from rats co-treated with lycopene (10 mg) + 5-FU did not show the degenerative changes in the glomerular tufts and tubules observed for the rats treated with 5-FU alone. In conclusion, LYC is a promising therapeutic strategy for attenuating 5-FU-induced nephrotoxicity through the restoration of antioxidant activities and inhibition of inflammatory responses by modulating PPAR-γ, Nrf2/HO-1, and NF-κB/TNF-α/IL-6, signals.
Collapse
Affiliation(s)
- Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Osama A. Kensara
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohie A.M Haridy
- Department of Pathology and Laboratory Diagnosis, College of Veterinary Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Muath Q. Al-Ghadi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rasha Mohammed Saleem
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Al-Baha University, Al-Baha, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
7
|
Mazhar MU, Naz S, Khan JZ, Azam S, Ghazanfar S, Tipu MK. Protective potential of Bacillus subtilis (NMCC-path-14) against extraarticular manifestations during acute and sub-acute phase of arthritis using mice model. Biochem Biophys Res Commun 2024; 733:150708. [PMID: 39298918 DOI: 10.1016/j.bbrc.2024.150708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/22/2024]
Abstract
Extra-articular manifestations (EAM), which are associated with rheumatoid arthritis (RA), affect the quality of life of patients and are one of the critical causes of early mortality. This study was aimed at investigating whether Bacillus subtilis NMCC-path-14 (1 × 108 CFU/animal/day) could serve as a valuable therapeutic agent in managing EAM using complete Freund's adjuvant (CFA) induced arthritis during acute and sub-acute phases. Arthritis was induced using intra-dermal administration of CFA in the right hind paw of mice on day 1. Dexamethasone (Dexa) (5 mg/kg/day/animal) was used as a standard treatment. Animals in Dexa and Bacillus subtilis concurrent treatment (BS-CT) received treatments on day 1. The Bacillus subtilis pre-treatment (BS-PT) group received a probiotic dose 7 days before arthritis induction. Parameters like body weight, relative organ weight, colon length, hematology, serum biochemistry, antioxidant capacity, and histopathology of liver, kidney, spleen, colon, stress-related behavioral changes, and cortisol levels were evaluated on days 7 (acute) and 14 (sub-acute). Dexa failed to manage the EAM in arthritic mice and instead exacerbated them. On the other hand, B. subtilis NMCC-path-14 significantly declined EAM with no notable side effects, highlighting its safety and effectiveness. The current data show that B. subtilis NMCC-path-14 may be an alternative option for arthritis treatment that can reduce systemic symptoms associated with arthritis. More studies are required to comprehend the underlying mechanisms of mitigating the EAM by B. subtilis NMCC-path-14.
Collapse
Affiliation(s)
- Muhammad Usama Mazhar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sadaf Naz
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Shahzad Azam
- Department of Pathology, Fazaia Medical College, Air University, Islamabad, Pakistan.
| | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agricultural Research Centre (NARC), Islamabad, Pakistan.
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
8
|
Abd-Elhamid TH, Althumairy D, Bani Ismail M, Abu Zahra H, Seleem HS, Hassanein EHM, Ali FEM, Mahmoud AR. Neuroprotective effect of diosmin against chlorpyrifos-induced brain intoxication was mediated by regulating PPAR-γ and NF-κB/AP-1 signals. Food Chem Toxicol 2024; 193:114967. [PMID: 39197517 DOI: 10.1016/j.fct.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Chlorpyrifos (CPF) is a widely used organophosphate (OP) pesticide. Unfortunately, pesticides are known to cause neuronal intoxication. Diosmin (DS) is an antioxidant, anti-inflammatory, and neuroprotective flavonoid with high efficacy and safety. We plan to investigate the efficacy of DS in treating CPF-induced neurotoxicity, as well as the mechanisms underlying the protective effects. In our study, rats were randomized into 5 groups: control, DS (50 mg/kg), CPF (10 mg/kg), CPF + DS (25 mg/kg), and CPF + DS (50 mg/kg). The results indicated that DS ameliorated neuronal intoxication induced by CPF, evidenced by decreasing Tau, p-Tau, and β-amyloid. Histological examinations support these findings. DS significantly ameliorated CPF-induced neuronal oxidative injury by decreasing MDA content and elevating GSH, GST, and SOD levels mediated by PPAR-γ upregulation. DS suppressed CPF-induced brain inflammation by decreasing MPO enzymatic activity and TNF-α, IL-1β, and IL-6 levels mediated by downregulation of NF-κB/AP-1(c-FOS and c-JUN) signal. Of note, DS protective effects were dose dependent. In conclusion, our data suggested that DS was a promising therapeutic strategy for attenuating CPF-induced neuronal intoxication by restoring oxidant-antioxidant balance and inhibiting inflammatory response in brain tissues.
Collapse
Affiliation(s)
- Tarek Hamdy Abd-Elhamid
- Department of Histology and Cell Biology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt; Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan
| | - Duaa Althumairy
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohammad Bani Ismail
- Department of Basic Medical Sciences, Faculty of Medicine, Aqaba Medical Sciences University, Aqaba, 77110, Jordan
| | - Hamad Abu Zahra
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Hanan S Seleem
- Histology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum-Menoufia, Egypt; Department of Basic Medical Sciences, Unaizah College of Medicine and Medical Sciences, Qassim University, Kingdom of Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba, 77110, Jordan.
| | - Amany Refaat Mahmoud
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt; Department of Anatomy and Histology, College of Medicine, Qassim University, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Singh E, Matada GSP, Dhiwar PS, Patil RB, Pal R. In-silico based discovery of potential Keap1 inhibitors using the strategies of pharmacophore screening, molecular docking, and MD simulation studies. BIOIMPACTS : BI 2024; 15:30335. [PMID: 40256239 PMCID: PMC12008509 DOI: 10.34172/bi.30335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 04/22/2025]
Abstract
Introduction The main objective of this research is to identify potential leads for developing potent Keap1 inhibitors. Methods In the current research article, in-silico methods have been employed to discover potential Keap1 inhibitors. 3D-QSAR was generated using the ChemBL database of Keap1 inhibitors with IC50. The best pharmacophore was selected for the screening of three different libraries namely Asinex, MiniMaybridge, and Zinc. The molecules screened from the databases were filtered through druggability rules and molecular docking studies. The best binding molecules obtained after docking studies were subjected to physicochemical properties toxicity determination by in-silico methods. The best hits were studied for stability in the cavity of Keap1 by molecular dynamic simulations. Results The virtual screening of different databases was carried out separately and three leads, were obtained. These lead molecules ASINEX 508, MiniMaybridgeHTS_01719, and ZINC 0000952883 showed the best binding in the Keap1 cavity. The molecular dynamic simulations of the binding complexes of the leads support the docking analysis. The leads (ASINEX 508, MiniMaybridgeHTS_01719, and ZINC 0000952883) were stabilized in the Keap1 binding cavity throughout 100 ns simulation, with average RMSD values of 0.100, 0.114, and 0.106 nm, respectively. Conclusion This research proposes three lead molecules as potential Keap1 inhibitors based on high throughput screening, docking, and MD simulation studies. These hit molecules can be used for further design and development of Keap1 inhibitors. This research provides the preliminary data for discovering novel Keap1 inhibitors. It opens new avenues for medicinal chemists to explore antioxidant-stimulating molecules targeting the Keap1-Nrf2 pathway.
Collapse
Affiliation(s)
- Ekta Singh
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
- Aditya Bangalore Institute of Pharmacy Education and Research, Department of Pharmaceutical Chemistry, 560064, Karnataka, India
| | - Gurubasavaraja Swamy Purawarga Matada
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Prasad Sanjay Dhiwar
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| | - Rajesh B. Patil
- Sinhgad Technical Education Society’s, Sinhgad College of Pharmacy, Department of Pharmaceutical Chemistry, Off Sinhgad Road, Vadgaon (Bk), Pune 411041, Maharashtra, India
| | - Rohit Pal
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru 560107, Karnataka, India
| |
Collapse
|
10
|
Mohammedsaleh ZM, Hassanein EHM, Ali FEM, Althagafy HS, Al-Abbas NS, Atwa AM. Perindopril Dampens Cd-induced Nephrotoxicity by Suppressing Inflammatory Burden, Ang II/Ang 1-7, and Apoptosis Signaling Pathways. Biol Trace Elem Res 2024; 202:3193-3203. [PMID: 37848587 DOI: 10.1007/s12011-023-03907-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
Cadmium (Cd) is one of the most abundant toxic heavy metals, and its exposure is linked to serious kidney intoxication, a major health problem. Evidence reported that inflammatory damage is a key factor in Cd renal intoxication. Perindopril (PER) is an angiotensin-converting enzyme inhibitor approved for treating hypertension and other cardiovascular problems. Significantly, RAS activation results in inflammatory damage. Our study aimed to examine the renoprotective effects of PER in Cd-induced nephrotoxicity, the impact of inflammation, and the underlying molecular mechanisms. PER was given at a dose of 1 mg/kg per day. Cd was injected at a dose of 1.2 mg/kg, as a single dose. Treatment with PER led to a significant decrease in serum levels of urea, creatinine, uric acid, and urine albumin/creatinine ratio. PER effectively mitigated inflammation by decreasing MPO, NO, IL-1β, IL-6, and INF-γ levels mediated by downregulating NF-κB expression and suppressing JAK-1 and STAT3 phosphorylation. PER modulates Ang II/Ang 1-7 axis in Cd-intoxicated rats by decreasing Ang II expression and increasing Ang-(1-7) expression. PER inhibits Cd-induced apoptosis by lowering Bax, cytochrome c, and cleaved caspase 3 expressions while increasing Bcl-2 expression. In conclusion, PER dampens Cd-induced kidney intoxication by modulating Ang II/Ang 1-7 axis, suppressing NF-κB, JAK-1/STAT3, and apoptosis signals.
Collapse
Affiliation(s)
- Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Nouf S Al-Abbas
- Department of Biology, Jamoum University College, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
11
|
Hassanein EHM, Abdel-Reheim MA, Althagafy HS, Hemeda MS, Gad RA, Abdel-Sattar AR. Nifuroxazide attenuates indomethacin-induced renal injury by upregulating Nrf2/HO-1 and cytoglobin and suppressing NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3985-3994. [PMID: 37994949 DOI: 10.1007/s00210-023-02851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/10/2023] [Indexed: 11/24/2023]
Abstract
Indomethacin (INDO) is an NSAID with remarkable efficacy and widespread utilization for alleviating pain. Nevertheless, renal function impairment is an adverse reaction linked to INDO usage. Nifuroxazide (NFX), an oral nitrofuran antibiotic, is frequently employed as an intestinal anti-infective agent. Our study aimed to investigate the renoprotective effects of NFX against INDO-induced nephrotoxicity and explore the protection mechanisms. Four groups of rats were allocated to (I) the normal control, (II) the NFX-treated (50 mg/kg), (III) INDO control (20 mg/kg), and (IV) NFX + INDO. NFX attenuates renal impairment in INDO-induced renal injury, proved by decreasing serum levels of urea, creatinine, uric acid, and NGAL while the albumin was elevated. NFX mitigates renal oxidative stress by decreasing MDA levels and restoring the antioxidants' GSH and SOD levels mediated by upregulating Nrf2, HO-1, and cytoglobin pathways. NFX mitigated renal inflammation and effectively decreased MPO, IL-1β, and TNF-α levels in the rat's kidney mediated by significant downregulation of NADPH-oxidase and NF-κB expression and suppression of JAK-1 and STAT3 phosphorylation. NFX mitigates renal apoptosis by decreasing the expression of cleaved caspase-3 expression. In conclusion, NFX treatment prevents INDO nephrotoxicity by regulating Nrf2/HO-1, cytoglobin, NADPH-oxidase, NF-κB, and JAK-1/STAT3 signals.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra, 11961, Saudi Arabia.
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62521, Egypt.
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohamed S Hemeda
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Rania A Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| | - Asmaa Ramadan Abdel-Sattar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef (NUB), Beni-Suef, 62511, Egypt
| |
Collapse
|
12
|
Hamdy S, Elshopakey GE, Risha EF, Rezk S, Ateya AI, Abdelhamid FM. Curcumin mitigates gentamicin induced-renal and cardiac toxicity via modulation of Keap1/Nrf2, NF-κB/iNOS and Bcl-2/BAX pathways. Food Chem Toxicol 2024; 183:114323. [PMID: 38056816 DOI: 10.1016/j.fct.2023.114323] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
Gentamicin (GEN) is an aminoglycoside antibiotic used to treat gram-negative bacterial infections. Our study aimed to explore curcumin's (CMN) protective role against GEN-induced renal and cardiac toxicity. Rats were randomly classified into 4 equal groups; Control (cont), GEN (100 mg/kg b.wt, i.p.) for seven days, CMN (200 mg/kg b.wt, orally) for 21 days, and CMN + GEN groups. GEN caused renal and cardiac dysfunctions; increased urea, creatinine, uric acid, cystatin C, CK-MB, LDH, and troponin I serum levels. MDA level was elevated significantly while activities of SOD, CAT, and GSH level were reduced significantly in renal and cardiac tissues. GEN-intoxicated rats showed up-regulation of NF-κB, IL-1β, Keap1, HMOX1, and BAX with down-regulation of Nrf2, and Bcl-2 mRNA expression in renal and cardiac tissues. Also, GEN-induced up-regulation of renal mRNA expression of KIM-1, NGAL, and intermediate filament proteins [desmin, nestin, and vimentin] as well cardiac gene expression of cMyBP-C and H-FABP. GEN-induced toxicity was significantly attenuated by CMN co-treatment as CMN improved renal and cardiac biomarkers, reduced oxidative stress and inflammatory response, and reversed alterations in mRNA expression of all tested renal and cardiac genes. These outcomes indicated that CMN could protect renal and cardiac tissues against GEN-induced oxidative stress, inflammation, and apoptosis.
Collapse
Affiliation(s)
- Sara Hamdy
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Engy F Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Shaymaa Rezk
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed I Ateya
- Department of Development of Animal wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma M Abdelhamid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
13
|
Althagafy HS, Ali FEM, Hassanein EHM, Mohammedsaleh ZM, Kotb El-Sayed MI, Atwa AM, Sayed AM, Soubh AA. Canagliflozin ameliorates ulcerative colitis via regulation of TLR4/MAPK/NF-κB and Nrf2/PPAR-γ/SIRT1 signaling pathways. Eur J Pharmacol 2023; 960:176166. [PMID: 37898288 DOI: 10.1016/j.ejphar.2023.176166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 10/30/2023]
Abstract
Ulcerative colitis (UC) is one of the most common subtypes of inflammatory bowel disease (IBD) that affects the colon and is characterized by severe intestinal inflammation. Canagliflozin is a widely used antihyperglycemic agent, a sodium-glucose cotransporter-2 (SGLT2) inhibitor that enhances urinary glucose excretion. This study aims to provide insights into the potential benefits of canagliflozin as a treatment for UC by addressing possible cellular signals. Acetic acid (AA; 4% v/v) was administered intrarectally to induce colitis. Canagliflozin is given orally at a dose of 10 mg/kg/day. Canagliflozin attenuates inflammation in AA-induced colitis, evidenced by significant and dose-dependently downregulation of p38 MAPK, NF-κB-p65, IKK, IRF3, and NADPH-oxidase as well as colonic levels of IL-6 and IL-1β and MPO enzymatic activity. Canagliflozin mitigates colonic oxidative stress by decreasing MDA content and restoring SOD enzymatic activities and GSH levels mediated by co-activating of Nrf2, PPARγ, and SIRT1 pathways. Moreover, an in-silico study confirmed that canagliflozin was specific to all target proteins in this study. Canagliflozin's binding affinity with its target proteins indicates and confirms its effectiveness in regulating these pathways. Also, network pharmacology analysis supported that canagliflozin potently attenuates UC via a multi-target and multi-pathway approach.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Mohamed I Kotb El-Sayed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Ain Helwan, Helwan, Cairo, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, 71515, Egypt
| | - Ayman A Soubh
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Giza, 12566, Egypt
| |
Collapse
|
14
|
Hassanein EHM, Ibrahim IM, Abd-Alhameed EK, Sharawi ZW, Jaber FA, Althagafy HS. Nrf2/HO-1 as a therapeutic target in renal fibrosis. Life Sci 2023; 334:122209. [PMID: 37890696 DOI: 10.1016/j.lfs.2023.122209] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 10/29/2023]
Abstract
Chronic kidney disease (CKD) is one of the most prevalent chronic diseases and affects between 10 and 14 % of the world's population. The World Health Organization estimates that by 2040, the disease will be fifth in prevalence. End-stage CKD is characterized by renal fibrosis, which can eventually lead to kidney failure and death. Renal fibrosis develops due to multiple injuries and involves oxidative stress and inflammation. In the human body, nuclear factor erythroid 2-related factor 2 (Nrf2) plays an important role in the expression of antioxidant, anti-inflammatory, and cytoprotective genes, which prevents oxidative stress and inflammation damage. Heme oxygenase (HO-1) is an inducible homolog influenced by heme products and after exposure to cellular stress inducers such as oxidants, inflammatory chemokines/cytokines, and tissue damage as an outcome or downstream of Nrf2 activation. HO-1 is known for its antioxidative properties, which play an important role in regulating oxidative stress. In renal diseases-induced tissue fibrosis and xenobiotics-induced renal fibrosis, Nrf2/HO-1 has been targeted with promising results. This review summarizes these studies and highlights the interesting bioactive compounds that may assist in attenuating renal fibrosis mediated by HO-1 activation. In conclusion, Nrf2/HO-1 signal activation could have a renoprotective effect strategy against CKD caused by oxidative stress, inflammation, and consequent renal fibrosis.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah 21589, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Mohtadi S, Shariati S, Mansouri E, Khodayar MJ. Nephroprotective effect of diosmin against sodium arsenite-induced renal toxicity is mediated via attenuation of oxidative stress and inflammation in mice. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105652. [PMID: 38072527 DOI: 10.1016/j.pestbp.2023.105652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/04/2023] [Accepted: 10/16/2023] [Indexed: 12/18/2023]
Abstract
Arsenic compounds, which are used in different industries like pesticide manufacturing, cause severe toxic effects in almost all organs, including the kidneys. Since the primary route of exposure to arsenic is through drinking water, and millions of people worldwide are exposed to unsafe levels of arsenic that can pose a threat to their health, this research was performed to investigate the nephroprotective effects of Diosmin (Dios), a flavonoid found in citrus fruits, against nephrotoxicity induced by sodium arsenite (SA). To induce nephrotoxicity, SA (10 mg/kg, oral gavage) was administered to mice for 30 days. Dios (25, 50, and 100 mg/kg, oral gavage) was given to mice for 30 days prior to SA administration. After the study was completed, animals were euthanized and blood and kidney samples were taken for biochemical and histopathological assessments. Results showed that SA-treated mice significantly increased the blood urea nitrogen and creatinine levels in the serum. This increase was associated with significant kidney tissue damage in SA-treated mice, which was confirmed by histopathological studies. Furthermore, SA enhanced the amounts of renal thiobarbituric acid reactive substances and decreased total thiol reserves, as well as the activity of antioxidant enzymes such as catalase, superoxide dismutase, and glutathione peroxidase. Also, in the SA-exposed group, an increase in the levels of kidney inflammatory biomarkers, including nitric oxide and tumor necrosis factor-alpha was observed. The western blot analysis indicated an elevation in the protein expression of kidney injury molecule-1 and nuclear factor-kappa B in SA-treated mice. However, pretreatment with Dios ameliorated the SA-related renal damage in mice. Our findings suggest that Dios can protect the kidneys against the nephrotoxic effects of SA by its antioxidant and anti-inflammatory characteristics.
Collapse
Affiliation(s)
- Shokooh Mohtadi
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Saeedeh Shariati
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Javad Khodayar
- Department of Toxicology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Toxicology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
16
|
Hassanein EHM, Kamel EO, Gad-Elrab WM, Ahmed MA, Mohammedsaleh ZM, Ali FEM. Lansoprazole attenuates cyclophosphamide-induced cardiopulmonary injury by modulating redox-sensitive pathways and inflammation. Mol Cell Biochem 2023; 478:2319-2335. [PMID: 36717473 PMCID: PMC10520119 DOI: 10.1007/s11010-023-04662-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 01/09/2023] [Indexed: 02/01/2023]
Abstract
Cyclophosphamide (CPA) is a classical chemotherapeutic drug widely used as an anticancer and immunosuppressive agent. However, it is frequently associated with significant toxicities to the normal cells of different organs, including the lung and heart. Lansoprazole (LPZ), a proton pump inhibitor (PPI), possesses antioxidant and anti-inflammatory properties. The current study investigated how LPZ protects against CPA-induced cardiac and pulmonary damage, focusing on PPARγ, Nrf2, HO-1, cytoglobin, PI3K/AKT, and NF-κB signaling. Animals were randomly assigned into four groups: normal control group (received vehicle), LPZ only group (Rats received LPZ at a dose of 50 mg/kg/day P.O. for 10 days), CPA group (CPA was administered (200 mg/kg) as a single i.p. injection on the 7th day), and cotreatment group (LPZ plus CPA). Histopathological and biochemical analyses were conducted. Our results revealed that LPZ treatment revoked CPA-induced heart and lung histopathological alterations. Also, LPZ potently mitigated CPA-induced cardiac and pulmonary oxidative stress through the activation of PPARγ, Nrf2/HO-1, cytoglobin, and PI3K/AKT signaling pathways. Also, LPZ effectively suppressed inflammatory response as evidenced by down-regulating the inflammatory strategic controller NF-κB, MPO, and pro-inflammatory cytokines. The present findings could provide a mechanistic basis for understanding LPZ's role in CPA-induced cardiopulmonary injury through the alleviation of oxidative stress and inflammatory burden.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Esam O Kamel
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Wail M Gad-Elrab
- Department of Human Anatomy & Embryology, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Mohammed A Ahmed
- Pathology Department, Faculty of Medicine, Al-Azhar University, Assiut, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Kingdom of Saudi Arabia
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt.
| |
Collapse
|
17
|
Ali FEM, Hassanein EHM, El-Bahrawy AH, Hemeda MS, Atwa AM. Neuroprotective effect of lansoprazole against cisplatin-induced brain toxicity: Role of Nrf2/ARE and Akt/P53 signaling pathways. J Chem Neuroanat 2023; 132:102299. [PMID: 37271475 DOI: 10.1016/j.jchemneu.2023.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
Cisplatin is a chemotherapeutic agent usually used in treating different patterns of malignancies. One of the significant apparent complications of cisplatin chemotherapy is brain toxicity. The present study was conducted to evaluate the protective effects of lansoprazole on cisplatin-induced cortical intoxication. Thirty-two rats were allocated into four groups (8 rats/group); group I: received only a vehicle for 10 days, group II: lansoprazole was administered (50 mg/kg) via oral gavage for 10 days, group III: On 5th day of the experiment, rats were given cisplatin (10 mg/kg) i.p. once to induce cortical injury. Group IV: rats were given lansoprazole for 5 days before cisplatin and 5 days afterward. Lansoprazole administration significantly improved cisplatin-induced behavioral changes, as evidenced by decreasing the immobility time in forced swimming and open field tests. Besides, lansoprazole improved cortical histological changes, restored cortical redox balance, enhanced Nrf2/ARE expression, cisplatin-induced neuronal apoptosis, and dampened cisplatin inflammation. In addition, lansoprazole modulated cortical Akt/p53 signal. The present work was the first to show that lansoprazole co-administration reduced cortical toxicity in cisplatin-treated rats via multiple signaling pathways. The current findings provided crucial information for developing novel protective strategies to reduce cisplatin cortical toxicity.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Ali H El-Bahrawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed S Hemeda
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Port Said University, Port Said, Egypt
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
18
|
Althagafy HS, Sharawi ZW, Batawi AH, Almohaimeed HM, Al-Thubiani WS, Hassanein EHM, Rateb A. Buspirone attenuated methotrexate-induced hippocampal toxicity in rats by regulating Nrf2/HO-1, PPAR-γ, NF-κB/nNOS, and ROS/NLRP3/caspase-1 signaling pathways. J Biochem Mol Toxicol 2023; 37:e23414. [PMID: 37341015 DOI: 10.1002/jbt.23414] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
Methotrexate (MTX) is a chemotherapeutic agent widely used to treat a variety of tumors. Nonetheless, MTX-induced hippocampal neurotoxicity is a well-defined dose-limiting adverse effect that limits clinical utility. Proinflammatory cytokine production and oxidative stress are possible mechanisms for MTX-induced neurotoxicity. Buspirone (BSP), a partial agonist of the 5-HT1a receptor (5-HT1aR), has emerged as an anxiolytic drug. BSP has been shown to possess antioxidant and anti-inflammatory effects. The current study investigated BSP's potential anti-inflammatory and antioxidant effects in attenuating MTX-induced hippocampal toxicity. Rats received either BSP (1.5 mg/kg) orally for 10 days and MTX (20 mg/kg) i.p. on Day 5. BSP administration markedly protected hippocampal neurons from drastic degenerated neuronal changes induced by MTX. BSP significantly attenuated oxidative injury by downregulating Kelch-like ECH-associated protein 1 expression while potently elevating hippocampal Nrf2, heme oxygenase-1, and peroxisome proliferator-activated receptor expression. BSP dampened inflammation by reducing NO2 - , tumor necrosis factor-alpha, IL-6, and interleukin 1 beta levels mediated by downregulating NF-κB and neuronal nitric oxides synthase expression. Moreover, BSP potently counteracted hippocampal pyroptosis by downregulating NLRP3, ASC, and cleaved-caspase-1 proteins. Therefore, BSP may represent a promising approach to attenuate neurotoxicity in patients receiving MTX.
Collapse
Affiliation(s)
- Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Zeina W Sharawi
- Department Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ashwaq H Batawi
- Department Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hailah M Almohaimeed
- Department of Basic Science, College of Medicine, Princess Nourah Bint Abdul Rahman University, Riyadh, Saudi Arabia
| | - Wafa S Al-Thubiani
- Department of Biology, Faculty of Applied Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Amal Rateb
- Department of Human Anatomy and Embryology, Faculty of Medicine, Assuit University, Assiut, Egypt
- Department of Basic Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arbia
| |
Collapse
|
19
|
Hassanein EHM, Ali FEM, Mohammedsaleh ZM, Atwa AM, Elfiky M. The involvement of Nrf2/HO-1/cytoglobin and Ang-II/NF-κB signals in the cardioprotective mechanism of lansoprazole against cisplatin-induced heart injury. Toxicol Mech Methods 2023; 33:316-326. [PMID: 36258671 DOI: 10.1080/15376516.2022.2137870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 12/08/2022]
Abstract
Cardiac toxicity is a serious adverse effect of cisplatin (CIS). Lansoprazole (LPZ) is a proton pump inhibitor with promising cardioprotective effects. Our study planned to examine the cardioprotective effect of LPZ against CIS-induced cardiac injury. To achieve this goal, 32 male rats were randomly allocated into four groups. CIS, 7 mg/kg, was injected i.p. on the fifth day of the experiment. LPZ was administered via oral gavage at a dose of 50 mg/kg. The present study revealed that CIS injection induced a remarkable cardiac injury evidenced by an increase in serum ALP, AST, CK-MB, LDH, and troponin-I levels. The cardiac oxidative damage was also observed after CIS injection and mediated by downregulation of GSH, SOD, GST, Nrf2, HO-1, PPAR-γ, and cytoglobin levels associated with the upregulation of MDA content. Besides, CIS injection caused a significant inflammatory reaction mediated by alteration of cardiac NF-κB, STAT-3, p-STAT-3, and IκB expressions. Additionally, cardiac Ang-II expression was significantly increased in CIS control rats, while Ang 1-7 expression was significantly reduced relative to normal rats. In contrast, LPZ administration remarkably ameliorated these changes in the heart of CIS-intoxicated rats. Collectively, LPZ potently attenuated cardiac toxicity induced by CIS via regulation of Nrf2/HO-1, PPAR-γ, cytoglobin, IκB/NF-κB/STAT-3, and Ang-II/Ang 1-7 signals.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Mohamed Elfiky
- Human Anatomy and Embryology Department, Faculty of Medicine, Menoufia University, Shebin ElKoum-Menoufia, Egypt
- Anatomy Department, Faculty of Medicine, Batterjee Medical College, Jedda, Saudi Arabia
| |
Collapse
|
20
|
Balaha MF, Alamer AA, Eisa AA, Aljohani HM. Shikonin Alleviates Gentamicin-Induced Renal Injury in Rats by Targeting Renal Endocytosis, SIRT1/Nrf2/HO-1, TLR-4/NF-κB/MAPK, and PI3K/Akt Cascades. Antibiotics (Basel) 2023; 12:antibiotics12050826. [PMID: 37237729 DOI: 10.3390/antibiotics12050826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Gentamicin causes kidney injury due to its accumulation in proximal tubule epithelial cells via the megalin/cubilin/CLC-5 complex. Recently, shikonin has been shown to have potential anti-inflammatory, antioxidant, antimicrobial, and chloride channel-inhibiting effects. The current study investigated the alleviation of gentamicin-induced renal injury by shikonin while preserving its bactericidal effect. Nine-week-old Wistar rats were administered 6.25, 12.5, and 25 mg/kg/day shikonin orally, one hour after the i.p. injection of 100 mg/kg/day gentamicin for seven days. Shikonin significantly and dose-dependently alleviated gentamicin-induced renal injury, as revealed by restoring normal kidney function and histological architecture. Furthermore, shikonin restored renal endocytic function, as indicated by suppressing the elevated renal megalin, cubilin, and CLC-5 and enhancing the reduced NHE3 levels and mRNA expressions induced by gentamicin. These potentials could be attributed to the modulation of the renal SIRT1/Nrf2/HO-1, TLR-4/NF-κB/MAPK, and PI3K/Akt cascades, which enhanced the renal antioxidant system and suppressed renal inflammation and apoptosis, as indicated by enhancements of SIRT1, Nrf2, HO-1, GSH, SOD, TAC, Iκb-α, Bcl-2, PI3K, and Akt levels and mRNA expressions, with reduction of TLR-4, NF-κB, MAPK, IL-1β, TNF-α, MDA, iNOS, NO, cytochrome c, caspase-3, Bax levels, and Bax/Bcl-2 ratio. Therefore, shikonin is a promising therapeutic agent for alleviating gentamicin-induced renal injury.
Collapse
Affiliation(s)
- Mohamed F Balaha
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Pharmacology Department, Faculty of Medicine, Tanta University, El-Gish Street, Tanta 31527, Egypt
| | - Ahmed A Alamer
- Clinical Pharmacy Department, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alaa A Eisa
- Department of Medical Laboratories Technology, College of Applied Medical Sciences, Taibah University, Medina 41477, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashim M Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madina 41477, Saudi Arabia
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| |
Collapse
|
21
|
Ali FEM, Hassanein EHM, Abd El-Ghafar OAM, Rashwan EK, Saleh FM, Atwa AM. Exploring the cardioprotective effects of canagliflozin against cisplatin-induced cardiotoxicity: Role of iNOS/NF-κB, Nrf2, and Bax/cytochrome C/Bcl-2 signals. J Biochem Mol Toxicol 2023; 37:e23309. [PMID: 36645100 DOI: 10.1002/jbt.23309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 11/14/2022] [Accepted: 01/05/2023] [Indexed: 01/17/2023]
Abstract
Cardiotoxicity is a severe considerable side effect of cisplatin (CDDP) that requires much medical attention. The current study investigates the cardioprotective effects of canagliflozin (CA) against CDDP-induced heart toxicity. Rats were allocated to the control group; the CA group was administered CA 10 mg/kg/day orally for 10 days; the CDDP group was injected with 7 mg/kg, intraperitoneal as a single dose on the 5th day, and the CDDP + CA group. Compared to the CDDP-treated group, CA effectively attenuated CDDP-induced heart injury as evidenced by a decrease of serum aspartate aminotransferase, alkaline phosphatase, creatine kinase-MB, and lactate dehydrogenase enzymes and supported by the alleviation of histopathological changes in cardiac tissues. Biochemically, CA attenuated cardiac oxidative injury through upregulation of the nuclear factor-erythroid 2 related factor 2 (Nrf2) signal. CA suppressed inflammation by decreasing cardiac NO2 - , MPO, iNOS, nuclear factor kappa B (NF-κB), tumor necrosis factor-alpha, and interleukin 1-beta levels. Besides, CA significantly upregulated cardiac levels of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and p-AKT proteins. Moreover, CA remarkably mitigated CDDP-induced apoptosis via modulation of Bax, cytochrome C, and Bcl-2 protein levels. Together, the present study revealed that CA could be a good candidate for preventing CDDP-induced cardiac injury by modulating iNOS/NF-κB, Nrf2, PI3K/AKT, and Bax/cytochrome C/Bcl-2 signals.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Al-Azhar University, Assuit, Egypt
| | - Fayez M Saleh
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Ahmed M Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| |
Collapse
|
22
|
Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci 2023; 318:121466. [PMID: 36773693 DOI: 10.1016/j.lfs.2023.121466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
AIMS Nephrotoxicity is the hallmark of anti-neoplastic drug metabolism that causes oxidative stress. External chemical agents and prescription drugs release copious amounts of free radicals originating from molecular oxidation and unless sustainably scavenged, they stimulate membrane lipid peroxidation and disruption of the host antioxidant mechanisms. This review aims to provide a comprehensive collection of potential cytoprotective remedies in surmounting the most difficult aspect of cancer therapy as well as preventing renal oxidative stress by other means. MATERIALS AND METHODS Over 400 published research and review articles spanning several decades were scrutinised to obtain the relevant data which is presented in 3 categories; sources, mechanisms, and mitigation of renal oxidative stress. KEY-FINDINGS Drug and chemical-induced nephrotoxicity commonly manifests as chronic or acute kidney disease, nephritis, nephrotic syndrome, and nephrosis. Renal replacement therapy requirements and mortalities from end-stage renal disease are set to rapidly increase in the next decade for which 43 different cytoprotective compounds which have the capability to suppress experimental nephrotoxicity are described. SIGNIFICANCE The renal system performs essential homeostatic functions that play a significant role in eliminating toxicants, and its accumulation and recurrence in nephric tissues results in tubular degeneration and subsequent renal impairment. Global statistics of the latest chronic kidney disease prevalence is 13.4 % while the end-stage kidney disease requiring renal replacement therapy is 4-7 million per annum. The remedial compounds discussed herein had proven efficacy against nephrotoxicity manifested consequent to impaired antioxidant mechanisms in preclinical models produced by renal oxidative stress activators.
Collapse
|
23
|
Nadeem RI, Aboutaleb AS, Younis NS, Ahmed HI. Diosmin Mitigates Gentamicin-Induced Nephrotoxicity in Rats: Insights on miR-21 and -155 Expression, Nrf2/HO-1 and p38-MAPK/NF-κB Pathways. TOXICS 2023; 11:48. [PMID: 36668774 PMCID: PMC9865818 DOI: 10.3390/toxics11010048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/26/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Gentamicin (GNT) is the most frequently used aminoglycoside. However, its therapeutic efficacy is limited due to nephrotoxicity. Thus, the potential anticipatory effect of Diosmin (DIOS) against GNT-prompted kidney damage in rats together with the putative nephroprotective pathways were scrutinized. Four groups of rats were used: (1) control; (2) GNT only; (3) GNT plus DIOS; and (4) DIOS only. Nephrotoxicity was elucidated, and the microRNA-21 (miR-21) and microRNA-155 (miR-155) expression and Nrf2/HO-1 and p38-MAPK/NF-κB pathways were assessed. GNT provoked an upsurge in the relative kidney weight and serum level of urea, creatinine, and KIM-1. The MDA level was markedly boosted, with a decline in the level of TAC, SOD, HO-1, and Nrf2 expression in the renal tissue. Additionally, GNT exhibited a notable amplification in TNF-α, IL-1β, NF-κB p65, and p38-MAPK kidney levels. Moreover, caspase-3 and BAX expression were elevated, whereas the Bcl-2 level was reduced. Furthermore, GNT resulted in the down-regulation of miR-21 expression along with an up-regulation of the miR-155 expression. Histological examination revealed inflammation, degradation, and necrosis. GNT-provoked pathological abnormalities were reversed by DIOS treatment, which restored normal kidney architecture. Hence, regulating miR-21 and -155 expression and modulating Nrf2/HO-1 and p38-MAPK/NF-κB pathways could take a vital part in mediating the reno-protective effect of DIOS.
Collapse
Affiliation(s)
- Rania I. Nadeem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Amany S. Aboutaleb
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| | - Nancy S. Younis
- Pharmaceutical Sciences Department, Faculty of Clinical Pharmacy, King Faisal University, Al-Ahsa, Al-Hofuf 31982, Saudi Arabia
| | - Hebatalla I. Ahmed
- Pharmacology and Toxicology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11754, Egypt
| |
Collapse
|
24
|
Yue L, Yang YR, Ma WX, Wang HY, Fan QW, Wang YY, Li C, Wang J, Hu ZM, Wang XF, Li FH, Liu MM, Jin J, Shi C, Wen JG. Epigallocatechin Gallate Attenuates Gentamicin-Induced Nephrotoxicity by Suppressing Apoptosis and Ferroptosis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238564. [PMID: 36500657 PMCID: PMC9735461 DOI: 10.3390/molecules27238564] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Gentamicin (GEN) is a kind of aminoglycoside antibiotic with the adverse effect of nephrotoxicity. Currently, no effective measures against the nephrotoxicity have been approved. In the present study, epigallocatechin gallate (EG), a useful ingredient in green tea, was used to attenuate its nephrotoxicity. EG was shown to largely attenuate the renal damage and the increase of malondialdehyde (MDA) and the decrease of glutathione (GSH) in GEN-injected rats. In NRK-52E cells, GEN increased the cellular ROS in the early treatment phase and ROS remained continuously high from 1.5 H to 24 H. Moreover, EG alleviated the increase of ROS and MDA and the decrease of GSH caused by GEN. Furthermore, EG activated the protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1). After the treatment of GEN, the protein level of cleaved-caspase-3, the flow cytometry analysis and the JC-1 staining, the protein levels of glutathione peroxidase 4 (GPX4) and SLC7A11, were greatly changed, indicating the occurrence of both apoptosis and ferroptosis, whereas EG can reduce these changes. However, when Nrf2 was knocked down by siRNA, the above protective effects of EG were weakened. In summary, EG attenuated GEN-induced nephrotoxicity by suppressing apoptosis and ferroptosis.
Collapse
Affiliation(s)
- Lin Yue
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ya-Ru Yang
- Department of Clinical Pharmacology, Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Wen-Xian Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hong-Yan Wang
- State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qian-Wen Fan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yue-Yue Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chao Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Jing Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zi-Mu Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xue-Fu Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Feng-He Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Chao Shi
- Department of Cardiac Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233004, China
- Correspondence: (C.S.); (J.-G.W.); Tel.: +86-0552-308635 (C.S.); +86-0551-65172131 (J.-G.W.)
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
- Correspondence: (C.S.); (J.-G.W.); Tel.: +86-0552-308635 (C.S.); +86-0551-65172131 (J.-G.W.)
| |
Collapse
|
25
|
Abou-Elghait AT, Elgamal DA, Abd El-Rady NM, Hosny A, Abd El-Samie EZAA, Ali FEM. Novel protective effect of diosmin against cisplatin-induced prostate and seminal vesicle damage: Role of oxidative stress and apoptosis. Tissue Cell 2022; 79:101961. [PMID: 36327569 DOI: 10.1016/j.tice.2022.101961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Multiple organ toxicity has been associated with cisplatin (CIS) treatment, limiting its clinical use. The human prostate and seminal vesicles are accessory sex organs with androgen-dependent morphogenesis, growth, and secretion. The present study aimed to investigate, for the first time, the toxic effect of CIS on normal prostate and seminal vesicles in the presence and absence of diosmin (DS). The animals were randomized into 4 groups as follows: control (received vehicle), CIS group (7.5 mg/kg, i.p. on 5th and 12th day), DS group (100 mg/kg, p.o. for 15 days), and DS+CIS group. Histopathological and biochemical analyses were conducted to elucidate the goal of this study. CIS administration significantly induced prostate and seminal vesicle toxicity as evidenced by alteration of serum testosterone, LH, FSH, PSA, steroidogenic HSD17B6 as well as seminal analysis markers. Remarkably, marked histopathological changes in thin and ultrathin structures were observed. Besides, CIS significantly boosted oxidative stress as evidenced by the up-regulation of MDA and down-regulation of TAC. CIS significantly induced tissue apoptosis concomitant with suppression of cellular proliferation and stem cell expression as indicated by up-regulation of activated caspase-3 and Bax expression along with down-regulation of Bcl-2, Ki67, and CD44 expression. Interestingly, DS fixed all disturbances in the prostate and seminal vesicles induced by CIS. Together, CIS could cause prostate and seminal vesicle toxicity by affecting hormonal, steroidogenic, oxidative stress, apoptosis, and proliferation processes, and this effect was reversed by DS administration.
Collapse
Affiliation(s)
- Amal T Abou-Elghait
- Histology Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Histology Department, Sphinx University, New Assiut City, Assiut, Egypt
| | - Dalia A Elgamal
- Histology Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Department of Basic Medical Sciences, Badr University, New Nasser City, West of Assiut, Assiut, Egypt
| | - Nessren M Abd El-Rady
- Medical Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt; Medical Physiology Department, Sphinx University, New Assiut City, Assiut, Egypt
| | - Ahmed Hosny
- Department of Dermatology, Andrology, Sexual Medicine and STDS Faculty of Medicine, Helwan University, Cairo, Egypt
| | | | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
26
|
Shaaban HH, Hozayen WG, Khaliefa AK, El-Kenawy AE, Ali TM, Ahmed OM. Diosmin and Trolox Have Anti-Arthritic, Anti-Inflammatory and Antioxidant Potencies in Complete Freund's Adjuvant-Induced Arthritic Male Wistar Rats: Roles of NF-κB, iNOS, Nrf2 and MMPs. Antioxidants (Basel) 2022; 11:1721. [PMID: 36139795 PMCID: PMC9495550 DOI: 10.3390/antiox11091721] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, progressive, autoimmune disease caused by a malfunction of the immune system. The aim of this study was to examine the anti-arthritic effects and suggest the mechanisms of actions of diosmin and trolox in male Wistar rats. Complete Freund's adjuvant (CFA) was used to establish RA in the animals by subcutaneous injection of 100 µL CFA/rat into plantar region of right hind leg in two consecutive days. Diosmin and/or trolox were administered orally at a dosage of 20 mg/kg/day to CFA-induced arthritic rats for 2 weeks. The normal and arthritic control groups were orally given the same equivalent volume of a vehicle (1% carboxymethyl cellulose) in which treatment agents were dissolved. At the end of the experiment, blood samples were collected from the jugular vein for the detection of the total leukocyte count (TLC) and differential leukocyte count (DLC) in blood and the detection of rheumatoid factor (RF), anti-citrullinated protein antibodies (ACPA), tumor necrosis factor-α (TNF-α), interleukin-13 (IL-13), and interleukin-17 (IL-17) levels by enzyme-linked immunosorbent assay (ELISA), as well as markers of oxidative stress and the antioxidant defense system in serum. The right hind ankle regions of three rats from each group were dissected out and fixed in 10% neutral-buffered formalin for histological examination and the other three were kept at -30 °C for Western blot analysis of nuclear factor-kappa B (NF-κB) protein 50 (NF-κB p50), NF-κB p65, inducible nitric oxide synthase (iNOS), nuclear factor erythroid-2-related factor 2 (Nrf2), and matrix metalloproteinase (MMP)-1 (MMP-1), MMP-3, and MMP-9. The CFA injection was deleterious to the ankle joint's histological architecture, manifesting as infiltration of inflammatory cells into the articular cartilage, hyperplasia of the synovium, and erosion of the cartilage. All these effects were ameliorated by diosmin and/or trolox, with the combined dose being the most effective. The two compounds significantly lowered the elevated serum levels of RF, ACPA, TNF-α, and IL-17, as well as other pro-inflammatory mediators, such as NF-κB p50, NF-κB p65, iNOS, MMP-1, MMP-3 and MMP-9. They also increased the levels of the anti-inflammatory cytokine, IL-13, and the cytoprotective transcription factor Nrf2. The compounds stimulated higher activities of antioxidants, such as glutathione, glutathione-S-transferase, catalase, and superoxide dismutase, and reduced lipid peroxidation in the serum of arthritic rats. In conclusion, diosmin, trolox, and their combination, which was the most potent, exerted anti-arthritic, anti-inflammatory and antioxidant effects by suppressing NF-κB signaling, inhibiting matrix metalloproteinases, and activating Nrf2.
Collapse
Affiliation(s)
- Huda H. Shaaban
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Walaa G. Hozayen
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Amal K. Khaliefa
- Department of Biochemistry, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| | - Ayman E. El-Kenawy
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef P.O. Box 62521, Egypt
| |
Collapse
|
27
|
Neuroprotective Effects of Phytochemicals against Aluminum Chloride-Induced Alzheimer’s Disease through ApoE4/LRP1, Wnt3/β-Catenin/GSK3β, and TLR4/NLRP3 Pathways with Physical and Mental Activities in a Rat Model. Pharmaceuticals (Basel) 2022; 15:ph15081008. [PMID: 36015156 PMCID: PMC9416484 DOI: 10.3390/ph15081008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Alzheimer’s disease (AD) is a neurodegenerative disorder that is associated with abnormal cognition. AD is aided in its initiation and progression by hereditary and environmental factors. Aluminum (Al) is a neurotoxic agent that causes oxidative stress, which is linked to AD progression. Additionally, Nrf2/HO-1, APOE4/LRP1, Wnt3/β-catenin, and TLR4/NLRP3 are the main signaling pathways involved in AD pathogenesis. Several phytochemicals are promising options in delaying AD evolution. Objectives: This study aimed at studying the neuroprotective effects of some phytochemicals as morin (MOR), thymol (TML), and thymoquinone (TMQ) on physical and mental activities (PhM) in Al chloride (AlCl3)-induced AD rat model. Another objective was to determine the specificity of phytochemicals to AD signaling pathways using molecular docking. Methods: Eighty male Dawley rats were divided into eight groups. Each group received: saline (control group), AlCl3, (ALAD), PhM, either alone or with a combination of MOR, TML, and/or TMQ for five weeks. Animals were then subjected to behavioral evaluation. Brain tissues were used for histopathological and biochemical analyses to determine the extent of neurodegeneration. The effect of phytochemicals on AlCl3-induced oxidative stress and the main signaling pathways involved in AD progression were also investigated. Results: AlCl3 caused a decline in spatial learning and memory, as well as histopathological changes in the brains of rats. Phytochemicals combined with PhM restored antioxidant activities, increased HO-1 and Nrf2 levels, blocked inflammasome activation, apoptosis, TLR4 expression, amyloide-β generation, and tau hyperphophorylation. They also brought ApoE4 and LRP1 levels back to normal and regulated Wnt3/β-catenin/GSK3β signaling pathway. Conclusions: The use of phytochemicals with PhM is a promising strategy for reducing AD by modulating Nrf2/HO-1, TLR4/NLRP3, APOE4/LRP1, and Wnt3/β-catenin/GSK-3β signaling pathways.
Collapse
|
28
|
Ferraz Carbonel AA, da Silva RA, de Souza Ferreira LP, Vieira RR, dos Santos Simões R, da Silva Sasso GR, de Jesus Simões M, Soares Junior JM, Azevedo Lima PD, Borges FT. Isoflavone Protects the Renal Tissue of Diabetic Ovariectomized Rats via PPARγ. Nutrients 2022; 14:nu14132567. [PMID: 35807748 PMCID: PMC9268059 DOI: 10.3390/nu14132567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes associated with post-menopause is related to a worse condition of kidney disease. Taking into consideration that this disorder may be regulated by estrogenic mediators, we evaluated the renal protective effect of isoflavone. We investigated the role of the PPARγ in the pathogenesis of the disease. For this study, we used diabetic female rats in a postmenopausal model through ovariectomy. The animals were treated with isoflavone or 17β-estradiol. A dosage was administered to bring on blood glycemia, and through immunohistochemistry, we evaluated the immunoreactivity of PPARγ in the endometrium and renal tissue. We analyzed the immunoreactivity of renal injury molecule KIM-1 and the collagen and glycogen densities in the kidney. Through bioinformatics analysis, we observed PPARγ and COL1A1 gene expression under the influence of different glucose doses. In particular, we observed that isoflavone and 17β-estradiol regulate blood glycemia. Renal injury was inhibited by isoflavone, observed by a reduction in KIM-1, along with glycogen accumulation. These benefits of isoflavone may be associated with PPARγ overexpression in the kidneys and endometrium of diabetic ovariectomized rats.
Collapse
Affiliation(s)
- Adriana Aparecida Ferraz Carbonel
- Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), 740 Edifício Lemos Torres—2° andar, Vila Clementino, São Paulo 04023-900, SP, Brazil; (L.P.d.S.F.); (R.R.V.); (G.R.d.S.S.); (M.d.J.S.)
- Department of Gynecology, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04023-900, SP, Brazil
- Correspondence: ; Tel.: +55-11-5576-4268
| | - Rafael André da Silva
- Biosciences Graduate Program, Institute of Biosciences, Letters and Exact Sciences, São Paulo State University (IBILCE/UNESP), São José do Rio Preto 15054-000, SP, Brazil;
| | - Luiz Philipe de Souza Ferreira
- Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), 740 Edifício Lemos Torres—2° andar, Vila Clementino, São Paulo 04023-900, SP, Brazil; (L.P.d.S.F.); (R.R.V.); (G.R.d.S.S.); (M.d.J.S.)
| | - Renata Ramos Vieira
- Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), 740 Edifício Lemos Torres—2° andar, Vila Clementino, São Paulo 04023-900, SP, Brazil; (L.P.d.S.F.); (R.R.V.); (G.R.d.S.S.); (M.d.J.S.)
| | - Ricardo dos Santos Simões
- Department of Obstetrics and Gynecology, Medicine Faculty of University of São Paulo (FMUSP), São Paulo 05403-911, SP, Brazil; (R.d.S.S.); (J.M.S.J.)
| | - Gisela Rodrigues da Silva Sasso
- Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), 740 Edifício Lemos Torres—2° andar, Vila Clementino, São Paulo 04023-900, SP, Brazil; (L.P.d.S.F.); (R.R.V.); (G.R.d.S.S.); (M.d.J.S.)
| | - Manuel de Jesus Simões
- Structural and Functional Biology Graduate Program, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), 740 Edifício Lemos Torres—2° andar, Vila Clementino, São Paulo 04023-900, SP, Brazil; (L.P.d.S.F.); (R.R.V.); (G.R.d.S.S.); (M.d.J.S.)
- Department of Gynecology, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04023-900, SP, Brazil
| | - José Maria Soares Junior
- Department of Obstetrics and Gynecology, Medicine Faculty of University of São Paulo (FMUSP), São Paulo 05403-911, SP, Brazil; (R.d.S.S.); (J.M.S.J.)
| | | | - Fernanda Teixeira Borges
- Department of Medicine, Nephrology Division, Paulista School of Medicine, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04023-900, SP, Brazil;
- Interdisciplinary Graduate Program in Health Sciences, Cruzeiro do Sul University, São Paulo 01506-000, SP, Brazil
| |
Collapse
|
29
|
You Y, He M. Simvastatin Alleviates Vascular Cognitive Impairment Caused by Lacunar Cerebral Infarction Through Protein Kinase B/Nuclear Factor Erythroid 2–Related Factor 2 (AKT/Nrf2) Signaling Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lacunar cerebral infarction (LACI) is one of the main causes of vascular cognitive impairment (VCI). Herein, this study explored the potential effect of Simvastatin (Sim) on VCI secondary to LACI and Akt/Nrf2 signaling transduction and apoptosis. We established a rat model of VCI and
the animals were administered with Sim (40 mg/kg and 80 mg/kg) every day for 28 days. After that, the cognition and memory abilities of rats were assessed together with analysis of morphological changes of hippocampal neurons by immunohistochemistry staining and level of anti-apoptotic related
proteins and Akt and Nrf2 signaling proteins by western blot. Compared with normal saline (control group), Sim administration significantly improved the capacity spatial learning and relieved the memory impairment with an improvement in morphological defects. Importantly, Sim treatment restored
the p-Akt, t-Nrf2, n-Nrf2 and HO-1 expression along with up-regulation of Bcl-2 and down-regulation of Bax. In conclusion, Sim improves cognitive and morphological disorders induced by LACI possibly through regulating Akt/Nrf2 signaling pathway. These evidence might promote the development
of Sim-based treatment for VCI and LACI.
Collapse
Affiliation(s)
- Yiping You
- Department of Neurology, People’s Hospital, Wuxi 214000, Jiangsu, China
| | - Min He
- Department of Nail Breast, The Second People’s Hospital, Wuxi 214000, Jiangsu, China
| |
Collapse
|
30
|
Gao W, Guo L, Yang Y, Wang Y, Xia S, Gong H, Zhang BK, Yan M. Dissecting the Crosstalk Between Nrf2 and NF-κB Response Pathways in Drug-Induced Toxicity. Front Cell Dev Biol 2022; 9:809952. [PMID: 35186957 PMCID: PMC8847224 DOI: 10.3389/fcell.2021.809952] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
Nrf2 and NF-κB are important regulators of the response to oxidative stress and inflammation in the body. Previous pharmacological and genetic studies have confirmed crosstalk between the two. The deficiency of Nrf2 elevates the expression of NF-κB, leading to increased production of inflammatory factors, while NF-κB can affect the expression of downstream target genes by regulating the transcription and activity of Nrf2. At the same time, many therapeutic drug-induced organ toxicities, including hepatotoxicity, nephrotoxicity, cardiotoxicity, pulmonary toxicity, dermal toxicity, and neurotoxicity, have received increasing attention from researchers in clinical practice. Drug-induced organ injury can destroy body function, reduce the patients’ quality of life, and even threaten the lives of patients. Therefore, it is urgent to find protective drugs to ameliorate drug-induced injury. There is substantial evidence that protective medications can alleviate drug-induced organ toxicity by modulating both Nrf2 and NF-κB signaling pathways. Thus, it has become increasingly important to explore the crosstalk mechanism between Nrf2 and NF-κB in drug-induced toxicity. In this review, we summarize the potential molecular mechanisms of Nrf2 and NF-κB pathways and the important effects on adverse effects including toxic reactions and look forward to finding protective drugs that can target the crosstalk between the two.
Collapse
Affiliation(s)
- Wen Gao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Lin Guo
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Yang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Shuang Xia
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bi-Kui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Miao Yan,
| |
Collapse
|
31
|
Mahmoud AM, Abd El-Ghafar OAM, Alzoghaibi MA, Hassanein EHM. Agomelatine prevents gentamicin nephrotoxicity by attenuating oxidative stress and TLR-4 signaling, and upregulating PPARγ and SIRT1. Life Sci 2021; 278:119600. [PMID: 33984362 DOI: 10.1016/j.lfs.2021.119600] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/25/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022]
Abstract
Kidney injury is a relatively common complication of the use of aminoglycosides. Inflammation and oxidative stress play a key role in gentamicin (GM) nephrotoxicity. We investigated the protective effect of the melatonergic agonist agomelatine (AGM) on GM nephrotoxicity, emphasizing the involvement of TLR-4 signaling, SIRT1 and PPARγ. Rats received 25 mg/kg AGM for 15 days and 100 mg/kg GM for eight days starting at day 7. Elevated serum creatinine, urea and Kim-1 along with multiple histological alterations in the kidney were observed in GM-intoxicated rats. Malondialdehyde (MDA), TNF-α, IL-1β, nitric oxide (NO) and myeloperoxidase (MPO) were increased, and GSH, SOD and catalase were decreased in the kidney of GM-intoxicated rats. Treatment with AGM significantly ameliorated the kidney function biomarkers, prevented tissue injury, decreased inflammatory cytokines, MDA, NO and MPO, and boosted antioxidants. In addition, AGM suppressed the expression of TLR-4, NF-κB p65, p38 MAPK, ERK-1, VCAM-1 and iNOS, whereas upregulated SIRT1 and PPARγ in the kidney of GM-intoxicated rats. In conclusion, AGM prevented GM nephrotoxicity in rats by attenuating oxidative injury and inflammation. AGM suppressed TLR-4 signaling, enhanced antioxidants and upregulated SIRT1 and PPARγ in the kidney of GM-induced rats.
Collapse
Affiliation(s)
- Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Bni-Suef University, Beni-Suef, Egypt; Biotechnology Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, Egypt.
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| | - Mohammed A Alzoghaibi
- Physiology Department, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|