1
|
Tang S, Zhang Y, Wang P, Tang Q, Liu Y, Lu F, Han M, Zhou M, Hu Q, Feng M, Liang D. NKG2D-CAR-targeted iPSC-derived MSCs efficiently target solid tumors expressing NKG2D ligand. iScience 2025; 28:112343. [PMID: 40276759 PMCID: PMC12020857 DOI: 10.1016/j.isci.2025.112343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/28/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
Mesenchymal stem cells (MSCs) hold potential in cancer therapy; however, insufficient tumor homing ability and heterogeneity limit their therapeutic benefits. Obviously, the homogeneous induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) with enhanced ability of tumor targeting could be the solution. In this study, a CAR containing the NKG2D extracellular domain was targeted at the B2M locus of iPSCs to generate NKG2D-CAR-iPSCs, which were subsequently differentiated into NKG2D-CAR-iMSCs. In vitro, NKG2D-CAR significantly enhanced migration and adhesion of iMSCs to a variety of solid tumor cells expressing NKG2D ligands. RNA sequencing (RNA-seq) revealed significant upregulation of genes related to cell adhesion, migration, and binding in NKG2D-CAR-iMSCs. In A549 xenograft model, NKG2D-CAR-iMSCs demonstrated a 57% improvement in tumor-homing ability compared with iMSCs. In conclusion, our findings demonstrate enhanced targeting specificity of NKG2D-CAR-iMSCs to tumor cells expressing NKG2D ligands in vitro and in vivo, facilitating future investigation of iMSCs as an off-the-shelf living carrier for targeted delivery of anti-tumor agents.
Collapse
Affiliation(s)
- Shuqing Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yusang Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Peiyun Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Qiyu Tang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yating Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Fan Lu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Mengting Han
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Miaojin Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Qian Hu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Mai Feng
- Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha 410078, China
| | - Desheng Liang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
2
|
Xiao W, Yike W, Gongwen L, Youjia X. Ferroptosis-mediated immune responses in osteoporosis. J Orthop Translat 2025; 52:116-125. [PMID: 40271049 PMCID: PMC12017889 DOI: 10.1016/j.jot.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/25/2025] [Accepted: 03/18/2025] [Indexed: 04/25/2025] Open
Abstract
Osteoporosis is a common systemic metabolic disease, characterized by decreased bone mass and susceptibility to fragility fractures, often associated with aging, menopause, genetics, and immunity. Ferroptosis plays an underestimated yet crucial role in the further impact of immune function changes on osteoporosis. Cell ferroptosis can induce alterations in immune function, subsequently influencing bone metabolism. In this context, this review summarizes several mechanisms of ferroptosis and introduces the latest insights on how ferroptosis regulates immune responses, exploring the interactions between ferroptosis and other mechanisms such as oxidative stress, inflammation, etc. This review elucidates potential treatment strategies for osteoporosis, emphasizing the promising potential of ferroptosis as an emerging target in the treatment of osteoporosis. In conclusion, preparations related to ferroptosis exhibit substantial clinical promise for enhancing bone mass restoration. The translational potential of this article: This review elucidates a nuanced conversation between the immune system and osteoporosis, with ferroptosis serving as the connecting link. These findings underscore the potential of ferroptosis inhibition as a therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Wang Xiao
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wang Yike
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liu Gongwen
- Department of Orthopaedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, China
| | - Xu Youjia
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Yin Y, Shuai F, Liu X, Zhao Y, Han X, Zhao H. Biomaterials and therapeutic strategies designed for tooth extraction socket healing. Biomaterials 2025; 316:122975. [PMID: 39626339 DOI: 10.1016/j.biomaterials.2024.122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024]
Abstract
Tooth extraction is the most commonly performed oral surgical procedure, with a wide range of clinical indications. The oral cavity is a complex microenvironment, influenced by oral movements, salivary flow, and bacterial biofilms. These factors can contribute to delayed socket healing and the onset of post-extraction complications, which can burden patients' esthetic and functional rehabilitation. Achieving effective extraction socket healing requires a multidisciplinary approach. Recent advancements in materials science and bioengineering have paved the way for developing novel strategies. This review outlines the fundamental healing processes and cellular-molecular interactions involved in the healing of extraction sockets. It then delves into the current landscape of biomaterials for socket healing, highlighting emerging strategies and potential targets that could transform the treatment paradigm. Building upon this foundation, this review also presents future directions and identifies challenges associated with the clinical application of biomaterials for extraction socket healing.
Collapse
Affiliation(s)
- Yijia Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fangyuan Shuai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
4
|
Deng Q, Du F, Pan S, Xia Y, Zhu Y, Zhang J, Li C, Yu S. Activation of angiopoietin-1 signaling with engineering mesenchymal stem cells promoted efficient angiogenesis in diabetic wound healing. Stem Cell Res Ther 2025; 16:75. [PMID: 39985096 PMCID: PMC11846275 DOI: 10.1186/s13287-025-04207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Vascular insufficiency is associated with the pathogenesis and therapeutic outcomes of diabetic foot ulcers (DFU). While mesenchymal stem cells (MSCs) hold potential for DFU treatment, further enhancement in promoting angiogenesis in the challenging DFU wounds is imperative. METHODS The differential expression of pro- and anti-angiogenic factors during both normal and diabetic wound healing was compared using quantitative PCR. MSCs derived from the umbilical cord was prepared, and the engineered MSC (MSCANG1) overexpressing both the candidate pro-angiogenic gene, angiopoietin-1 (ANG1), and green fluorescent protein (GFP) was constructed using a lentiviral system. The pro-vascular stabilizing effects of MSCANG1 were assessed in primary endothelial cell cultures. Subsequently, MSCANG1 was transplanted into streptozotocin (STZ)-induced diabetic wound models to evaluate therapeutic effects on angiogenesis and wound healing. The underlying mechanisms were further examined both in vitro and in vivo. RESULTS The comprehensive analysis of the temporal expression of pro- and anti-angiogenic factors revealed a consistent impairment in ANG1 expression throughout diabetic wound healing. MSCANG1 exhibited robust EGFP expression in 80% of cells, with overexpression and secretion of the ANG1 protein. MSCANG1 notably enhanced the survival and tubulogenesis of endothelial cells and promoted the expression of junction proteins, facilitating the establishment of functional vasculature with improved vascular leakage. Although MSCANG1 did not enhance the survival of engrafted MSCs in diabetic wounds, it significantly promoted angiogenesis in diabetic wound healing, fostering the establishment of stable vasculature during the healing process. Activation of the protein kinase B (Akt) pathway and suppression of proto-oncogene tyrosine kinase Src (Src) activity in MSCANG1-treated diabetic wounds confirmed efficient angiogenesis process. Consequently, epidermal and dermal reconstruction, as well as skin appendage regeneration were markedly accelerated in MSCANG1-treated diabetic wounds compared to MSC-treated wounds. CONCLUSION Treatment with MSCs alone promotes angiogenesis and DFU healing, while the engineering of MSCs with ANG1 provides substantial additional benefits to this therapeutic process. The engineering of MSCs with ANG1 presents a promising avenue for developing innovative strategies in managing DFU.
Collapse
Affiliation(s)
- Qiong Deng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shenzhen Pan
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuchen Xia
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuxin Zhu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Zhang W, Zhang J, Liu H, Liu Y, Sheng X, Zhou S, Pei T, Li C, Wang J. Functional hydrogel empowering 3D printing titanium alloys. Mater Today Bio 2025; 30:101422. [PMID: 39830135 PMCID: PMC11742631 DOI: 10.1016/j.mtbio.2024.101422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/22/2025] Open
Abstract
Titanium alloys are widely used in the manufacture of orthopedic prosthesis given their excellent mechanical properties and biocompatibility. However, the primary drawbacks of traditional titanium alloy prosthesis are their much higher elastic modulus than cancellous bone and poor interfacial adhesion, which lead to poor osseointegration. 3D-printed porous titanium alloys can partly address these issues, but their bio-inertness still requires modifications to adapt to different physiological and pathological microenvironments. Hydrogels composed of three-dimensional networks of hydrophilic polymers can effectively simulate the extracellular matrix of natural bone and are capable of loading bioactive molecules such as proteins, peptides, growths factors, polysaccharides, or nucleotides for localized release within the human body, by directly participating in biological processes. Combining 3D-printed porous titanium alloys with hydrogels to construct a bioactive composite system that regulates cellular adhesion, proliferation, migration, and differentiation in the local microenvironment is of great significance for enhancing the bioactivity of the prosthesis surface. In this review, we focus on three aspects of the bioactive composite system: (Ⅰ) strategies for constructing bioactive interfaces with hydrogels, and (Ⅱ) how bioactive composite systems regulate the microenvironment under different physiological and pathological conditions to enhance the osteointegration and bone regeneration capability of prostheses. Considering the current research status in this field, innovations in orthopedic prosthesis can be achieved through material optimization, personalized customization, and the development of multifunctional composite systems. These advancements provide essential references for the clinical translation of osseointegration and bone regeneration in various physiological and pathological microenvironments.
Collapse
Affiliation(s)
- Weimin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jiaxin Zhang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - He Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Yang Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Xiao Sheng
- Huzhou Central Hospital, Fifth school of Clinical Medical Universtiy, Wuxing, Huzhou, Zhejiang 313000, PR China
| | - Sixing Zhou
- Department of Emergency and Critical Care Medicine, The Second Hospital of Jilin University, Changchun 130041, China
| | - Tiansen Pei
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Chen Li
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| | - Jincheng Wang
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China
| |
Collapse
|
6
|
Wang Y, Xiao Y, Yang X, He F, Hu J, Yang G, Wang W. Bone marrow mesenchymal stem cells overexpressing stromal cell- derived factor 1 aid in bone formation in osteoporotic mice. BMC Musculoskelet Disord 2024; 25:878. [PMID: 39497150 PMCID: PMC11536944 DOI: 10.1186/s12891-024-07957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/14/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Osteoporosis is characterized by low systemic bone mineral content and destruction of bone microarchitecture. Promoting bone regeneration and reversing its loss by infusion of exogenous bone marrow mesenchymal stem cells (BMSCs) is a potentially effective treatment for osteoporosis. However, their limited migration to target organs reduces the therapeutic effect of the cells. Stromal cell-derived factor 1 (SDF1) is a chemokine that induces targeted cell migration through the SDF1/CXCR4 (C-X-C chemokine receptor 4) axis and can induce migration of exogenous mesenchymal stem cells to sites of high SDF1 concentration. There are no studies on BMSCs overexpressing SDF1 (SDF1-BMSCs) in osteoporotic mice in vivo. We aimed to investigate if the increased SDF1 concentration facilitated cell migration to the bone. METHODS We used lentivirus to construct BMSCs overexpressing SDF1 or knocking down CXCR4. We verified the proliferation ability of the cells in vitro using Cell Counting Kit-8 (CCK8) and 5-Bromodeoxyuridinc (BrdU), the migration ability of the cells using Transwell, and the osteogenic and lipogenic ability of the cells using osteogenic and lipogenic induction solutions. In in vivo experiments, we induced osteoporosis in 72 female mice by ovariectomy and injected different groups of cells via the tail vein. Femoral tissue samples were collected for a fixed time, and the osteogenic and homing abilities of the cells were verified by MicroCT and tissue section staining. RESULTS We successfully demonstrated that high expression of SDF1 promoted cell proliferation and migration in vitro, without affecting their cell differentiation ability. In an ovariectomized mouse model, SDF1-BMSCs were more likely to be home to the femur than the BMSCs, had a better pro-osteogenic ability, and had higher expression of Wnt-1. Blocking the SDF1/CXCR4 axis reduced the homing of exogenous mesenchymal stem cells (MSCs) to the femur and their osteogenic capacity. CONCLUSIONS SDF1-BMSCs can further promote bone formation by increasing the number of cells homing to the femur in osteoporotic mice. Our study shows that stem cells can promote their proliferation and home to the femur via the SDF1/CXCR4 axis and further help bone formation via Wnt-1 signaling.
Collapse
Affiliation(s)
- Yanghao Wang
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ya Xiao
- First Clinical College, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - XinYu Yang
- Clinical Oncology College, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Fei He
- Department of Orthopedic, Qujing Affiliated Hospital of Kunming Medical University, Qujing, Yunnan, China
| | - Jun Hu
- Department of Orthopedic, The First People's Hospital of Kunming, Kunming, Yunnan, China
| | - Guang Yang
- Trauma Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| | - Weizhou Wang
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
7
|
Liu F, Wang X, He Y, Han R, Wang T, Guo Y. Jaw osteoporosis: Challenges to oral health and emerging perspectives of treatment. Biomed Pharmacother 2024; 177:116995. [PMID: 38917761 DOI: 10.1016/j.biopha.2024.116995] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Osteoporosis is a prevalent bone metabolic disease that poses a significant challenge to global human health. Jaw osteoporosis, characterized by microstructural damage of the jaw resulting from various factors, is one of the common manifestations of this condition. Recent studies have demonstrated that jaw osteoporosis has multifaceted effects on oral health and can negatively impact conditions such as periodontitis, oral implantation, orthodontic treatment, and wound healing. However, there are still some limitations in the conventional treatment of osteoporosis. For instance, while bisphosphonates can enhance bone quality, they may also lead to osteonecrosis of the jaw, which poses a potential safety hazard in oral diagnosis and treatment. In recent years, considerable attention has been focused on improving the pathological condition of jaw osteoporosis. Treatment strategies such as gut microbial regulation, extracellular vesicles, molecular targeted therapy, herbal medicine, mechanical stimulation are expected to enhance efficacy and minimize adverse reactions. Therefore, understanding these effects and exploring novel treatments for jaw osteoporosis may provide new insights for oral health maintenance and disease treatment. This article reviews the impact of jaw osteoporosis on oral health and describes the limitations associated with current methods. It also discusses emerging perspectives on treatment, offering a comprehensive overview of the challenges and future directions in managing jaw osteoporosis.
Collapse
Affiliation(s)
- Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
8
|
Saberian E, Jenča A, Zafari Y, Jenča A, Petrášová A, Zare-Zardini H, Jenčová J. Scaffold Application for Bone Regeneration with Stem Cells in Dentistry: Literature Review. Cells 2024; 13:1065. [PMID: 38920693 PMCID: PMC11202130 DOI: 10.3390/cells13121065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
Bone tissue injuries within oral and dental contexts often present considerable challenges because traditional treatments may not be able to fully restore lost or damaged bone tissue. Novel approaches involving stem cells and targeted 3D scaffolds have been investigated in the search for workable solutions. The use of scaffolds in stem cell-assisted bone regeneration is a crucial component of tissue engineering techniques designed to overcome the drawbacks of traditional bone grafts. This study provides a detailed review of scaffold applications for bone regeneration with stem cells in dentistry. This review focuses on scaffolds and stem cells while covering a broad range of studies explaining bone regeneration in dentistry through the presentation of studies conducted in this field. The role of different stem cells in regenerative medicine is covered in great detail in the reviewed literature. These studies have addressed a wide range of subjects, including the effects of platelet concentrates during dental surgery or specific combinations, such as human dental pulp stem cells with scaffolds for animal model bone regeneration, to promote bone regeneration in animal models. Noting developments, research works consider methods to improve vascularization and explore the use of 3D-printed scaffolds, secretome applications, mesenchymal stem cells, and biomaterials for oral bone tissue regeneration. This thorough assessment outlines possible developments within these crucial regenerative dentistry cycles and provides insights and suggestions for additional study. Furthermore, alternative creative methods for regenerating bone tissue include biophysical stimuli, mechanical stimulation, magnetic field therapy, laser therapy, nutritional supplements and diet, gene therapy, and biomimetic materials. These innovative approaches offer promising avenues for future research and development in the field of bone tissue regeneration in dentistry.
Collapse
Affiliation(s)
- Elham Saberian
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| | - Yaser Zafari
- Lyles School of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Andrej Jenča
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| | - Adriána Petrášová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| | - Hadi Zare-Zardini
- Department of Biomedical Engineering, Meybod University, Meybod 89616-99557, Iran
| | - Janka Jenčová
- Klinika of Stomatology and Maxillofacial Surgery Akadémia Košice Bacikova, Pavol Jozef Šafárik University, 040 01 Kosice, Slovakia
| |
Collapse
|
9
|
Heitzer M, Winnand P, Ooms M, Magnuska Z, Kiessling F, Buhl EM, Hölzle F, Modabber A. A Biodegradable Tissue Adhesive for Post-Extraction Alveolar Bone Regeneration under Ongoing Anticoagulation-A Microstructural Volumetric Analysis in a Rodent Model. Int J Mol Sci 2024; 25:4210. [PMID: 38673796 PMCID: PMC11049800 DOI: 10.3390/ijms25084210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
In addition to post-extraction bleeding, pronounced alveolar bone resorption is a very common complication after tooth extraction in patients undergoing anticoagulation therapy. The novel, biodegenerative, polyurethane adhesive VIVO has shown a positive effect on soft tissue regeneration and hemostasis. However, the regenerative potential of VIVO in terms of bone regeneration has not yet been explored. The present rodent study compared the post-extraction bone healing of a collagen sponge (COSP) and VIVO in the context of ongoing anticoagulation therapy. According to a split-mouth design, a total of 178 extraction sockets were generated under rivaroxaban treatment, of which 89 extraction sockets were treated with VIVO and 89 with COSP. Post-extraction bone analysis was conducted via in vivo micro-computed tomography (µCT), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) after 5, 10, and 90 days. During the observation time of 90 days, µCT analysis revealed that VIVO and COSP led to significant increases in both bone volume and bone density (p ≤ 0.001). SEM images of the extraction sockets treated with either VIVO or COSP showed bone regeneration in the form of lamellar bone mass. Ratios of Ca/C and Ca/P observed via EDX indicated newly formed bone matrixes in both treatments after 90 days. There were no statistical differences between treatment with VIVO or COSP. The hemostatic agents VIVO and COSP were both able to prevent pronounced bone loss, and both demonstrated a strong positive influence on the bone regeneration of the alveolar ridge post-extraction.
Collapse
Affiliation(s)
- Marius Heitzer
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, 52074 Aachen, Germany (M.O.)
| | - Philipp Winnand
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, 52074 Aachen, Germany (M.O.)
| | - Mark Ooms
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, 52074 Aachen, Germany (M.O.)
| | - Zuzanna Magnuska
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany; (Z.M.)
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Forckenbeckstraße 55, 52074 Aachen, Germany; (Z.M.)
| | - Eva Miriam Buhl
- Institute for Pathology, Electron Microscopy Facility, University Hospital RWTH Aachen, Pauwelstraße 30, 52074 Aachen, Germany
| | - Frank Hölzle
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, 52074 Aachen, Germany (M.O.)
| | - Ali Modabber
- Department of Oral and Maxillofacial Surgery, University Hospital RWTH Aachen, Pauwelstraße 30, 52074 Aachen, Germany (M.O.)
| |
Collapse
|
10
|
Ding W, Zhou Q, Lu Y, Wei Q, Tang H, Zhang D, Liu Z, Wang G, Wu D. ROS-scavenging hydrogel as protective carrier to regulate stem cells activity and promote osteointegration of 3D printed porous titanium prosthesis in osteoporosis. Front Bioeng Biotechnol 2023; 11:1103611. [PMID: 36733970 PMCID: PMC9887181 DOI: 10.3389/fbioe.2023.1103611] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Stem cell-based therapy has drawn attention as an alternative option for promoting prosthetic osteointegration in osteoporosis by virtue of its unique characteristics. However, estrogen deficiency is the main mechanism of postmenopausal osteoporosis. Estrogen, as an effective antioxidant, deficienncy also results in the accumulation of reactive oxygen species (ROS) in the body, affecting the osteogenic differentiation of stem cells and the bone formation i osteoporosis. In this study, we prepared a ROS-scavenging hydrogel by crosslinking of epigallocatechin-3-gallate (EGCG), 3-acrylamido phenylboronic acid (APBA) and acrylamide. The engineered hydrogel can scavenge ROS efficiently, enabling it to be a cell carrier of bone marrow-derived mesenchymal stem cells (BMSCs) to protect delivered cells from ROS-mediated death and osteogenesis inhibition, favorably enhancing the tissue repair potential of stem cells. Further in vivo investigations seriously demonstrated that this ROS-scavenging hydrogel encapsulated with BMSCs can prominently promote osteointegration of 3D printed microporous titanium alloy prosthesis in osteoporosis, including scavenging accumulated ROS, inducing macrophages to polarize toward M2 phenotype, suppressing inflammatory cytokines expression, and improving osteogenesis related markers (e.g., ALP, Runx-2, COL-1, BSP, OCN, and OPN). This work provides a novel strategy for conquering the challenge of transplanted stem cells cannot fully function in the impaired microenvironment, and enhancing prosthetic osteointegration in osteoporosis.
Collapse
Affiliation(s)
- Wenbin Ding
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qirong Zhou
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yifeng Lu
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qiang Wei
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hao Tang
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Donghua Zhang
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhixiao Liu
- Department of Histology and Embryology, College of Basic Medicine, Shanghai, China
| | - Guangchao Wang
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Dajiang Wu
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|