1
|
Cavallero A, Donadel G, Puccini P, Gervasi PG, Gabisonia K, Longo V, Gabriele M. New insight on porcine carboxylesterases expression and activity in lung tissues. Res Vet Sci 2024; 175:105314. [PMID: 38823354 DOI: 10.1016/j.rvsc.2024.105314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/04/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Over the course of the last twenty years, there has been a growing recognition of the pig's potential as a valuable model for studying human drug metabolism. This study aimed to investigate the expression, enzymatic activity, inhibitory susceptibility, and cellular localization of carboxylesterases (CES) in porcine lung tissue not yet explored. Our results showed that CESs hydrolysis activity followed Michaelis-Menten kinetics in both cytosolic and microsomal fractions of porcine lung tissues (N = 8), with comparable hydrolysis rates for tested substrates, namely 4-nitrophenyl acetate (pNPA), 4-methylumbelliferyl acetate (4-MUA), and fluorescein diacetate (FD). We also determined the CESs hydrolysis activity in a representative sample of the porcine liver that, as expected, displayed higher activity than the lung ones. The study demonstrated variable levels of enzyme activities and interindividual variability in both porcine lung fractions. Inhibition studies used to assess the CESs' involvement in the hydrolysis of pNPA, 4-MUA, and FD suggested that CESs may be the enzymes primarily involved in the metabolism of ester compounds in the pig lung tissue. Overall, this study provides insight into the distribution and diversity of CES isoforms involved in substrate hydrolysis across different cellular fractions (cytosol and microsomes) in porcine lungs.
Collapse
Affiliation(s)
- Andrea Cavallero
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Giorgia Donadel
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Paola Puccini
- Chiesi Farmaceutici S.P.A., via Palermo 26/A, Parma, Italy
| | - Pier Giovanni Gervasi
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Khatia Gabisonia
- Interdisciplinary Center "Health Science", Scuola Superiore Sant'Anna, c/o Istituto di Fisiologia Clinica, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Vincenzo Longo
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy
| | - Morena Gabriele
- Istituto di Biologia e Biotecnologia Agraria, Consiglio Nazionale delle Ricerche, via Moruzzi 1, 56124 Pisa, Italy.
| |
Collapse
|
2
|
Su L, Gao K, Tian Y, Xiao X, Lu C, Xu J, Yan X. Mitochondrial Esterase Activity Measured at the Single Organelle Level by Nano-flow Cytometry. Anal Chem 2024; 96:810-820. [PMID: 38173421 DOI: 10.1021/acs.analchem.3c04321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Monitoring mitochondrial esterase activity is crucial not only for investigating mitochondrial metabolism but also for assessing the effectiveness of mitochondrial-targeting prodrugs. However, accurately detecting esterase activity within mitochondria poses challenges due to its ubiquitous presence in cells and the uncontrolled localization of fluorogenic probes. To overcome this hurdle and reveal variations among different mitochondria, we isolated mitochondria and preserved their activity and functionality in a buffered environment. Subsequently, we utilized a laboratory-built nano-flow cytometer in conjunction with an esterase-responsive calcein-AM fluorescent probe to measure the esterase activity of individual mitochondria. This approach enabled us to investigate the influence of temperature, pH, metal ions, and various compounds on the mitochondrial esterase activity without any interference from other cellular constituents. Interestingly, we observed a decline in the mitochondrial esterase activity following the administration of mitochondrial respiratory chain inhibitors. Furthermore, we found that mitochondrial esterase activity was notably higher in the presence of a high concentration of ATP compared to that of ADP and AMP. Additionally, we noticed a correlation between elevated levels of complex IV and increased mitochondrial esterase activity. These findings suggest a functional connection between the mitochondrial respiratory chain and mitochondrial esterase activity. Moreover, we detected an upsurge in mitochondrial esterase activity during the early stages of apoptosis, while cellular esterase activity decreased. This highlights the significance of analyzing enzyme activity within specific organelle subregions. In summary, the integration of a nano-flow cytometer and fluorescent dyes introduces a novel method for quantifying mitochondrial enzyme activity with the potential to uncover the alterations and unique functions of other mitochondrial enzymes.
Collapse
Affiliation(s)
- Liyun Su
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Kaimin Gao
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Ye Tian
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xu Xiao
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Cheng Lu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Jingyi Xu
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People's Republic of China
| |
Collapse
|
3
|
Menendez CA, Mohamed A, Perez-Lemus GR, Weiss AM, Rawe BW, Liu G, Crolais AE, Kenna E, Byléhn F, Alvarado W, Mendels D, Rowan SJ, Tay S, de Pablo JJ. Development of Masitinib Derivatives with Enhanced M pro Ligand Efficiency and Reduced Cytotoxicity. Molecules 2023; 28:6643. [PMID: 37764425 PMCID: PMC10536273 DOI: 10.3390/molecules28186643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Recently, a high-throughput screen of 1900 clinically used drugs identified masitinib, an orally bioavailable tyrosine kinase inhibitor, as a potential treatment for COVID-19. Masitinib acts as a broad-spectrum inhibitor for human coronaviruses, including SARS-CoV-2 and several of its variants. In this work, we rely on atomistic molecular dynamics simulations with advanced sampling methods to develop a deeper understanding of masitinib's mechanism of Mpro inhibition. To improve the inhibitory efficiency and to increase the ligand selectivity for the viral target, we determined the minimal portion of the molecule (fragment) that is responsible for most of the interactions that arise within the masitinib-Mpro complex. We found that masitinib forms highly stable and specific H-bond interactions with Mpro through its pyridine and aminothiazole rings. Importantly, the interaction with His163 is a key anchoring point of the inhibitor, and its perturbation leads to ligand unbinding within nanoseconds. Based on these observations, a small library of rationally designed masitinib derivatives (M1-M5) was proposed. Our results show increased inhibitory efficiency and highly reduced cytotoxicity for the M3 and M4 derivatives compared to masitinib.
Collapse
Affiliation(s)
- Cintia A. Menendez
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Adil Mohamed
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Gustavo R. Perez-Lemus
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Adam M. Weiss
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA (G.L.); (A.E.C.)
| | - Benjamin W. Rawe
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Guancen Liu
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA (G.L.); (A.E.C.)
| | - Alex E. Crolais
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA (G.L.); (A.E.C.)
| | - Emma Kenna
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Fabian Byléhn
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Walter Alvarado
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Dan Mendels
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Stuart J. Rowan
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
- Department of Chemistry, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA (G.L.); (A.E.C.)
| | - Savaş Tay
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
| | - Juan J. de Pablo
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA (G.R.P.-L.); (B.W.R.); (S.J.R.); (S.T.)
- Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| |
Collapse
|
4
|
Zhao Y, Li Y, Wang F, Gan X, Zheng T, Chen M, Wei L, Chen J, Yu C. CES1-Triggered Liver-Specific Cargo Release of CRISPR/Cas9 Elements by Cationic Triadic Copolymeric Nanoparticles Targeting Gene Editing of PCSK9 for Hyperlipidemia Amelioration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2300502. [PMID: 37083231 DOI: 10.1002/advs.202300502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/25/2023] [Indexed: 05/03/2023]
Abstract
The broad application of clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 genome editing tools is hindered by challenges in the efficient delivery of its two components into specific cells and intracytoplasmic release. Herein, a novel copolymer for delivery of Cas9-mRNA/ single-guide RNA (Cas9-mRNA/sgRNA) in vitro and vivo, using carboxylesterase-responsive cationic triadic copolymeric nanoparticles targeted proprotein convertase subtilisin/kexin type 9 (PCSK9) for hyperlipidemia amelioration is reported. A dimethyl biguanide derivative is designed and synthesized to form cationic block, and copolymerization onto prepolymer with propyl methacrylate, to fabricate a triadic copolymer mPEG-b-P(Met/n-PMA). The copolymer can self-assemble with Cas9-mRNA/sgRNA, indicating the excellent potential of nanoparticles to form a delivery carrier. This vehicle can efficiently release RNA in response to the hepatocytes carboxylesterase for genome editing. It was demonstrated that the mPEG-b-P(Met/n-PMA)/Cas9 mRNA/sgRNA nanoparticles effectively accumulated in hepatocytes, lead to the inhibition of PCSK9, and lowered the levels of Low-density lipoprotein cholesterol and total cholesterol in mouse serum down 20% of nontreatment. Interestingly, the nanoparticles even enable multiple functions in the regulation of blood glucose and weight. This study establishes a novel method to achieve complex CRISPR components stable loading, safe delivery, and fixed-point release, which expand the application of CRISPR delivery systems.
Collapse
Affiliation(s)
- Yunfei Zhao
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Yun Li
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Fan Wang
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Xuelan Gan
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Tianye Zheng
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Mengyue Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Li Wei
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Jun Chen
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| | - Chao Yu
- Chongqing Key Laboratory for Pharmaceutical Metabolism Research, Chongqing Pharmacodynamic Evaluation Engineering Technology Research Center, College of Pharmacy, Chongqing Medical University, Chongqing, 400016, P. R. China
| |
Collapse
|
5
|
Cavallero A, Puccini P, Aprile V, Lucchi M, Gervasi P, Longo V, Gabriele M. Presence, enzymatic activity, and subcellular localization of paraoxonases 1, 2, and 3 in human lung tissues. Life Sci 2022; 311:121147. [DOI: 10.1016/j.lfs.2022.121147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/24/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|