1
|
Yang Y, Chen Q, Liu Z, Huang T, Hong Y, Li N, Ai K, Huang Q. Novel reduced heteropolyacid nanoparticles for effective treatment of drug-induced liver injury by manipulating reactive oxygen and nitrogen species and inflammatory signals. J Colloid Interface Sci 2025; 678:174-187. [PMID: 39243718 DOI: 10.1016/j.jcis.2024.08.239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/07/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
With the rapid advancements in biomedicine, the use of clinical drugs has surged sharply. However, potential hepatotoxicity limits drug exploitation and widespread usage, posing serious threats to patient health. Hepatotoxic drugs disrupt liver enzyme levels and cause refractory pathological damage, creating a challenge in the application of diverse first-line drugs. The activation and deterioration of reactive oxygen and nitrogen species (RONS) and inflammatory signals are key pathological mechanisms of drug-induced liver injury (DILI). Herein, a novel reduced heteropolyacid nanoparticle (RNP) has been developed, possessing high RONS-scavenging ability, strong anti-inflammatory activity, and excellent biosafety. These features enable it to swiftly restore the redox and immune balance of the liver. Intravenous administration of RNP effectively scavenged RONS storm, reversing liver oxidative stress and restoring normal mitochondrial membrane potential and function. Furthermore, by inhibiting c-Jun-N-terminal kinase phosphorylation, RNP facilitated the restoration of nuclear factor erythroid 2-related factor 2-mediated endogenous antioxidant signaling, ultimately rescuing the liver function and tissue morphology in acetaminophen-induced DILI mice. Crucially, the high biocompatible RNP exhibited superior efficacy in the DILI mouse model compared to the clinical antioxidant N-acetylcysteine. This targeted therapeutic approach, tailored to address the onset and progression of DILI, offers valuable new insights into controlling the condition and restoring liver structure and function.
Collapse
Affiliation(s)
- Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Qiaohui Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Zerun Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ting Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ying Hong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Niansheng Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
2
|
Zhu J, Wu R, Yang T, Yuan Y, Liu G, Chen S, Chen Z, Liu S, Wang S, Li D, Yao H, He Y, He S, Qin CF, Dai J, Ma F. Harnessing ZIKV NS2A RNA for alleviating acute hepatitis and cytokine release storm by targeting translation machinery. Hepatology 2024:01515467-990000000-01033. [PMID: 39302977 DOI: 10.1097/hep.0000000000001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND AND AIMS Hyperactivated inflammatory responses induced by cytokine release syndrome are the primary causes of tissue damage and even death. The translation process is precisely regulated to control the production of proinflammatory cytokines. However, it is largely unknown whether targeting translation can effectively limit the hyperactivated inflammatory responses during acute hepatitis and graft-versus-host disease. APPROACH AND RESULTS By using in vitro translation and cellular overexpression systems, we have found that the nonstructural protein gene NS2A of Zika virus functions as RNA molecules to suppress the translation of both ectopic genes and endogenous proinflammatory cytokines. Mechanistically, results from RNA pulldown and co-immunoprecipitation assays have demonstrated that NS2A RNA interacts with the translation initiation factor eIF2α to disrupt the dynamic balance of the eIF2/eIF2B complex and translation initiation, which is the rate-limiting step of translation. In the acetaminophen-induced, lipopolysaccharide/D-galactosamine-induced, viral infection-induced acute hepatitis, and graft-versus-host disease mouse models, mice with myeloid cell-specific knock-in of NS2A show decreased levels of serum proinflammatory cytokines and reduced tissue damage. CONCLUSIONS Zika virus NS2A dampens the production of proinflammatory cytokines and alleviates inflammatory injuries by interfering translation process as RNA molecules, which suggests that NS2A RNA is potentially used to treat numerous acute inflammatory diseases characterized by cytokine release syndrome.
Collapse
Affiliation(s)
- Jingfei Zhu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Rongsheng Wu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Tao Yang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yi Yuan
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Guodi Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Shengchuan Chen
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Siying Liu
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Shiyou Wang
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Dapei Li
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Haiping Yao
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Yuanqing He
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Sudan He
- State Key Laboratory of Medical Molecular Biology and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| | - Cheng-Feng Qin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, China
| |
Collapse
|
3
|
Zhao S, Feng Y, Zhang J, Zhang Q, Wang J, Cui S. Comparative analysis of gene expression between mice and humans in acetaminophen-induced liver injury by integrating bioinformatics analysis. BMC Med Genomics 2024; 17:80. [PMID: 38549107 PMCID: PMC10976682 DOI: 10.1186/s12920-024-01848-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE Mice are routinely utilized as animal models of drug-induced liver injury (DILI), however, there are significant differences in the pathogenesis between mice and humans. This study aimed to compare gene expression between humans and mice in acetaminophen (APAP)-induced liver injury (AILI), and investigate the similarities and differences in biological processes between the two species. METHODS A pair of public datasets (GSE218879 and GSE120652) obtained from GEO were analyzed using "Limma" package in R language, and differentially expressed genes (DEGs) were identified, including co-expressed DEGs (co-DEGs) and specific-expressed DEGS (specific-DEGs). Analysis of Gene Set Enrichment Analysis (GSEA), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed analyses for specific-DEGs and co-DEGs. The co-DEGs were also used to construct transcription factor (TF)-gene network, gene-miRNA interactions network and protein-protein interaction (PPI) network for analyzing hub genes. RESULTS Mouse samples contained 1052 up-regulated genes and 1064 down-regulated genes, while human samples contained 1156 up-regulated genes and 1557 down-regulated genes. After taking the intersection between the DEGs, only 154 co-down-regulated and 89 co-up-regulated DEGs were identified, with a proportion of less than 10%. It was suggested that significant differences in gene expression between mice and humans in drug-induced liver injury. Mouse-specific-DEGs predominantly engaged in processes related to apoptosis and endoplasmic reticulum stress, while human-specific-DEGs were concentrated around catabolic process. Analysis of co-regulated genes reveals showed that they were mainly enriched in biosynthetic and metabolism-related processes. Then a PPI network which contains 189 nodes and 380 edges was constructed from the co-DEGs and two modules were obtained by Mcode. We screened out 10 hub genes by three algorithms of Degree, MCC and MNC, including CYP7A1, LSS, SREBF1, FASN, CD44, SPP1, ITGAV, ANXA5, LGALS3 and PDGFRA. Besides, TFs such as FOXC1, HINFP, NFKB1, miRNAs like mir-744-5p, mir-335-5p, mir-149-3p, mir-218-5p, mir-10a-5p may be the key regulatory factors of hub genes. CONCLUSIONS The DEGs of AILI mice models and those of patients were compared, and common biological processes were identified. The signaling pathways and hub genes in co-expression were identified between mice and humans through a series of bioinformatics analyses, which may be more valuable to reveal molecular mechanisms of AILI.
Collapse
Affiliation(s)
- Shanmin Zhao
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Yan Feng
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Jingyuan Zhang
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Qianqian Zhang
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Junyang Wang
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China
| | - Shufang Cui
- Department of Laboratory Animal Sciences, School of Basic Medicine, Naval Medical University, NO. 800 Xiangyin Road, 200433, Shanghai, China.
| |
Collapse
|
4
|
Zhang Z, Li J, Wang G, Ling F. The oral protective efficacy of magnolol against Aeromonas hydrophila and A. veronii infection via enhancing anti-inflammatory ability in goldfish (Carassius auratus). JOURNAL OF FISH DISEASES 2023; 46:1413-1423. [PMID: 37705318 DOI: 10.1111/jfd.13859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Aeromonas hydrophila and A. veronii are widespread and important critical pathogenic bacteria in the aquaculture industry and cause severe economic damage. At present, magnolol has been proved to be a broad-spectrum antibacterial activity, such as A. hydrophila, Staphylococcus aureus and Streptococcus mutans. In order to explore the cause of in vivo disease resistance of magnolol and promote its safe application in aquaculture, the pathological detection and changes in immune indicators of fish after feeding with magnolol were conducted in this paper. Results showed that the diets supplemented with magnolol (3 g magnolol/kg commercial feed) significantly increase the expression level of anti-inflammatory cytokines (IL-10, TGF-β and IL-4) in the liver of goldfish (p < .05). Additionally, the expression levels of proinflammatory cytokines (IL-1β, IL-8 and IFN-γ) did not increase significantly. Subsequently, this study investigated the resistance of goldfish to A. hydrophila and A. veronii infection after feeding with magnolol. The results showed that the survival rates of treatment groups fed 3 g magnolol/kg commercial feed daily increased by 23.1% and 38.5% after 10 days post A. hydrophila and A. veronii (p = .0351) infection, respectively. Meanwhile, growth performance (body weight and length), major internal organs (liver, spleen, kidney and intestine) and the serum biochemistry indicators (ATL and AST) all exhibited no significant adverse effects after the goldfish fed with magnolol for 30 days. TP showed an increasing concentration in the treatment group (p < .05). Results of the mRNA expression of stress response indicated that the expression level of cyp1a and hsp70 was significantly down-regulated after a 30-day treatment (p < .05), and the two genes recovered to the similar level as the control group after a commercial feed diet. In brief, the diets supplemented with magnolol protected the host from the excessive immune response caused by A. hydrophila and A. veronii via enhancing its anti-inflammatory capacity and had no adverse effects with feeding.
Collapse
Affiliation(s)
- Zhao Zhang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Jing Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi, China
| |
Collapse
|
5
|
Li X, Gong S, Chen W, Zhao Y, Fu K, Zheng Y, Chen J. Schisandrol A, a bioactive constituent from Schisandrae Chinensis Fructus, alleviates drug-induced liver injury by autophagy activation via exosomes. Bioorg Chem 2023; 139:106751. [PMID: 37531820 DOI: 10.1016/j.bioorg.2023.106751] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/25/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023]
Abstract
OBJECTIVE To investigate the bioactive compounds of Schisandrae Chinensis Fructus (SCF) and their mechanisms of action in the treatment of drug-induced liver injury (DILI), specifically Acetaminophen (APAP)-induced DILI. METHOD Chemical components in SCF were identified using the UPLC-Q-TOF-MS method. Active components were then screened using HotMap, combined with SCF efficacy results concerning the prevention and treatment of drug-induced liver injury. Its direct target was elucidated using a comprehensive chemical-pharmacodynamic-exosome approach. RESULT We identified Schisandrol A, is a lignan component, as a key active compound that improved the symptoms DILI in mouse liver tissue; specifically, reducing oxidative stress and thereby the inflammatory response. To further understand the biological function of miRNAs in mouse liver exosomes, we used TargetScan (v5.0) and Miranda (v3.3a) to predict the target genes of MicroRNAs (miRNAs), where changes in the expression of mmu-let-7 family miRNAs were closely related to autophagy. This revealed differential miRNA target genes that were involved in 20 Kyoto Encyclopedia of Genes and Genomes pathways, including glycerol phosphate metabolism, inositol phosphate metabolism, phospholipase D signaling pathway, Rap1 signaling pathway, and Ras signaling pathway. CONCLUSION Schisandrol A alleviated the symptoms of DILI in mice by inhibiting oxidative stress and inflammation, whereas, it alleviated DILI by activating autophagy in the exosomes.
Collapse
Affiliation(s)
- Xiankuan Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Sihan Gong
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Weishan Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Zhao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China
| | - Kun Fu
- Second Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300120, China
| | - Yanchao Zheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jingzi Chen
- Chinese Medicine Rehabilitation Department, Tianjin Nankai Hospital, Tianjin 300100, China.
| |
Collapse
|
6
|
Yan L, Luo H, Tang X, Wang H. Cannabinoids inhibit ethanol-induced activation of liver toxicity in rats through JNK/ERK/MAPK signaling pathways. J Biochem Mol Toxicol 2023; 37:e23260. [PMID: 36453646 DOI: 10.1002/jbt.23260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 09/24/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022]
Abstract
Cannabinoids (CBs) are psychoactive compounds, with reported anticancer, anti-inflammatory, and anti-neoplastic properties. The study was aimed at assessing the hepatoprotective effects of CB against ethanol (EtOH)-induced liver toxicity in rats. The animals were divided into seven groups: control (Group I) and Group II were treated with 50% ethanol (EtOH 5 mg/kg). Groups III, IV, and VI were treated with (EtOH + CB 10 mg/kg), (EtOH + CB 20 mg/kg), and (EtOH + CB 30 mg/kg), respectively. Groups V and VII consisted of animals treated with 20 and 30 mg/kg, of CB, respectively. Biochemical analysis revealed that Group IV (EtOH + CB 20 mg/kg) had reduced levels of ALT-alanine transferase, AST-aspartate aminotransferase, ALP-alanine peroxidase, MDA-malondialdehyde and increased levels of GSH-reduced glutathione. Histopathological analysis of liver and kidney tissues showed that EtOH + CB (20 and 30 mg/kg) treated animal groups exhibited normal tissue architecture similar to that of the control group. ELISA revealed that the inflammatory markers were reduced in the animal groups that were treated with EtOH + CB 20 mg/kg, in comparison to the animals treated only with EtOH. The mRNA expression levels of COX-2, CD-14, and MIP-2 showed a remarkable decrease in EtOH + CB treated animal groups to control groups. Western blot analysis revealed that CB downregulated p38/JNK/ERK thereby exhibiting its hepatoprotective property by inhibiting mitogen-activated protein kinase pathways. Thus, our findings suggest that CB is a potential candidate for the treatment of alcohol-induced hepatotoxicity.
Collapse
Affiliation(s)
- Lei Yan
- Clinical Experimental Centre, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China.,M.Kandiah Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, Bandar Sungai Long, Selangor, Malaysia.,Xi'an Engineering Technology Research Center for Cardiovascular Active Peptide, Xi'an, Shaanxi Province, China
| | - Heng Luo
- Reproductive Medicine Center, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xiaolu Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Haidong Wang
- Inpatient Clinical Laboratory Department, The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
7
|
Chen Y, Wang Y, Jiang S, Xu J, Wang B, Sun X, Zhang Y. Red-fleshed apple flavonoid extract alleviates CCl 4-induced liver injury in mice. Front Nutr 2023; 9:1098954. [PMID: 36742007 PMCID: PMC9890596 DOI: 10.3389/fnut.2022.1098954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/19/2023] Open
Abstract
In recent years, the global incidence of liver damage has increased. Despite the many known health benefits of red-fleshed apple flavonoids, their potential liver-protective effects have not yet been investigated. In this study, we analyzed the composition of red-fleshed apple flavonoid extract (RAFE) by high-performance liquid chromatography (HPLC). We then induced liver damage in mice with carbon tetrachloride (CCl4) and performed interventions with RAFE to analyze its effect on liver damage, using bifendate as a positive control. The results showed that catechin was the most abundant flavonoid in 'XJ4' RAFE (49.346 mg/100 g). In liver-injured mice, the liver coefficients converged to normal levels following RAFE intervention. Moreover, RAFE significantly reduced the enzymatic activity levels of glutamic oxaloacetic transaminase (ALT), glutamic alanine transaminase (AST), and alkaline phosphatase (ALP) in mouse serum. Furthermore, RAFE significantly increased the content or enzyme activity level of total glutathione, total antioxidant capacity, and superoxide dismutase, and significantly decreased the content of malondialdehyde in the liver of mice. In parallel, we performed histopathological observations of mouse livers for each group. The results showed that RAFE restored the pathological changes caused by CCl4 around the central hepatic vein in mice and resulted in tightly bound hepatocytes. The recovery effect of RAFE was dose-dependent in the liver tissue. Regarding intestinal microorganisms, we found that RAFE restored the microbial diversity in liver-injured mice, with a similar microbial composition in the RAFE intervention group and normal group. RAFE reduced the ratio of Firmicutes to Bacteroidetes, increased the levels of probiotic bacteria, such as Lactobacillus acidophilus, and Clostridium, and reduced the levels of harmful bacteria, such as Erysipelothrix Rosenbach. Therefore, RAFE ameliorated CCl4-induced liver damage by modulating the abundance and composition of intestinal microorganisms in mice. In conclusion, RAFE alleviated CCl4-induced liver damage in mice, with H-RAFE (5 mg kg-1) significantly improving liver damage in mice but M-RAFE (1 mg kg-1) significantly improving the imbalance of intestinal microorganisms in mice. Our research suggests that RAFE could be employed for the adjuvant treatment and prevention of liver damage, and may have important applications in food and medicine.
Collapse
Affiliation(s)
- Yizhou Chen
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | - Yanbo Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Shenghui Jiang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Jihua Xu
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Bin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Xiaohong Sun
- College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
8
|
Li Q, Chen F, Wang F. The immunological mechanisms and therapeutic potential in drug-induced liver injury: lessons learned from acetaminophen hepatotoxicity. Cell Biosci 2022; 12:187. [PMID: 36414987 PMCID: PMC9682794 DOI: 10.1186/s13578-022-00921-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
Acute liver failure caused by drug overdose is a significant clinical problem in developed countries. Acetaminophen (APAP), a widely used analgesic and antipyretic drug, but its overdose can cause acute liver failure. In addition to APAP-induced direct hepatotoxicity, the intracellular signaling mechanisms of APAP-induced liver injury (AILI) including metabolic activation, mitochondrial oxidant stress and proinflammatory response further affect progression and severity of AILI. Liver inflammation is a result of multiple interactions of cell death molecules, immune cell-derived cytokines and chemokines, as well as damaged cell-released signals which orchestrate hepatic immune cell infiltration. The immunoregulatory interplay of these inflammatory mediators and switching of immune responses during AILI lead to different fate of liver pathology. Thus, better understanding the complex interplay of immune cell subsets in experimental models and defining their functional involvement in disease progression are essential to identify novel therapeutic targets for the treatment of AILI. Here, this present review aims to systematically elaborate on the underlying immunological mechanisms of AILI, its relevance to immune cells and their effector molecules, and briefly discuss great therapeutic potential based on inflammatory mediators.
Collapse
Affiliation(s)
- Qianhui Li
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Feng Chen
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| | - Fei Wang
- grid.511083.e0000 0004 7671 2506Division of Gastroenterology, Seventh Affiliated Hospital of Sun Yat-sen University, No.628, Zhenyuan Road, Shenzhen, 518107 China
| |
Collapse
|
9
|
Wang Q, Ma L, An C, Wise SG, Bao S. The role of IL-38 in intestinal diseases - its potential as a therapeutic target. Front Immunol 2022; 13:1051787. [PMID: 36405715 PMCID: PMC9670310 DOI: 10.3389/fimmu.2022.1051787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
IL-38, an anti-inflammatory cytokine, is a key regulator of homeostasis in host immunity. Intestinal immunity plays a critical role in defence against pathogenic invasion, as it is the largest surface organ and the most common entry point for micro-organisms. Dysregulated IL-38 activity is observed in several autoimmune diseases including systemic lupus erythematosus and atherosclerosis. The protective role of IL-38 is well illustrated in experimental colitis models, showing significantly worse colitis in IL-38 deficient mice, compared to wildtype mice. Moreover, exogenous IL-38 has been shown to ameliorate experimental colitis. Surprisingly, upregulated IL-38 is detected in inflamed tissue from inflammatory bowel disease patients, consistent with increased circulating cytokine levels, demonstrating the complex nature of host immunity in vivo. However, colonic IL-38 is significantly reduced in malignant tissues from patients with colorectal cancer (CRC), compared to adjacent non-cancerous tissue. Additionally, IL-38 expression in CRC correlates with 5-year survival, tumour size and differentiation, suggesting IL-38 plays a protective role during the development of CRC. IL-38 is also an independent biomarker for the prognosis of CRC, offering useful information in the management of CRC. Taken together, these data demonstrate the role of IL-38 in the maintenance of normal intestinal mucosal homeostasis, but that dysregulation of IL-38 contributes to initiation of chronic inflammatory bowel disease (resulting from persistent local inflammation), and that IL-38 provides protection during the development of colorectal cancer. Such data provide useful information for the development of novel therapeutic targets in the management of intestinal diseases for more precise medicine.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Anatomy, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Linna Ma
- Department of Pathology, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Caiping An
- Department of Haematology and Nephropathy, Gansu Provincial Hospital, Lanzhou, Gansu, China
- *Correspondence: Caiping An, ; Shisan Bao,
| | - Steven G. Wise
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Shisan Bao
- Department of Anatomy, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
- *Correspondence: Caiping An, ; Shisan Bao,
| |
Collapse
|
10
|
Study on the Mechanism of Mesaconitine-Induced Hepatotoxicity in Rats Based on Metabonomics and Toxicology Network. Toxins (Basel) 2022; 14:toxins14070486. [PMID: 35878224 PMCID: PMC9322933 DOI: 10.3390/toxins14070486] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/13/2022] [Indexed: 02/05/2023] Open
Abstract
Mesaconitine (MA), one of the main diterpenoid alkaloids in Aconitum, has a variety of pharmacological effects, such as analgesia, anti-inflammation and relaxation of rat aorta. However, MA is a highly toxic ingredient. At present, studies on its toxicity are mainly focused on the heart and central nervous system, and there are few reports on the hepatotoxic mechanism of MA. Therefore, we evaluated the effects of MA administration on liver. SD rats were randomly divided into a normal saline (NS) group, a low-dose MA group (0.8 mg/kg/day) and a high-dose MA group (1.2 mg/kg/day). After 6 days of administration, the toxicity of MA on the liver was observed. Metabolomic and network toxicology methods were combined to explore the effect of MA on the liver of SD rats and the mechanism of hepatotoxicity in this study. Through metabonomics study, the differential metabolites of MA, such as L-phenylalanine, retinyl ester, L-proline and 5-hydroxyindole acetaldehyde, were obtained, which involved amino acid metabolism, vitamin metabolism, glucose metabolism and lipid metabolism. Based on network toxicological analysis, MA can affect HIF-1 signal pathway, MAPK signal pathway, PI3K-Akt signal pathway and FoxO signal pathway by regulating ALB, AKT1, CASP3, IL2 and other targets. Western blot results showed that protein expression of HMOX1, IL2 and caspase-3 in liver significantly increased after MA administration (p < 0.05). Combined with the results of metabonomics and network toxicology, it is suggested that MA may induce hepatotoxicity by activating oxidative stress, initiating inflammatory reaction and inducing apoptosis.
Collapse
|
11
|
Huang X, Jia M, Liu Y, Wang S, Tang Y, Li X, Jiang X, Wu Z, Lou Y, Fan G. Identification of bicyclol metabolites in rat plasma, urine and feces by UPLC-Q-TOF-MS/MS and evaluation of the efficacy and safety of these metabolites based on network pharmacology and molecular docking combined with toxicity prediction. J Pharm Biomed Anal 2022; 220:114947. [DOI: 10.1016/j.jpba.2022.114947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
|
12
|
Effects of Anthraquinones on Immune Responses and Inflammatory Diseases. Molecules 2022; 27:molecules27123831. [PMID: 35744949 PMCID: PMC9230691 DOI: 10.3390/molecules27123831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
The anthraquinones (AQs) and derivatives are widely distributed in nature, including plants, fungi, and insects, with effects of anti-inflammation and anti-oxidation, antibacterial and antiviral, anti-osteoporosis, anti-tumor, etc. Inflammation, including acute and chronic, is a comprehensive response to foreign pathogens under a variety of physiological and pathological processes. AQs could attenuate symptoms and tissue damages through anti-inflammatory or immuno-modulatory effects. The review aims to provide a scientific summary of AQs on immune responses under different pathological conditions, such as digestive diseases, respiratory diseases, central nervous system diseases, etc. It is hoped that the present paper will provide ideas for future studies of the immuno-regulatory effect of AQs and the therapeutic potential for drug development and clinical use of AQs and derivatives.
Collapse
|
13
|
Li C, Wang M, Fu T, Li Z, Chen Y, He T, Feng D, Wang Z, Fan Q, Chen M, Zhang H, Lin R, Zhao C. Lipidomics Indicates the Hepatotoxicity Effects of EtOAc Extract of Rhizoma Paridis. Front Pharmacol 2022; 13:799512. [PMID: 35211012 PMCID: PMC8861452 DOI: 10.3389/fphar.2022.799512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/17/2022] [Indexed: 12/18/2022] Open
Abstract
Rhizoma Paridis is a traditional Chinese medicine commonly used in the clinical treatment of gynecological diseases. Previous studies have shown that aqueous extracts of Rhizoma Paridis exhibit some hepatotoxicity to hepatocytes. Here, using lipidomics analysis, we investigated the potential hepatotoxicity of Rhizoma Paridis and its possible mechanism. The hepatic damaging of different solvent extracts of Rhizoma Paridis on zebrafish larvae were determined by a combination of mortality dose, biochemical, morphological, and functional tests. We found that ethyl acetate extracts (AcOEtE) were the most toxic fraction. Notably, lipidomic responsible for the pharmacological effects of AcOEtE were investigated by Q-Exactive HF-X mass spectrometer (Thermo Scientific high-resolution) coupled in tandem with a UHPLC system. Approximately 1958 unique spectral features were detected, of which 325 were identified as unique lipid species. Among these lipid species, phosphatidylethanolamine cardiolipin Ceramide (Cer), lysophosphatidylinositol sphingosine (Sph), etc., were significantly upregulated in the treated group. Pathway analysis indicates that Rhizoma Paridis may cause liver damage via interfering with the glycerophospholipid metabolism. Collectively, this study has revealed previously uncharacterized lipid metabolic disorder involving lipid synthesis, metabolism, and transport that functionally determines hepatic fibrosis procession.
Collapse
Affiliation(s)
- Chaofeng Li
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingshuang Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tingting Fu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiqi Li
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Chen
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tao He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dan Feng
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhaoyi Wang
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qiqi Fan
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Meilin Chen
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Honggui Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ruichao Lin
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chongjun Zhao
- Beijing Key Lab for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
14
|
Dang J, He Z, Cui X, Fan J, Hambly DJ, Hambly BD, Li X, Bao S. The Role of IL-37 and IL-38 in Colorectal Cancer. Front Med (Lausanne) 2022; 9:811025. [PMID: 35186997 PMCID: PMC8847758 DOI: 10.3389/fmed.2022.811025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 12/25/2022] Open
Abstract
Colorectal cancer (CRC) is a major killer. Dysregulation of IL-37 and IL-38, both anti-inflammatory cytokines, is observed in auto-immune diseases. The precise regulatory mechanisms of IL-37/IL-38 during the development of CRC remains unclear, but chronic intestinal inflammation is involved in the carcinogenesis of CRC. Constitutive production of colonic IL-37 and IL-38 is substantially reduced in CRC, consistent with an inverse correlation with CRC differentiation. Reduced colonic IL-37 and IL-38 is relating to CRC invasion and distant metastasis, suggesting a protective role for IL-38 within the tumor micro-environment. IL-38 is reduced in right-sided CRC compared to left-sided CRC, which is in line with multiple risk factors for right-sided CRC, including the embryonic development of the colon, and genetic differences in CRC between these two sides. Finally, colonic IL-37 and tumor associated neutrophils (TAN) seem to be independent biomarkers of prognostic value, whereas colonic IL-38 seems to be a reliable and independent biomarker in predicting the 5-year survival post-surgery in CRC. However, there is room for improvement in available studies, including the extension of these studies to different regions/countries incorporating different races, evaluation of the role of multi-drug resistance, and different subsets of CRC. It would be useful to determine the kinetics of circulating IL-38 and its relationship with drug resistance/targeted therapy. The measurement of colonic IL-38 at the molecular and cellular level is required to explore the contribution of IL-38 pathways during the development of CRC. These approaches could provide insight for the development of personalized medicine.
Collapse
Affiliation(s)
- Jie Dang
- Child and Adolescent Health Management Center, Lanzhou University Second Hospital, Lanzhou, China
| | - Zhiyun He
- Department of General Surgery, Lanzhou University First Hospital, Lanzhou, China
| | - Xiang Cui
- Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
| | - Jingchun Fan
- Department of Epidemiology and Evidence-Based Medicine, School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - David J Hambly
- Resident Training Program, Gold Coast University Hospital, Southport, QLD, Australia
| | - Brett D Hambly
- Department of Epidemiology and Evidence-Based Medicine, School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China.,Centre for Healthy Futures, Torrens University Australia, Sydney, NSW, Australia
| | - Xun Li
- Department of General Surgery, Lanzhou University First Hospital, Lanzhou, China
| | - Shisan Bao
- Department of Epidemiology and Evidence-Based Medicine, School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| |
Collapse
|
15
|
Benić MS, Nežić L, Vujić-Aleksić V, Mititelu-Tartau L. Novel Therapies for the Treatment of Drug-Induced Liver Injury: A Systematic Review. Front Pharmacol 2022; 12:785790. [PMID: 35185538 PMCID: PMC8847672 DOI: 10.3389/fphar.2021.785790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/30/2021] [Indexed: 12/15/2022] Open
Abstract
Many drugs with different mechanisms of action and indications available on the market today are capable of inducing hepatotoxicity. Drug-induced liver injury (DILI) has been a treatment challenge nowadays as it was in the past. We searched Medline (via PubMed), CENTRAL, Science Citation Index Expanded, clinical trials registries and databases of DILI and hepatotoxicity up to 2021 for novel therapies for the management of adult patients with DILI based on the combination of three main search terms: 1) treatment, 2) novel, and 3) drug-induced liver injury. The mechanism of action of novel therapies, the potential of their benefit in clinical settings, and adverse drug reactions related to novel therapies were extracted. Cochrane Risk of bias tool and Grading of Recommendations Assessment, Development and Evaluation (GRADE) assessment approach was involved in the assessment of the certainty of the evidence for primary outcomes of included studies. One thousand three hundred seventy-two articles were identified. Twenty-eight articles were included in the final analysis. Eight randomized controlled trials (RCTs) were detected and for six the available data were sufficient for analysis. In abstract form only we found six studies which were also anaylzed. Investigated agents included: bicyclol, calmangafodipir, cytisin amidophospate, fomepizole, livina-polyherbal preparation, magnesium isoglycyrrhizinate (MgIG), picroliv, plasma exchange, radix Paeoniae Rubra, and S-adenosylmethionine. The primary outcomes of included trials mainly included laboratory markers improvement. Based on the moderate-certainty evidence, more patients treated with MgIG experienced alanine aminotransferase (ALT) normalization compared to placebo. Low-certainty evidence suggests that bicyclol treatment leads to a reduction of ALT levels compared to phosphatidylcholine. For the remaining eight interventions, the certainty of the evidence for primary outcomes was assessed as very low and we are very uncertain in any estimate of effect. More effort should be involved to investigate the novel treatment of DILI. Well-designed RCTs with appropriate sample sizes, comparable groups and precise, not only surrogate outcomes are urgently welcome.
Collapse
Affiliation(s)
- Mirjana Stanić Benić
- Department of Clinical Pharmacology, Clinical Hospital Centre Rijeka, Rijeka, Croatia
| | - Lana Nežić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
| | - Vesna Vujić-Aleksić
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, Banja Luka, Bosnia and Herzegovina
- The Republic of Srpska Agency for Certification, Accreditation and Quality Improvement in Health Care, Banja Luka, Bosnia and Herzegovina
| | | |
Collapse
|
16
|
Lee HY, Lee AR, Yoo JJ, Chin S, Kim SG, Kim YS. Biopsy-confirmed fenofibrate-induced severe jaundice: A case report. World J Clin Cases 2021; 9:9295-9301. [PMID: 34786416 PMCID: PMC8567496 DOI: 10.12998/wjcc.v9.i30.9295] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/05/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Drug-induced liver injury (DILI) is the leading cause of acute liver failure in the United States. DILI is mainly caused by painkillers and fever reducers, and it is often characterized by the type of hepatic injury (hepatocellular or cholestatic). This report presents a case of fenofibrate-induced severe jaundice in a 65-year-old Korean male with no prior history of liver disease. We offer a strategy for patients who present signs of severe liver injury with jaundice and high elevations in serum transaminases.
CASE SUMMARY A 65-year-old male visited the gastroenterology outpatient clinic of a tertiary hospital due to increased levels of liver enzyme and total bilirubin which were incidentally detected through a preoperative screening test. Abdominal ultrasound and computed tomography showed no biliary obstruction or non-specific findings in the liver. Liver biopsy was performed and the patient was finally diagnosed with acute cholestatic hepatitis. Following the biopsy, steroid therapy was initiated and after 3 wk of treatment, the total bilirubin level was reduced to 7.22 mg/dL.
CONCLUSION In patients with hyperlipidemia, treatment including fenofibric acid induces rare complications such as severe jaundice and acute cholestatic hepatitis, warranting clinical attention.
Collapse
Affiliation(s)
- Hye Young Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, South Korea
| | - Ae-Ra Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, South Korea
| | - Jeong-Ju Yoo
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, South Korea
| | - Susie Chin
- Department of Pathology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, South Korea
| | - Sang Gyune Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, South Korea
| | - Young Seok Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, South Korea
| |
Collapse
|