1
|
Liu S, Guan H, Wang F. Genetic susceptibility and potential therapeutic targets of unruptured intracranial aneurysms: A genome-wide study based on Mendelian randomization. Clin Neurol Neurosurg 2025; 249:108749. [PMID: 39847889 DOI: 10.1016/j.clineuro.2025.108749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/25/2025]
Abstract
BACKGROUND At present, although some studies have offered certain insights into the genetic factors related to unruptured intracranial aneurysms (uIAs), the potential genetic targets associated with uIAs remain largely unknown. Thus, this research adopted Mendelian randomization (MR) analysis to study two genome-wide association studies on uIAs, aiming to determine the reliable genetic susceptibility and potential therapeutic targets for uIAs. METHODS This study summarizes the data of expression quantitative trait loci (eQTL) as exposure data. The outcome data of uIAs were derived from the study by Bakker et al. and the FinnGen Biobank (version R10). The reliable genetic susceptibility and potential therapeutic targets of uIAs were identified by means of Mendelian randomization (MR) methods, with the inverse variance weighting (IVW) method as the primary analytical approach. Simultaneously, sensitivity and pleiotropy analyses were carried out, and the results were visualized. Subsequently, drug predictions and molecular docking were conducted for the potential gene targets to verify their reliability. RESULTS The MR analysis of the training cohort identified 100 targets related to uIAs. Then, these 100 gene targets and eQTL data were verified by MR Analysis again with the testing cohort. Finally, 7 gene targets were selected, namely MTMR3, SERINC1, CITED2, NKX3-1, ATOX1, MYADM and SLC20A1-DT.GO/KEGG enrichment analysis confirmed that the 7 gene targets mainly participate in the process Biological functions and pathways such as art development, cellular response to hypoxia, male Gonad development, RNA polymerase II specific DNA binding transcription factor binding, DNA binding transcription factor binding, Mineral absorption, Inositol phase metabolism, Photoshatidylinositol signaling system, etc.The protein-protein interaction(PPI) network describes the interactions between seven gene targets and related proteins.The molecular docking diagram shows good binding between candidate drugs and proteins related to gene targets. CONCLUSIONS The study identified 7 reliable gene susceptibility and potential therapeutic targets associated with uIAs, offering new insights for clinical diagnosis and treatment of uIAs, and suggesting novel research directions for understanding the etiology and molecular mechanisms of uIAs.
Collapse
Affiliation(s)
- Shuming Liu
- Department of Interventional Therapy, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyuan Guan
- Department of Breast Surgery,the Huzhou Maternal and Child Health Hospital, Huzhou, China
| | - Feng Wang
- Department of Interventional Therapy, the First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
2
|
Yang HX, Fan BF, Zhao J, Ji JH, Ding WB, Shen WG. Development of an indicator framework for assessing nursing quality in interventional therapy for intracranial aneurysms in China. Front Neurol 2024; 15:1403637. [PMID: 39703355 PMCID: PMC11655302 DOI: 10.3389/fneur.2024.1403637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
Objective The objective of this study is to devise an indicator system to assess the quality of nursing care in the context of interventional therapy for intracranial aneurysms (IA) in China. This will furnish a standardized and quantitative framework for the monitoring and assessment of nursing quality within the IA interventional therapeutic field. Methods The indicators and their associated weights within the evaluation system for nursing quality in interventional therapy for IA were determined based on the theoretical framework of the three-dimensional quality model, specifically the "structure-process-outcome" paradigm. This was achieved by using several methodological approaches, such as literature analysis, semi-structured interviews, expert consultations, the Delphi method, and the analytic hierarchy process. Results Expert consultations were conducted over two rounds, with questionnaires distributed via email and WeChat. Both rounds yielded a questionnaire return rate of 100%. Across these consultations, pertinent statistical measures were obtained, such as the expert authority coefficient (Cr), the coefficient of variation (CV), and Kendall's harmony coefficient, which exhibited values of 0.886 and 0.952, 0-0.193 and 0-0.185, and 0.138 and 0.149, respectively. These findings indicated statistically significant differences (p < 0.01). Notably, the indicators within the final iteration of the evaluation system for nursing quality in interventional therapy for IA are categorized into 3 tiers: primary indicators, encompassing 3 metrics; secondary indicators, comprising 10 metrics; and tertiary indicators, consisting of 36 indicators. Conclusion The indicator system devised for assessing nursing quality in interventional therapy for IA, as outlined in this study, possesses a high level of scientific rigor and reliability in China. It aptly captures the unique nuances inherent in IA management during interventional therapy nursing, thereby serving as a valuable reference point for the assessment of nursing quality within the context of IA interventional therapy.
Collapse
Affiliation(s)
- Hai-xia Yang
- Department of Radiotherapy, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Ben-fang Fan
- Department of Interventional Medicine, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jia Zhao
- Department of Interventional Medicine, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian-hong Ji
- Critical Care Medicine, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wen-bin Ding
- Department of Interventional Medicine, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wei-guang Shen
- Department of Interventional Medicine, Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
3
|
Yan K, Bian J, He L, Song B, Shen L, Zhen Y. Effects of KLF11 on Vascular Smooth Muscle Cells and its Underlying Mechanisms in Intracranial Aneurysm. Biochem Genet 2024; 62:4837-4850. [PMID: 38368567 DOI: 10.1007/s10528-024-10681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/02/2024] [Indexed: 02/19/2024]
Abstract
Vascular smooth muscle cells (VSMCs) affect the phenotypic changes in intracranial aneurysm (IA). They exhibit enhanced dissociation and migration and play a key role in IA pathogenesis. KLF transcription factor 11 (KLF11), a member of the KLF family, significantly affects the cancer cell proliferation, differentiation, and apoptosis. However, its expression, biological functions, and latent action mechanisms in IA remain unclear. This study aimed to analyze the effects of KLF11 on H2O2-induced human brain VSMCs (HBVSMCs) in IA. We determined the mRNA levels of KLF11 in 15 paired arterial wall tissues of patients with IA and healthy volunteers. HBVSMCs were stimulated with H2O2 for 6 h to establish an IA model in vitro. Cell viability, apoptosis, and inflammatory cytokine (interleukin [IL-1β, tumor necrosis factor-α, and IL-6) levels were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2-5-diphenyltetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assays, respectively. KLF11 expression was determined via quantitative reverse transcription-polymerase chain reaction, western blotting, and immunofluorescence analyses. Furthermore, p-p38, p38, cleaved-caspase 3, and caspase 3 levels were determined via western blotting. KLF11 levels were downregulated in the arterial wall tissues of patients with IA than in those of the control group. KLF11 upregulation by KLF11-plasmid promoted the cell viability, reduced apoptosis, decreased cleaved-caspase 3 expression, and inhibited the secretion of inflammatory factors in H2O2-induced HBVSMCs. KLF11-plasmid remarkably reduced p-p38 expression and p-p38/p-38 ratio; however, these effects were reversed by P79350 treatment. Overall, KLF11 upregulation improved the HBVSMC functions and exerted protective effects against IA, suggesting its potential for IA treatment.
Collapse
Affiliation(s)
- Ke Yan
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Jiarong Bian
- Department of Respiratory Medicine, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, Yangzhou, 225001, China
| | - Liang He
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Bingwei Song
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Linhai Shen
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China
| | - Yong Zhen
- Department of Neurosurgery, Clinical Medical College of Yangzhou University, Northern Jiangsu People's Hospital, No. 98 Nantong West Road, Yangzhou, 225001, China.
| |
Collapse
|
4
|
Zhou C, Sun J, Wu L, Liu C, Cheng Q, Xie S, Zhang J. LTBP2 down-regulated FGF2 to repress vascular smooth muscle cell proliferation and vascular remodeling in a rat model of intracranial aneurysm. Neurosci Lett 2024; 842:137988. [PMID: 39288883 DOI: 10.1016/j.neulet.2024.137988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/11/2024] [Accepted: 09/09/2024] [Indexed: 09/19/2024]
Abstract
This work probed into the role of latent transforming growth factor beta binding protein 2 (LTBP2) in intracranial aneurysm (IA). The rats underwent IA modeling and then stereotactic injection of short hairpin RNA against LTBP2 (shLTBP2). Hematoxylin-eosin (HE) staining was employed to assess IA model and vascular remodeling. Rat vascular smooth muscle cells (VSMCs) were transfected with shLTBP2, LTBP2 overexpression plasmid and fibroblast growth factor 2 (FGF2) overexpression plasmid. The mRNA and protein expressions of LTBP2, FGF2 and mitochondrial apoptosis-related factors (Caspase-3, Cyt-c, Mcl-1) were tested through qRT-PCR and Western blot. Cell viability, proliferation and apoptosis were examined by cell counting kit-8, EdU assay and flow cytometry. The up-regulated LTBP2 and down-regulated FGF2 were detected in IA rats. LTBP2 knockdown promoted vascular remodeling and Mcl-1 level, and restrained cell apoptosis and expressions of Caspase-3 and Cyt-c in IA model rats. Moreover, LTBP2 knockdown potentiated cell viability, proliferation and FGF2 level, and repressed apoptosis in rat VSMCs, while overexpressed LTBP2 exerted opposite effects. FGF2 overexpression promoted proliferation and Mcl-1 level, and inhibited apoptosis and expressions of Caspase-3 and Cyt-c in rat VSMCs, which also reversed the effects of overexpressed LTBP2 on these aspects. Collectively, LTBP2 down-regulates FGF2 to repress VSMCs proliferation and vascular remodeling in an IA rat model.
Collapse
Affiliation(s)
- Chunhui Zhou
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China
| | - Junzhao Sun
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China
| | - Lin Wu
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China
| | - Congwei Liu
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China
| | - Qiao Cheng
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China
| | - Shengqiang Xie
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China
| | - Jianning Zhang
- Department of Neurosurgery, The Sixth Medical Center of PLA General Hospital, China.
| |
Collapse
|
5
|
Zhou Z, Jin Y, Ye H, Zhang X, Liu J, Zhang W. Classification, detection, and segmentation performance of image-based AI in intracranial aneurysm: a systematic review. BMC Med Imaging 2024; 24:164. [PMID: 38956538 PMCID: PMC11218239 DOI: 10.1186/s12880-024-01347-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The detection and management of intracranial aneurysms (IAs) are vital to prevent life-threatening complications like subarachnoid hemorrhage (SAH). Artificial Intelligence (AI) can analyze medical images, like CTA or MRA, spotting nuances possibly overlooked by humans. Early detection facilitates timely interventions and improved outcomes. Moreover, AI algorithms offer quantitative data on aneurysm attributes, aiding in long-term monitoring and assessing rupture risks. METHODS We screened four databases (PubMed, Web of Science, IEEE and Scopus) for studies using artificial intelligence algorithms to identify IA. Based on algorithmic methodologies, we categorized them into classification, segmentation, detection and combined, and then their merits and shortcomings are compared. Subsequently, we elucidate potential challenges that contemporary algorithms might encounter within real-world clinical diagnostic contexts. Then we outline prospective research trajectories and underscore key concerns in this evolving field. RESULTS Forty-seven studies of IA recognition based on AI were included based on search and screening criteria. The retrospective results represent that current studies can identify IA in different modal images and predict their risk of rupture and blockage. In clinical diagnosis, AI can effectively improve the diagnostic accuracy of IA and reduce missed detection and false positives. CONCLUSIONS The AI algorithm can detect unobtrusive IA more accurately in communicating arteries and cavernous sinus arteries to avoid further expansion. In addition, analyzing aneurysm rupture and blockage before and after surgery can help doctors plan treatment and reduce the uncertainties in the treatment process.
Collapse
Affiliation(s)
- Zhiyue Zhou
- School of Medicine, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, China
| | - Yuxuan Jin
- School of Medicine, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, China
| | - Haili Ye
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Xiaoqing Zhang
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
| | - Jiang Liu
- Research Institute of Trustworthy Autonomous Systems and Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
6
|
Wang W, Liu L, Zhu J, Xing Y, Jiao S, Wu Z. AI-Enhanced Visual-Spectral Synergy for Fast and Ultrasensitive Biodetection of Breast Cancer-Related miRNAs. ACS NANO 2024; 18:6266-6275. [PMID: 38252138 DOI: 10.1021/acsnano.3c10543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
In biomedical testing, artificial intelligence (AI)-enhanced analysis has gradually been applied to the diagnosis of certain diseases. This research employs AI algorithms to refine the precision of integrative detection, encompassing both visual results and fluorescence spectra from lateral flow assays (LFAs), which signal the presence of cancer-linked miRNAs. Specifically, the color shift of gold nanoparticles (GNPs) is paired with the red fluorescence from nitrogen vacancy color centers (NV-centers) in fluorescent nanodiamonds (FNDs) and is integrated into LFA strips. While GNPs amplify the fluorescence of FNDs, in turn, FNDs enhance the color intensity of GNPs. This reciprocal intensification of fluorescence and color can be synergistically augmented with AI algorithms, thereby improving the detection sensitivity for early diagnosis. Supported by the detection platform based on this strategy, the fastest detection results with a limit of detection (LOD) at the fM level and the R2 value of ∼0.9916 for miRNA can be obtained within 5 min. Meanwhile, by labeling the capture probes for miRNA-21 and miRNA-96 (both of which are early indicators of breast cancer) on separate T-lines, simultaneous detection of them can be achieved. The miRNA detection methods employed in this study may potentially be applied in the future for the early detection of breast cancer.
Collapse
Affiliation(s)
- Wei Wang
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Lei Liu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Jianxiong Zhu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Songlong Jiao
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Ze Wu
- School of Mechanical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
7
|
Li Y, Zhu Y, Liu Y, Li G, Qu X. Comparative Study of the Diagnostic Value of Zero-Echo-Time Magnetic Resonance Angiography With Time-of-Flight Magnetic Resonance Angiography for Intracranial Aneurysm. J Comput Assist Tomogr 2024; 48:169-174. [PMID: 37531630 DOI: 10.1097/rct.0000000000001518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
OBJECTIVE Intracranial aneurysm (IAN) is a class of cerebrovascular diseases with a serious threat to patients, and an accurate diagnosis of IAN is very important for both selection of the appropriate therapy and prediction of the prognosis. This study aimed to evaluate the diagnostic values of zero-echo-time magnetic resonance angiography (ZTE-MRA) and time-of-flight magnetic resonance angiography (TOF-MRA) in patients with IAN. METHODS Digital subtraction angiography, ZTE-MRA, and TOF-MRA were performed in 18 patients diagnosed with IAN. The images of ZTE-MRA and TOF-MRA were compared for image quality, qualitative diagnosis, detailed diagnosis, number of thrombi, and residual aneurysm lumen, with digital subtraction angiography as the reference. RESULTS Zero-echo-time MRA and TOF-MRA did not show a significant difference in image quality or detailed information (including aneurysm size, growth direction, and angle with the aneurysm-carrying vessel) ( P > 0.05). However, ZTE-MRA showed advantages over TOF-MRA in terms of qualitative diagnosis (sensitivity and specificity), intra-aneurismal thrombus detection, and residual aneurysm lumen detection after embolization ( P < 0.05). CONCLUSIONS Compared with TOF-MRA, ZTE-MRA showed greater diagnostic value for IAN patients in terms of qualitative diagnosis, as well as the detection of intra-aneurysm thrombi and residual aneurysm lumen after embolization.
Collapse
Affiliation(s)
- Yushi Li
- From the Department of Radiology, The Second Hospital, Dalian Medical University, Dalian
| | - Yifeng Zhu
- From the Department of Radiology, The Second Hospital, Dalian Medical University, Dalian
| | - Yajie Liu
- From the Department of Radiology, The Second Hospital, Dalian Medical University, Dalian
| | - Ge Li
- Department of Oncology, Yankuang New Journey General Hospital, Jining, China
| | - Xiaofeng Qu
- From the Department of Radiology, The Second Hospital, Dalian Medical University, Dalian
| |
Collapse
|
8
|
Li Y, Li H, Wang L, Xie W, Yuan D, Wen Z, Zhang T, Lai J, Xiong Z, Shan Y, Jiang W. The p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop mediates vasoactive intestinal peptide effects on osteoarthritis chondrocytes. Int Immunopharmacol 2023; 122:110518. [PMID: 37392568 DOI: 10.1016/j.intimp.2023.110518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023]
Abstract
Loss and dysfunction of articular chondrocytes, which disrupt the homeostasis of extracellular matrix formation and breakdown, promote the onset of osteoarthritis (OA). Targeting inflammatory pathways is an important therapeutic strategy for OA. Vasoactive intestinal peptide (VIP) is an immunosuppressive neuropeptide with potent anti-inflammatory effects; however, its role and mechanism in OA remain unclear. In this study, microarray expression profiling from the Gene Expression Omnibus database and integrative bioinformatics analyses were performed to identify differentially expressed lncRNAs in OA samples. qRT-PCR validation of the top ten different expressed lncRNAs indicated that the expression level of intergenic non-protein coding RNA 2203 (LINC02203, also named LOC727924) was the highest in OA cartilage compared to normal cartilage. Hence, the LOC727924 function was further investigated. LOC727924 was upregulated in OA chondrocytes, with a dominant sub-localization in the cytoplasm. In OA chondrocytes, LOC727924 knockdown boosted cell viability, suppressed cell apoptosis, reactive oxygen species (ROS) accumulation, increased aggrecan and collagen II, decreased matrix metallopeptidase (MMP)-3/13 and ADAM metallopeptidase with thrombospondin type 1 motif (ADAMTS)-4/5 levels, and reduced the levels of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6). LOC727924 could interact with the microRNA 26a (miR-26a)/ karyopherin subunit alpha 3 (KPNA3) axis by competitively targeting miR-26a for KPNA3 binding, therefore down-regulating miR-26a and upregulating KPNA3; in OA chondrocytes, miR-26a inhibition partially abolished LOC727924 knockdown effects on chondrocytes. miR-26a inhibited the nuclear translocation of p65 through targeting KPNA3 and p65 transcriptionally activated LOC727924, forming a p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop to modulate OA chondrocyte phenotypes. In vitro, VIP improved OA chondrocyte proliferation and functions, down-regulated LOC727924, KPNA3, and p65 expression, and upregulated miR-26a expression; in vivo, VIP ameliorated destabilization of the medial meniscus (DMM)-induced damages on the mouse knee joint, down-regulated KPNA3, inhibited the nuclear translocation of p65. In conclusion, the p65-LOC727924-miR-26a/KPNA3-p65 regulatory loop modulates OA chondrocyte apoptosis, ROS accumulation, extracellular matrix (ECM) deposition, and inflammatory response in vitro and OA development in vivo, being one of the mechanisms mediating VIP ameliorating OA.
Collapse
Affiliation(s)
- Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lijie Wang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dongliang Yuan
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Zeqin Wen
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tiancheng Zhang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China
| | - Jieyu Lai
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Zixuan Xiong
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Yunhan Shan
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Wei Jiang
- Department of Bone and Joint, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, China.
| |
Collapse
|
9
|
Deng J, Ning K, Liu D, Wu D, Wan R, Ge J. MiR-140 promotes the progression of intracranial aneurysms by targeting BCL2L2. Neuroreport 2023; 34:38-45. [PMID: 36441929 PMCID: PMC10519296 DOI: 10.1097/wnr.0000000000001856] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/09/2022] [Indexed: 11/29/2022]
Abstract
To investigate the role of miR-140/BCL2L2 axis on the formation of intracranial aneurysms. The expression of miR-140 in the serum of patients with intracranial aneurysms and healthy volunteers was detected. CCK-8 assay and Annexin V-FITC/PI double staining flow cytometry were used to evaluate the effect of miR-140 knockdown on the proliferation and apoptosis of human brain vascular smooth muscle cells (HBVSMCs). Meanwhile, the relationship between miR-140 and BCL2L2 was examined. MiR-140 was found to be upregulation in intracranial aneurysm patients. MiR-140 knock-out significantly inhibited the apoptosis of HBVSMCs and promoted cell proliferation. BCL2L2 was a direct target gene of miR-140 and suppressed its expression. Knockdown of miR-140 alleviates the development of intracranial aneurysms. MiR-140/BCL2L2 axis promotes the progression of intracranial aneurysms by regulating apoptosis of HBVSMCs. Therefore, miR-140 is a potential therapeutic target for intracranial aneurysms.
Collapse
Affiliation(s)
- Jun Deng
- Department of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine
| | - Kangwen Ning
- Department of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine
| | - Danhong Liu
- Department of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine
| | - Dahua Wu
- Department of Neurology, Affiliated Hospital of Hunan Academy of Chinese Medicine
| | - Rongwen Wan
- Department of Neurology, Affiliated Hospital of Hunan Academy of Chinese Medicine
| | - Jinwen Ge
- Department of Deanery, Hunan Academy of Chinese Medicine, Changsha, Hunan, P.R. China
| |
Collapse
|
10
|
Yang HH, Sayre J, Dinh H, Nael K, Colby G, Wang A, Villablanca P, Salamon N, Chien A. Image-derived Metrics Quantifying Hemodynamic Instability Predicted Growth of Unruptured Intracranial Aneurysms. STROKE (HOBOKEN, N.J.) 2023; 3:e000426. [PMID: 37090136 PMCID: PMC10118203 DOI: 10.1161/svin.122.000426] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background While image-derived predictors of intracranial aneurysm (IA) rupture have been well-explored, current understanding of IA growth is limited. Pulsatility index (PI) and wall shear stress pulsatility index (WSSPI) are important metrics measuring temporal hemodynamic instability. However, they have not been investigated in IA growth research. The present study seeks to verify reliable predictors of IA growth with comparative analyses of several important morphological and hemodynamic metrics between stable and growing cases among a group of unruptured IAs. Methods Using 3D images, vascular models of 16 stable and 20 growing cases were constructed and verified using Geodesic techniques. With an overall mean follow-up period of 25 months, cases exhibiting a 10% or higher increase in diameter were considered growing. Patient-specific, pulsatile simulations were performed, and hemodynamic calculations were computed at 5 important regions of each aneurysm (inflow artery, aneurysm neck, body, dome, and outflow artery). Index values were compared between growing and stable IAs using ANCOVA controlling for aneurysm diameter. Stepwise multiple logistic regression and ROC analyses were conducted to investigate predictive models of IA growth. Results Compared to stable IAs, growing IAs exhibited significantly higher intrasaccular PI, intrasaccular WSSPI, intrasaccular spatial flow rate deviation, and intrasaccular spatial wall shear stress (WSS) deviation. Stepwise logistic regression analysis revealed a significant predictive model involving PI at aneurysm body, WSSPI at inflow artery, and WSSPI at aneurysm body. Conclusions Our results showed that high degree of hemodynamic variations within IAs is linked to growth, even after controlling for morphological parameters. Further, evaluation of PI in conjunction with WSSPI yielded a highly accurate predictive model of IA growth. Upon validation in future cohorts, these metrics may aid in early identification of IA growth and current understanding of IA remodeling mechanism.
Collapse
Affiliation(s)
- Hong-Ho Yang
- David Geffen School of Medicine at UCLA, Department of Radiology, Los Angeles, California, USA
| | - James Sayre
- David Geffen School of Medicine at UCLA, Department of Radiology, Los Angeles, California, USA
| | - Huy Dinh
- David Geffen School of Medicine at UCLA, Department of Radiology, Los Angeles, California, USA
| | - Kambiz Nael
- David Geffen School of Medicine at UCLA, Department of Radiology, Los Angeles, California, USA
| | - Geoffrey Colby
- David Geffen School of Medicine at UCLA, Department of Neurosurgery, Los Angeles, California, USA
| | - Anthony Wang
- David Geffen School of Medicine at UCLA, Department of Neurosurgery, Los Angeles, California, USA
| | - Pablo Villablanca
- David Geffen School of Medicine at UCLA, Department of Radiology, Los Angeles, California, USA
| | - Noriko Salamon
- David Geffen School of Medicine at UCLA, Department of Radiology, Los Angeles, California, USA
| | - Aichi Chien
- David Geffen School of Medicine at UCLA, Department of Radiology, Los Angeles, California, USA
| |
Collapse
|
11
|
Huang C, Hu D, Li K. Identification of Biomarkers in Intracranial Aneurysm and Their Immune Infiltration Characteristics. World Neurosurg 2022; 166:e199-e214. [PMID: 35798291 DOI: 10.1016/j.wneu.2022.06.138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/28/2022] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intracranial aneurysm (IA), known as the intracranial "unscheduled bomb," is one of the most dangerous cerebrovascular diseases, with unclear pathogenesis. This study aimed to show the mechanisms and identify the new biological targets by applying bioinformatics analysis. METHODS Expression profiling for control superficial temporal artery and IA walls in GSE26969 and GSE75436 datasets were downloaded. By executing the LIMMA package in R software, the differentially expressed genes (DEGs) were filtered, and the functional enrichments were consequently performed. Further cross-linking with the 2483 immune-related genes (IRGs) from the ImmPort database, the differentially expressed IRGs were identified. Based on them, the least absolute shrinkage and selection operator logistic regression and support vector machine-recursive feature elimination algorithms were used to screen the biomarkers, which were validated in the GSE54083 datasets. The CIBERSORT algorithm was applied to evaluate the infiltration of immune cells in tissues. RESULTS A total of 668 DEGs were obtained, and the functional enrichment suggested that they were closely related to the immune process. After intersecting them with the IRGs, 90 differentially expressed IRGs emerged, and ADIPOQ and ESM1 were identified as the biomarkers. Besides, we found that the infiltrated immune cells, such as the mast cells resting, might be associated with them. CONCLUSIONS We explored the contributing factors involving IA, which may generate a better understanding of the complex interactions among them and inspire a promising strategy for clinical works.
Collapse
Affiliation(s)
- Cheng Huang
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Di Hu
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Clinical Neuroscience Institute of Jinan University, Guangzhou, China
| | - Keshen Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital of Jinan University, Guangzhou, China; Clinical Neuroscience Institute of Jinan University, Guangzhou, China.
| |
Collapse
|
12
|
Huang J, Hong L, Shen B, Zhou Y, Lan J, Peng Y. FOXO1 represses MCL1 transcription to regulate the function of vascular smooth muscle cells in intracranial aneurysm. Exp Brain Res 2022; 240:2861-2870. [DOI: 10.1007/s00221-022-06461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
|
13
|
Zong D, Liu X, Li J, Long Y, Ouyang R, Chen Y. LncRNA-CCAT1/miR-152-3p is involved in CSE-induced inflammation in HBE cells via regulating ERK signaling pathway. Int Immunopharmacol 2022; 109:108818. [PMID: 35523108 DOI: 10.1016/j.intimp.2022.108818] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 11/05/2022]
Abstract
Emerging studies have noted that dysregulated long non-coding RNAs (lncRNAs) are implicated in the pathological processes of chronic obstructive pulmonary disease (COPD). LncRNA colon cancer-associated transcript 1 (CCAT1) plays well-defined roles in the inflammatory progression. The study aims to figure out the effect and regulatory mechanism of CCAT1 in the cigarette smoke induced inflammation in COPD. The results showed that CCAT1 was highly expressed in lung tissues of smokers with COPD compared with never-smokers without COPD. In human bronchial epithelial (HBE) cells, cigarette smoke extract (CSE) treatment led to an increase in CCAT1 expression in a dose- and time- dependent manner. Functional experiments showed that knockdown of CCAT1 amelioratedCSE-inducedinflammation. Mechanistically, CCAT1 directly targeted miR-152-3p, and miR-152-3p overexpression reversed the pro-inflammatory effects of CCAT1 on HBE cells. Subsequently, miR-152-3p was found to regulate ERK signaling pathway. PD98059, an ERK specific inhibitor, reversed miR-152-3p knockdown mediated inflammation in HBE cells. In addition, CCAT1 acted as a sponge for miR-152-3p to positively regulate ERK signaling pathway. Overall, current findings suggest that CCAT1 promoted inflammation by activating ERK signal pathway via sponging miR-152-3p in CSE-treated HBE cells. These results may provide a novel therapeutic target for alleviating cigarette smoke mediated airway inflammation.
Collapse
Affiliation(s)
- Dandan Zong
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Xiangming Liu
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Jinhua Li
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Yingjiao Long
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Ruoyun Ouyang
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China
| | - Yan Chen
- Department of Respiratory and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China; Research Unit of Respiratory Disease, Central South University, Changsha, Hunan 410011, China; Diagnosis and Treatment Center of Respiratory Disease, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
14
|
Xu W, Xie Y, Zhang X, Li W. Cerebral Angiography under Artificial Intelligence Algorithm in the Design of Nursing Cooperation Plan for Intracranial Aneurysm Patients in Craniotomy Clipping. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:2182931. [PMID: 35860187 PMCID: PMC9293491 DOI: 10.1155/2022/2182931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/19/2022] [Accepted: 06/21/2022] [Indexed: 11/18/2022]
Abstract
This research was to investigate the value of indocyanine green angiography (ICGA) based on maximum interclass variance (Otsu) method in the nursing plan of intracranial aneurysm clipping (ICAC) for intracranial aneurysm patients. An Otsu algorithm was selected to optimize the original images with the optimal threshold. In addition, the algorithm was applied to ICGA images of 86 patients with intracranial aneurysms, who were randomly divided into an experimental group (using ICGA + ICAC+ perioperative nursing) and a control group (ICAC + conventional nursing), to observe the clinical indicators, treatment, complications, nursing satisfaction, and quality of life of patients in two groups. The results showed that the mean square error (MSE), structural similarity (SSIM), and shape error (SE) were 3.71, 0.84, and 0.47, respectively. The length of hospital stay in the experimental group (19.9 ± 3.5 days) was significantly shorter than that in the control group (23.2 ± 3.0 days), the rate of excellent treatment was significantly higher than that in the control group, and the incidence of complications was lower. WHOQOL-BREF scores of the two groups after nursing intervention were higher than before, and the score in the experimental group was higher than the control group. In addition, the nursing satisfaction was also significantly higher in the experimental group, and the difference was statistically significant (P < 0.05). In conclusion, ICGA based on the Otsu method could effectively evaluate the cerebrovascular morphology during craniotomy and ICAP and improve the surgical efficacy. Combined with perioperative nursing intervention, it could greatly reduce the incidence of postoperative complications, improve the treatment effect and quality of life, and enhance the long-term prognosis.
Collapse
Affiliation(s)
- Wenhui Xu
- Operation Room, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000 Zhejiang, China
| | - Yanan Xie
- Anesthesia Operation Center, Hainan Hospital of PLA General Hospital, Sanya, 572013 Hainan, China
| | - Xu Zhang
- Operation Room, Zhejiang Provincial People's Hospital, Hangzhou, 310000 Zhejiang, China
| | - Wei Li
- Operation Room, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), Hangzhou, 310000 Zhejiang, China
| |
Collapse
|
15
|
Hallaj S, Mirza-Aghazadeh-Attari M, Arasteh A, Ghorbani A, Lee D, Jadidi-Niaragh F. Adenosine: The common target between cancer immunotherapy and glaucoma in the eye. Life Sci 2021; 282:119796. [PMID: 34245774 DOI: 10.1016/j.lfs.2021.119796] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/20/2022]
Abstract
Adenosine, an endogenous purine nucleoside, is a well-known actor of the immune system and the inflammatory response both in physiologic and pathologic conditions. By acting upon particular, G-protein coupled adenosine receptors, i.e., A1, A2- a & b, and A3 receptors mediate a variety of intracellular and immunomodulatory actions. Several studies have elucidated Adenosine's effect and its up-and downstream molecules and enzymes on the anti-tumor response against several types of cancers. We have also targeted a couple of molecules to manipulate this pathway and get the immune system's desired response in our previous experiences. Besides, the outgrowth of the studies on ocular Adenosine in recent years has significantly enhanced the knowledge about Adenosine and its role in ocular immunology and the inflammatory response of the eye. Glaucoma is the second leading cause of blindness globally, and the recent application of Adenosine and its derivatives has shown the critical role of the adenosine pathway in its pathophysiology. However, despite a very promising background, the phase III clinical trial of Trabodenoson failed to achieve the non-inferiority goals of the study. In this review, we discuss different aspects of the abovementioned pathway in ophthalmology and ocular immunology; following a brief evaluation of the current immunotherapeutic strategies, we try to elucidate the links between cancer immunotherapy and glaucoma in order to introduce novel therapeutic targets for glaucoma.
Collapse
Affiliation(s)
- Shahin Hallaj
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA
| | | | - Amin Arasteh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Anahita Ghorbani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Daniel Lee
- Wills Eye Hospital, Glaucoma Research Center, Philadelphia, PA 19107, USA.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|