1
|
Ruan D, Hu T, Yang X, Mo X, Ju Q. Lactate in skin homeostasis: metabolism, skin barrier, and immunomodulation. Front Immunol 2025; 16:1510559. [PMID: 40046050 PMCID: PMC11879785 DOI: 10.3389/fimmu.2025.1510559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 01/27/2025] [Indexed: 05/13/2025] Open
Abstract
Lactate, once considered merely a byproduct of glycolysis, is now increasingly recognized as a multifunctional signaling molecule with roles beyond energy metabolism. It functions as an enzyme cofactor and binds to specific receptors to modulate cellular functions. In the skin, lactate is produced by various cell types. It is then transferred between cells or to the extracellular space, helping to balance cellular pH and to provide signals that regulate skin barrier and skin immunity. Additionally, lactate/lactate-related genes hold promising therapeutic potential for the treatment of skin tumors, inflammatory skin diseases, hair loss, and in cosmetic dermatology. This article highlights the latest advances in our understanding of lactate's biological effects on the skin and explores its therapeutic potential, offering insights into future research directions.
Collapse
Affiliation(s)
| | | | | | - Xiaohui Mo
- Department of Dermatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Liu J, Wang Z, Tian X, Xie B, Liu K. ETS1 Promotes Aerobic Glycolysis and Growth in Head and Neck Squamous Cell Carcinoma by Targeting RRAS2. Biochem Genet 2024:10.1007/s10528-024-10996-y. [PMID: 39661306 DOI: 10.1007/s10528-024-10996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/04/2024] [Indexed: 12/12/2024]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a prevalent malignancy with a five-year survival rate below 50%, highlighting the urgent need for novel therapeutic targets. This study explores the role of the small GTPase RRAS2 in HNSCC progression and its regulation of glycolysis. Analysis of data from the TCGA and GTEx databases revealed that RRAS2 is significantly upregulated in HNSCC tissues and is associated with poorer overall patient survival. Functional experiments demonstrated that silencing RRAS2 in HNSCC cell lines inhibits glycolytic activity and cell proliferation while promoting apoptosis, whereas overexpression of RRAS2 enhances glycolysis and cell growth. Additionally, bioinformatics and experimental approaches identified the transcription factor ETS1 as an upstream regulator of RRAS2. ETS1 binds to the RRAS2 promoter, facilitating its transcription and contributing to metabolic reprogramming in HNSCC cells. Rescue experiments confirmed that the ETS1-RRAS2 axis is crucial for maintaining the glycolytic phenotype and proliferative capacity of HNSCC cells. These findings suggest that the ETS1-RRAS2 pathway plays a critical role in HNSCC progression and metabolic adaptation, positioning RRAS2 as a potential therapeutic target for improving patient outcomes.
Collapse
Affiliation(s)
- Jianguo Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Zhi Wang
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Xiaoyan Tian
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Bingbin Xie
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China
| | - Ke Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, P.R. China.
| |
Collapse
|
3
|
Choi YJ, Yang MK, Kim N, Khwarg SI, Choung H, Kim JE. Expression of nuclear receptors and glucose metabolic pathway proteins in sebaceous carcinoma: Androgen receptor and monocarboxylate transporter 1 have a key role in disease progression. Oncol Lett 2024; 28:593. [PMID: 39421321 PMCID: PMC11484244 DOI: 10.3892/ol.2024.14726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Standard systemic treatments are not consistently effective for treating unresectable or advanced sebaceous carcinoma (SC). The present study investigated the pathogenic roles of nuclear receptors (NRs), glucose metabolic dysregulation and immune checkpoint proteins in SC as prognostic markers or therapeutic targets. Patients with pathologically confirmed SC between January 2002 and December 2019 at three university hospitals in South Korea were included in the present study. Immunohistochemistry was performed on paraffin-embedded tumor tissues for glucocorticoid receptors (GR), androgen receptors (AR), estrogen receptors (ER), progesterone receptors (PR), glucose transporter 1 (GLUT1), monocarboxylate transporters (MCT1 and MCT4), CD147, phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) and the immune checkpoint protein, programmed cell death-ligand 1 (PD-L1). The results were semi-quantitatively assessed and the associations of these proteins with various clinicopathological parameters were determined. A total of 39 cases of SC comprising 19 periocular and 20 extraocular tumors were enrolled. NRs were frequently detected in the tumor nuclei, with GR having the highest frequency (89.7%), followed by AR, ER (both 51.3%) and PR (41.0%). Regarding glucose metabolism, CD147, GLUT1 and MCT1 were highly expressed at 100, 89.7 and 87.2%, respectively, whereas MCT4 and pAMPK expression levels were relatively low at 38.5 and 35.9%, respectively. Membranous expression of PD-L1 was detected in five cases (12.8%), four of which were extraocular. In the multivariate analysis, advanced stage, low AR positivity and high MCT1 expression were independent poor prognostic factors for metastasis-free survival (all P<0.05). The present results suggested that hormonal and metabolic dysregulation may be associated with the pathogenesis of SC, and that AR and MCT1 in particular may serve as prognostic indicators and potential therapeutic targets. Additionally, ~10% of SC cases exhibited PD-L1 expression within the druggable range, and these patients are expected to benefit from treatment with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Youn Joo Choi
- Department of Ophthalmology, Kangdong Sacred Heart Hospital, Hallym University Medical Center, Seoul 05355, Republic of Korea
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Min Kyu Yang
- Department of Ophthalmology, Asan Medical Center, Ulsan University College of Medicine, Seoul 05505, Republic of Korea
| | - Namju Kim
- Department of Ophthalmology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Gyeonggi 13620, Republic of Korea
| | - Sang In Khwarg
- Department of Ophthalmology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hokyung Choung
- Department of Ophthalmology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Republic of Korea
| | - Ji Eun Kim
- Department of Pathology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul 07061, Republic of Korea
| |
Collapse
|
4
|
Ye Y, Cao Z. Glucose Metabolism and Glucose Transporters in Head and Neck Squamous Cell Carcinoma. Cancer Invest 2024; 42:827-844. [PMID: 39324504 DOI: 10.1080/07357907.2024.2407424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Head and neck squamous cell carcinoma ranks seventh globally in malignancy prevalence, with persistent high mortality rates despite treatment advancements. Glucose, pivotal in cancer metabolism via the Warburg effect, enters cells via glucose transporters, notably GLUT proteins. Glycolysis, aerobic oxidation, and the pentose phosphate pathway in glucose metabolism significantly impact HNSCC progression. HNSCC exhibits elevated expression of glucose metabolism enzymes and GLUT proteins, correlating with prognosis. Heterogeneity in HNSCC yields varied metabolic profiles, influenced by factors like HPV status and disease stage. This review highlights glucose metabolism's role and potential as therapeutic targets and cancer imaging tracers in HNSCC.
Collapse
Affiliation(s)
- Yanyan Ye
- Department of Otolaryngology, Shulan (Hangzhou) Hospital, affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Zaizai Cao
- Department of Otolaryngology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Li C, Tian Z, Li X, Sun Y, Tian J, Wu Y, Cai J, He Y, Sanganyado E, Li P, Liang B, Liu W. Toxicogenomic assessment of hydroxylated metabolites of PBDEs on cetaceans: An in vitro study. CHEMOSPHERE 2024; 366:143350. [PMID: 39326706 DOI: 10.1016/j.chemosphere.2024.143350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/28/2024]
Abstract
Despite their ban, polybrominated diphenyl ethers (PBDEs) are frequently detected in various environmental compartments including marine and coastal ecosystems due to their persistence, bio-accumulative, high production volumes, and widespread use. One of the major concerns from PBDEs is the transformation products, such as hydroxylated polybrominated diphenyl ethers (OH-BDEs), which are more bioactive than the parent compounds. For example, 6-hydroxy-2,2',4',4-tetrabromodiphenyl ether (6-OH-BDE-47) is a typical metabolite of PBDEs and cause endocrine system disruption, developmental toxicity, and neurotoxicity in different species. Despite being widely detected in marine environments, investigations on the toxicological mechanisms of 6-OH-BDE-47 in cetaceans remain scarce. High concentrations of PBDEs accumulate in cetaceans due to the long lifespan and large fat reserve. The accumulated PBDEs have become the major source of OH-BDEs in cetaceans. We exposed immortalized fibroblast cell lines from the skin of pygmy killer whales (PKW-LWHT) and Indo-Pacific finless porpoises (FP-LWHT) to 6-OH-BDE-47 and analyzed changes in cellular function using transcriptomic data, along with enzymatic activity. Exposure to the body-relevant body burdens of 6-OH-BDE-47 (250 and 500 ng mL-1) significantly decreased cell viability. Differentially expressed genes in FP-LWHT exposed to 6-OH-BDE-47 were primarily enriched in the pathways associated with steroid metabolism. Total cholesterol was decreased by 6-OH-BDE-47, whereas low-density lipoprotein cholesterol and triglyceride levels were significantly increased in FP-LWHT cells. In contrast, glycolysis was the main enriched function of differentially expressed genes in PKW-LWHT cells exposed to 6-OH-BDE-47, and the enzyme activity of phosphofructokinase and hexokinase was upregulated. Thus, even though the cell viability of both cell lines from these two species was significantly suppressed by 6-OH-BDE-47, the cellular response or affected cellular function was different between the Pygmy killer whale and the Indo-Pacific Finless Porpoise, suggesting a diverse response towards OH-BDEs exposure.
Collapse
Affiliation(s)
- Chengzhang Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Ziyao Tian
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Xinying Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yajing Sun
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jiashen Tian
- Dalian Key Laboratory of Conservation Biology for Endangered Marine Mammals, Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China
| | - Yuqi Wu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Jingting Cai
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Yijie He
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Edmond Sanganyado
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, NE2 4PB, UK
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China
| | - Bo Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| | - Wenhua Liu
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
| |
Collapse
|
6
|
Koltai T, Fliegel L. Exploring monocarboxylate transporter inhibition for cancer treatment. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:135-169. [PMID: 38464385 PMCID: PMC10918235 DOI: 10.37349/etat.2024.00210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 03/12/2024] Open
Abstract
Cells are separated from the environment by a lipid bilayer membrane that is relatively impermeable to solutes. The transport of ions and small molecules across this membrane is an essential process in cell biology and metabolism. Monocarboxylate transporters (MCTs) belong to a vast family of solute carriers (SLCs) that facilitate the transport of certain hydrophylic small compounds through the bilipid cell membrane. The existence of 446 genes that code for SLCs is the best evidence of their importance. In-depth research on MCTs is quite recent and probably promoted by their role in cancer development and progression. Importantly, it has recently been realized that these transporters represent an interesting target for cancer treatment. The search for clinically useful monocarboxylate inhibitors is an even more recent field. There is limited pre-clinical and clinical experience with new inhibitors and their precise mechanism of action is still under investigation. What is common to all of them is the inhibition of lactate transport. This review discusses the structure and function of MCTs, their participation in cancer, and old and newly developed inhibitors. Some suggestions on how to improve their anticancer effects are also discussed.
Collapse
Affiliation(s)
- Tomas Koltai
- Hospital del Centro Gallego de Buenos Aires, Buenos Aires 2199, Argentina
| | - Larry Fliegel
- Department of Biochemistry, Faculty of Medicine, University of Alberta, Edmonton T6G 2R3, Alberta, Canada
| |
Collapse
|
7
|
Li JD, Chen Y, Jing SW, Wang LT, Zhou YH, Liu ZS, Song C, Li DZ, Wang HQ, Huang ZG, Dang YW, Chen G, Luo JY. Triosephosphate isomerase 1 may be a risk predictor in laryngeal squamous cell carcinoma: a multi-centered study integrating bulk RNA, single-cell RNA, and protein immunohistochemistry. Eur J Med Res 2023; 28:591. [PMID: 38102653 PMCID: PMC10724924 DOI: 10.1186/s40001-023-01568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Although great progress has been made in anti-cancer therapy, the prognosis of laryngeal squamous cell carcinoma (LSCC) patients remains unsatisfied. Quantities of studies demonstrate that glycolytic reprograming is essential for the progression of cancers, where triosephosphate isomerase 1 (TPI1) serves as a catalytic enzyme. However, the clinicopathological significance and potential biological functions of TPI1 underlying LSCC remains obscure. METHODS We collected in-house 82 LSCC tissue specimens and 56 non-tumor tissue specimens. Tissue microarrays (TMA) and immunohistochemical (IHC) experiments were performed. External LSCC microarrays and bulk RNA sequencing data were integrated to evaluate the expression of TPI1. We used a log-rank test and the CIBERSORT algorithm to assess the prognostic value of TPI1 and its association with the LSCC microenvironment. Malignant laryngeal epithelial cells and immune-stromal cells were identified using inferCNV and CellTypist. We conducted a comprehensive analysis to elucidate the molecular functions of TPI1 in LSCC tissue and single cells using Pearson correlation analysis, high dimensional weighted gene co-expression analysis, gene set enrichment analysis, and clustered regularly interspaced short palindromic repeats (CRISPR) screen. We explored intercellular communication patterns between LSCC single cells and immune-stromal cells and predicted several therapeutic agents targeting TPI1. RESULTS Based on the in-house TMA and IHC analysis, TPI1 protein was found to have a strong positive expression in the nucleus of LSCC cells but only weakly positive activity in the cytoplasm of normal laryngeal cells (p < 0.0001). Further confirmation of elevated TPI1 mRNA expression was obtained from external datasets, comparing 251 LSCC tissue samples to 136 non-LSCC tissue samples (standardized mean difference = 1.06). The upregulated TPI1 mRNA demonstrated a high discriminative ability between LSCC and non-LSCC tissue (area under the curve = 0.91; sensitivity = 0.87; specificity = 0.79), suggesting its potential as a predictive marker for poor prognosis (p = 0.037). Lower infiltration abundance was found for plasma cells, naïve B cells, monocytes, and neutrophils in TPI-high expression LSCC tissue. Glycolysis and cell cycle were significantly enriched pathways for both LSCC tissue and single cells, where heat shock protein family B member 1, TPI1, and enolase 1 occupied a central position. Four outgoing communication patterns and two incoming communication patterns were identified from the intercellular communication networks. TPI1 was predicted as an oncogene in LSCC, with CRISPR scores less than -1 across 71.43% of the LSCC cell lines. TPI1 was positively correlated with the half maximal inhibitory concentration of gemcitabine and cladribine. CONCLUSIONS TPI1 is dramatically overexpressed in LSCC than in normal tissue, and the high expression of TPI1 may promote LSCC deterioration through its metabolic and non-metabolic functions. This study contributes to advancing our knowledge of LSCC pathogenesis and may have implications for the development of targeted therapies in the future.
Collapse
Affiliation(s)
- Jian-Di Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Yi Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Shu-Wen Jing
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Li-Ting Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Yu-Hong Zhou
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Zhi-Su Liu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Chang Song
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Da-Zhi Li
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Hai-Quan Wang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Zhi-Guang Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China
| | - Jia-Yuan Luo
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China.
- Guangxi Zhuang Autonomous Region Engineering Research Center for Artificial Intelligence Analysis of Multimodal Tumor Images, The First Affiliated Hospital of Guangxi Medical University, Guangxi Zhuang Autonomous Region, Shuangyong Road 6, Nanning, 530021, People's Republic of China.
| |
Collapse
|
8
|
Cadassou O, Petter Jordheim L. OXPHOS inhibitors, metabolism and targeted therapies in cancer. Biochem Pharmacol 2023; 211:115531. [PMID: 37019188 DOI: 10.1016/j.bcp.2023.115531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
More and more studies highlight the complex metabolic characteristics and plasticity of cancer cells. To address these specificities and explore the associated vulnerabilities, new metabolism-targeting therapeutic strategies are being developed. It is more and more accepted that cancer cells do not produce their energy only from aerobic glycolysis, as some subtypes strongly rely on mitochondrial respiration (OXPHOS). This review focuses on classical and promising OXPHOS inhibitors (OXPHOSi), unravelling their interest and modes of actions in cancer, particularly in combination with other strategies. Indeed, in monotherapy, OXPHOSi display limited efficiency as they mostly trigger cell death in cancer cell subtypes that strongly depend on mitochondrial respiration and are not able to shift to other metabolic pathways to produce energy. Nevertheless, they remain very interesting in combination with conventional therapeutic strategies such as chemotherapy and radiotherapy, increasing their anti-tumoral actions. In addition, OXPHOSi can be included in even more innovative strategies such as combinations with other metabolic drugs or immunotherapies.
Collapse
|
9
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales M. The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:BSR20220395. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ivan Schneider
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Cristian Lindner
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Miguel A. Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8320000, Chile, Santiago, Chile
| |
Collapse
|
10
|
The Multiple Roles of CD147 in the Development and Progression of Oral Squamous Cell Carcinoma: An Overview. Int J Mol Sci 2022; 23:ijms23158336. [PMID: 35955471 PMCID: PMC9369056 DOI: 10.3390/ijms23158336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Cluster of differentiation (CD)147, also termed extracellular matrix metalloprotease inducer or basigin, is a glycoprotein ubiquitously expressed throughout the human body, the oral cavity included. CD147 actively participates in physiological tissue development or growth and has important roles in reactive processes such as inflammation, immunity, and tissue repair. It is worth noting that deregulated expression and/or activity of CD147 is observed in chronic inflammatory or degenerative diseases, as well as in neoplasms. Among the latter, oral squamous cell carcinoma (OSCC) is characterized by an upregulation of CD147 in both the neoplastic and normal cells constituting the tumor mass. Most interestingly, the expression and/or activity of CD147 gradually increase as healthy oral mucosa becomes inflamed; hyperplastic/dysplastic lesions are then set on, and, eventually, OSCC develops. Based on these findings, here we summarize published studies which evaluate whether CD147 could be employed as a marker to monitor OSCC development and progression. Moreover, we describe CD147-promoted cellular and molecular events which are relevant to oral carcinogenesis, with the aim to provide useful information for assessing whether CD147 may be the target of novel therapeutic approaches directed against OSCC.
Collapse
|
11
|
Chen W, Liu J, Zheng C, Bai Q, Gao Q, Zhang Y, Dong K, Lu T. Research Progress on Improving the Efficiency of CDT by Exacerbating Tumor Acidification. Int J Nanomedicine 2022; 17:2611-2628. [PMID: 35712639 PMCID: PMC9196673 DOI: 10.2147/ijn.s366187] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/16/2022] [Indexed: 12/21/2022] Open
Abstract
In recent years, chemodynamic therapy (CDT) has received extensive attention as a novel means of cancer treatment. The CDT agents can exert Fenton and Fenton-like reactions in the acidic tumor microenvironment (TME), converting hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (·OH). However, the pH of TME, as an essential factor in the Fenton reaction, does not catalyze the reaction effectively, hindering its efficiency, which poses a significant challenge for the future clinical application of CDT. Therefore, this paper reviews various strategies to enhance the antitumor properties of nanomaterials by modulating tumor acidity. Ultimately, the performance of CDT can be further improved by inducing strong oxidative stress to produce sufficient ·OH. In this paper, the various acidification pathways and proton pumps with potential acidification functions are mainly discussed, such as catalytic enzymes, exogenous acids, CAIX, MCT, NHE, NBCn1, etc. The problems, opportunities, and challenges of CDT in the cancer field are also discussed, thereby providing new insights for the design of nanomaterials and laying the foundation for their future clinical applications.
Collapse
Affiliation(s)
- Wenting Chen
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Jinxi Liu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Caiyun Zheng
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Que Bai
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Qian Gao
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yanni Zhang
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Kai Dong
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710072, People's Republic of China
| | - Tingli Lu
- Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| |
Collapse
|
12
|
Chou CH, Chiang CYF, Yang CC, Liu YC, Chang SR, Chang KW, Lin SC. miR-31- NUMB Cascade Modulates Monocarboxylate Transporters to Increase Oncogenicity and Lactate Production of Oral Carcinoma Cells. Int J Mol Sci 2021; 22:11731. [PMID: 34769160 PMCID: PMC8584161 DOI: 10.3390/ijms222111731] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is among the leading causes of cancer-associated death worldwide. miR-31 is an oncogenic miRNA in OSCC. NUMB is an adaptor protein capable of suppressing malignant transformation. Disruption of the miR-31-NUMB regulatory axis has been demonstrated in malignancies. Mitochondrial dysfunction and adaptation to glycolytic respiration are frequent events in malignancies. Monocarboxylate transporters (MCTs) function to facilitate lactate flux in highly glycolytic cells. Upregulation of MCT1 and MCT4 has been shown to be a prognostic factor of OSCC. Here, we reported that miR-31-NUMB can modulate glycolysis in OSCC. Using the CRISPR/Cas9 gene editing strategy, we identified increases in oncogenic phenotypes, MCT1 and MCT4 expression, lactate production, and glycolytic respiration in NUMB-deleted OSCC subclones. Transfection of the Numb1 or Numb4 isoform reversed the oncogenic induction elicited by NUMB deletion. This study also showed, for the first time, that NUMB4 binds MCT1 and MCT4 and that this binding increases their ubiquitination, which may decrease their abundance in cell lysates. The disruptions in oncogenicity and metabolism associated with miR-31 deletion and NUMB deletion were partially rescued by MCT1/MCT4 expression or knockdown. This study demonstrated that NUMB is a novel binding partner of MCT1 and MCT4 and that the miR-31-NUMB-MCT1/MCT4 regulatory cascade is present in oral carcinoma.
Collapse
Affiliation(s)
- Chung-Hsien Chou
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
| | - Chun-Yu Fan Chiang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
| | - Cheng-Chieh Yang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ying-Chieh Liu
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
| | - Sih-Rou Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
| | - Kuo-Wei Chang
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Shu-Chun Lin
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan; (C.-H.C.); (C.-Y.F.C.); (C.-C.Y.); (Y.-C.L.); (S.-R.C.)
- Department of Dentistry, College of Dentistry, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Stomatology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| |
Collapse
|