1
|
Suryakoppa KS, Kameshwar VH, Appadurai R, Khan MHM. A Rapid, Detection and Separation of Eugenol and Its Isomers Isolated From Polianthes tuberosa (Linn.) Flower by Supercritical Fluid Chromatography - Photodiode Array-Mass Spectrometry - A Method Development, Validation, and Stability Studies. J Sep Sci 2025; 48:e70109. [PMID: 40042216 DOI: 10.1002/jssc.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 05/12/2025]
Abstract
Supercritical fluid chromatography (SFC) is widely recommended as an alternative to normal-phase liquid chromatography in the emerging field of green analytical chemistry. SFC separations are quick, efficient, and environmentally friendly separation of chiral and achiral molecules. Due to this, SFC is economically feasible in separation science technology. The identification and separation of chiral compounds is crucial in understanding their pharmacological significance. Polianthes tuberosa (Linn.) is traditionally considered an ornamental and medicinal plant worldwide. For the separation of eugenol and its derivatives from the P. tuberosa flower, a rapid and highly efficient/SFC approach was developed and implemented in this study. However, no research into the SFC, method validation, and absolute measurement of eugenol has been published from the P. tuberosa flower. We used SFC coupled with mass spectrometry (SFC-MS) to develop a quick and effective approach for characterizing and quantifying eugenol in this investigation. Further, molecular docking studies and molecular dynamic simulations (MDSs) have been performed for the potent isomer of eugenol. This research has uncovered important insights of SFC in drug discovery. Additionally, molecular docking and molecular dynamics simulation studies have provided clarity on how the compound interacts with different biological targets.
Collapse
Affiliation(s)
- Kaveesha Srinivasa Suryakoppa
- Discovery Chemistry-Analytical Research and Development, Syngene International Ltd, Bengaluru, India
- Department of Chemistry, Jawaharlal Nehru National College of Engineering, Visvesvarayya Technological University, Shivamogga, Karnataka, India
| | - Vivek Hamse Kameshwar
- Department of Biotechnology, Adichunchanagiri School of Natural Sciences, ACU-CRI, Adichunchanagiri University, Mandya, Karnataka, India
| | - Ramesh Appadurai
- Discovery Chemistry-Analytical Research and Development, Syngene International Ltd, Bengaluru, India
| | - Moodgere Habeebulla Moinuddin Khan
- Department of Chemistry, Jawaharlal Nehru National College of Engineering, Visvesvarayya Technological University, Shivamogga, Karnataka, India
| |
Collapse
|
2
|
Moreira-Junior L, Leal-Cardoso JH, Cassola AC, Carvalho-de-Souza JL. Eugenol and lidocaine inhibit voltage-gated Na + channels from dorsal root ganglion neurons with different mechanisms. Front Pharmacol 2024; 15:1354737. [PMID: 38989141 PMCID: PMC11234063 DOI: 10.3389/fphar.2024.1354737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/08/2024] [Indexed: 07/12/2024] Open
Abstract
Eugenol (EUG) is a bioactive monoterpenoid used as an analgesic, preservative, and flavoring agent. Our new data show EUG as a voltage-gated Na+ channel (VGSC) inhibitor, comparable but not identical to lidocaine (LID). EUG inhibits both total and only TTX-R voltage-activated Na+ currents (INa) recorded from VGSCs naturally expressed on dorsal root ganglion sensory neurons in rats. Inhibition is quick, fully reversible, and dose-dependent. Our biophysical and pharmacological analyses showed that EUG and LID inhibit VGSCs with different mechanisms. EUG inhibits VGSCs with a dose-response relationship characterized by a Hill coefficient of 2, while this parameter for the inhibition by LID is 1. Furthermore, in a different way from LID, EUG modified the voltage dependence of both the VGSC activation and inactivation processes and the recovery from fast inactivated states and the entry to slow inactivated states. In addition, we suggest that EUG, but not LID, interacts with VGSC pre-open-closed states, according to our data.
Collapse
Affiliation(s)
- Luiz Moreira-Junior
- Department of Anesthesiology, University of Arizona, Tucson, AZ, United States
| | | | - Antonio Carlos Cassola
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, São Paulo, Brazil
| | - Joao Luis Carvalho-de-Souza
- Department of Anesthesiology, University of Arizona, Tucson, AZ, United States
- Department of Physiology and Biophysics, Biomedical Sciences Institute, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Zhang Y, Yang Z, Huang Q, Zhan X, Liu X, Guo D, Wang S, Rui W, Lü X, Shi C. Antimicrobial Activity of Eugenol Against Bacillus cereus and Its Application in Skim Milk. Foodborne Pathog Dis 2024; 21:147-159. [PMID: 38100031 DOI: 10.1089/fpd.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Bacillus cereus is a foodborne pathogen widely distributed in the large-scale catering industry and produces spores. The study explored the antibacterial activity, potential mechanism of eugenol against B. cereus, and spores with germination rate. The minimum inhibitory concentration (MIC; 0.6 mg/mL) of eugenol to six B. cereus strains was compared with the control; B. cereus treated with eugenol had a longer lag phase. Eugenol at a concentration of more than 1/2MIC decreased viable B. cereus (∼5.7 log colony-forming unit [CFU]/mL) counts below detectable limits within 2 h, and eugenol of 3MIC reduced B. cereus (∼5.9 log CFU/mL) in skim milk below detectable limits within 30 min. The pH values of skim milk were unaffected by the addition of eugenol. The ΔE values below 2 show that the color variations of skim milk were not visible to the human eye. For sensory evaluation, eugenol did not significantly affect the color or structural integrity of the skim milk. It had a negative impact on the flavor and general sensory acceptance of the treated milk. Eugenol hyperpolarized B. cereus cell membrane, decreased intracellular ATP concentration, and increased intracellular reactive oxygen species contents and extracellular malondialdehyde contents, resulting in the cell membrane of B. cereus being damaged and permeabilized, and cell morphology being changed. In addition, according to the viable count, confocal laser scanning microscopy, and spore morphology changes, eugenol reduced the germination rate of B. cereus spores. These findings suggest that eugenol can be used as a new natural antibacterial agent to control B. cereus and spores in the food production chain.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zhuokai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qianning Huang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xing Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wushuang Rui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Teixeira-Fonseca JL, Joviano-Santos JV, Beserra SS, de Lima Conceição MR, Leal-Silva P, Marques LP, Souza DS, Roman-Campos D. Exploring the involvement of TASK-1 in the control of isolated rat right atrium function from healthy animals and an experimental model of monocrotaline-induced pulmonary hypertension. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3775-3788. [PMID: 37338577 DOI: 10.1007/s00210-023-02569-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023]
Abstract
The TASK-1 channel belongs to the two-pore domain potassium channel family. It is expressed in several cells of the heart, including the right atrial (RA) cardiomyocytes and the sinus node, and TASK-1 channel has been implicated in the pathogenesis of atrial arrhythmias (AA). Thus, using the rat model of monocrotaline-induced pulmonary hypertension (MCT-PH), we explored the involvement of TASK-1 in AA. Four-week-old male Wistar rats were injected with 50 mg/kg of MCT to induce MCT-PH and isolated RA function was studied 14 days later. Additionally, isolated RA from six-week-old male Wistar rats were used to explore the ability of ML365, a selective blocker of TASK-1, to modulate RA function. The hearts developed right atrial and ventricular hypertrophy, inflammatory infiltrate and the surface ECG demonstrated increased P wave duration and QT interval, which are markers of MCT-PH. The isolated RA from the MCT animals showed enhanced chronotropism, faster contraction and relaxation kinetics, and a higher sensibility to extracellular acidification. However, the addition of ML365 to extracellular media was not able to restore the phenotype. Using a burst pacing protocol, the RA from MCT animals were more susceptible to develop AA, and simultaneous administration of carbachol and ML365 enhanced AA, suggesting the involvement of TASK-1 in AA induced by MCT. TASK-1 does not play a key role in the chronotropism and inotropism of healthy and diseased RA; however, it may play a role in AA in the MCT-PH model.
Collapse
Affiliation(s)
- Jorge Lucas Teixeira-Fonseca
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicina, Federal University of Sao Paulo, Botucatu Street, 862, Biological Science Building, 7th floor, São Paulo, São Paulo, Brazil
| | - Julliane V Joviano-Santos
- Post-Graduate Program in Health Sciences, Faculdade Ciências Médicas de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Samuel Santos Beserra
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicina, Federal University of Sao Paulo, Botucatu Street, 862, Biological Science Building, 7th floor, São Paulo, São Paulo, Brazil
| | - Michael Ramon de Lima Conceição
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicina, Federal University of Sao Paulo, Botucatu Street, 862, Biological Science Building, 7th floor, São Paulo, São Paulo, Brazil
| | - Polyana Leal-Silva
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicina, Federal University of Sao Paulo, Botucatu Street, 862, Biological Science Building, 7th floor, São Paulo, São Paulo, Brazil
| | - Leisiane Pereira Marques
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicina, Federal University of Sao Paulo, Botucatu Street, 862, Biological Science Building, 7th floor, São Paulo, São Paulo, Brazil
| | - Diego Santos Souza
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicina, Federal University of Sao Paulo, Botucatu Street, 862, Biological Science Building, 7th floor, São Paulo, São Paulo, Brazil
| | - Danilo Roman-Campos
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicina, Federal University of Sao Paulo, Botucatu Street, 862, Biological Science Building, 7th floor, São Paulo, São Paulo, Brazil.
| |
Collapse
|
5
|
Yang J, Ye K, Zhang R, Fan X, Xiong R, Zhang S, Liu Q, Lin M, Wang B, Tan X, Wen Q, Ou X. The characteristics and molecular targets of antiarrhythmic natural products. Biomed Pharmacother 2023; 168:115762. [PMID: 37897974 DOI: 10.1016/j.biopha.2023.115762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/30/2023] Open
Abstract
Arrhythmia is one of the most common cardiovascular diseases. The search for new drugs to suppress various types of cardiac arrhythmias has always been the focus of attention. In the past decade, the screening of antiarrhythmic active substances from plants has received extensive attention. These natural compounds have obvious antiarrhythmic effects, and chemical modifications based on natural compounds have greatly increased their pharmacological properties. The chemical modification of botanical antiarrhythmic drugs is closely related to the development of new and promising drugs. Therefore, the structural characteristics and action targets of natural compounds with antiarrhythmic effects are reviewed in this paper, so that pharmacologists can select antiarrhythmic lead compounds from natural compounds based on the disease target - chemical structural characteristics.
Collapse
Affiliation(s)
- Jun Yang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; Department of Pharmacy, Santai County People's Hospital of Sichuan Province, Mianyang 621100, China
| | - Kejun Ye
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; Pharmacy Department, Chongqing Armed Police Corps Hospital, Chongqing 400061, China
| | - Rui Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xinrong Fan
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Rui Xiong
- Department of Pharmacy of the 958 Hospital of Chinese PLA/Jiangbei Campus, The First Affiliated Hospital of Army Medical University, Chongqing 400020, China
| | - Shiyu Zhang
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Qiming Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Miao Lin
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bin Wang
- The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xiaoqiu Tan
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China.
| | - Qiang Wen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xianhong Ou
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, Guangxi Province, China.
| |
Collapse
|
6
|
Teixeira-Fonseca JL, Santos-Miranda A, Marques ILS, Marques LP, Alcantara F, de Lima Conceição MR, Souza DS, Santana Gondim AN, Roman-Campos D. Eugenol delays the onset of ouabain-induced ventricular cardiac arrhythmias in guinea pigs. Basic Clin Pharmacol Toxicol 2023; 133:565-575. [PMID: 37675641 DOI: 10.1111/bcpt.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
Eugenol is an aromatic compound used in the manufacture of medicines, perfumes, cosmetics and as an anaesthetic due to the ability of the drug to block the neuronal isoform of voltage-gated Na+ channels (NaV ). Some arrhythmias are associated with gain of function in the sodium current (INa ) found in cardiomyocytes, and antiarrhythmic sodium channel blockers are commonly used in the clinical practice. This study sought to elucidate the potential mechanisms of eugenol's protection in the arrhythmic model of ouabain-induced arrhythmias in guinea pig heart. Ex vivo arrhythmias were induced using 50 μM of ouabain. The antiarrhythmic properties of eugenol were evaluated in the ex vivo heart preparation and isolated ventricular cardiomyocytes. The compound's effects on cardiac sodium current and action potential using the patch-clamp technique were evaluated. In all, eugenol decreased the ex vivo cardiac arrhythmias induced by ouabain. Furthermore, eugenol showed concentration dependent effect upon peak INa , left-shifted the stationary inactivation curve and delayed the recovery from inactivation of the INa . All these aspects are considered to be antiarrhythmic. Our findings demonstrate that eugenol has antiarrhythmic activity, which may be partially explained by the ability of eugenol to change de biophysical properties of INa of cardiomyocytes.
Collapse
Affiliation(s)
- Jorge Lucas Teixeira-Fonseca
- Laboratório de Cardiobiologia, Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Artur Santos-Miranda
- Departamento de Fisiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Leisiane Pereira Marques
- Laboratório de Cardiobiologia, Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Fabiana Alcantara
- Laboratório de Cardiobiologia, Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Michael Ramon de Lima Conceição
- Laboratório de Cardiobiologia, Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Diego Santos Souza
- Laboratório de Cardiobiologia, Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Antonio Nei Santana Gondim
- Laboratório de Biofísica e Farmacologia do Coração, Departamento de Educação (Campus-XII), Universidade do Estado da Bahia (UNEB), Guanambi, Brazil
| | - Danilo Roman-Campos
- Laboratório de Cardiobiologia, Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Teixeira-Fonseca JL, Joviano-Santos JV, da Silva Alcântara F, de Lima Conceição MR, Leal-Silva P, Roman-Campos D. Evaluation of right atrium structure and function in a rat model of monocrotaline-induced pulmonary hypertension: Exploring the possible antiarrhythmic properties of amiodarone. Clin Exp Pharmacol Physiol 2023; 50:893-902. [PMID: 37610053 DOI: 10.1111/1440-1681.13813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/02/2023] [Accepted: 07/25/2023] [Indexed: 08/24/2023]
Abstract
Atrial arrhythmias (AA) are common in pulmonary hypertension (PH) and are closely associated with poor clinical outcomes. One of the most studied models to investigate PH is the rat model of monocrotaline (MCT) induced PH (MCT-PH). To date, little is known about right atrium (RA) function in the MCT-PH model and the propensity of RA to develop arrhythmias. Therefore, the aim of the study was to evaluate the function of the RA of control (CTRL) and MCT treated rats, and the ability of amiodarone, a classical antiarrhythmic, to prevent the occurrence of AA in the RA in MCT-PH rats. RA function was studied in MCT-PH rats 20 days after a single subcutaneous injection of MCT 50 mg/kg. The histological results indicated the presence of RA and right ventricular hypertrophy. Surface electrocardiogram demonstrated increased P wave duration, PR wave duration and QT interval in MCT rats. RA from MCT rats were more susceptible to develop ex vivo burst pacing arrhythmias when compared to CTRL. Intriguingly, amiodarone in clinical relevant concentration was not able to prevent the occurrence arrhythmias in RA from MCT-PH animals. Hence, we conclude that the rat model of MCT-PH impairs RA structure and function, and acute exposure of RA to amiodarone in clinical relevant concentration is not able to attenuate the onset of arrhythmias in the ex vivo RA preparation.
Collapse
Affiliation(s)
- Jorge Lucas Teixeira-Fonseca
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo, Brazil
| | | | - Fabiana da Silva Alcântara
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo, Brazil
| | - Michael Ramon de Lima Conceição
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo, Brazil
| | - Polyana Leal-Silva
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo, Brazil
| | - Danilo Roman-Campos
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Teixeira-Fonseca JL, Joviano-Santos JV, Machado FS, da Silva PL, Conceição MRL, Roman-Campos D. Isolated Left Atrium Morphofunctional Study of an Experimental Pulmonary Hypertension Model in Rats. Arq Bras Cardiol 2023; 120:e20230188. [PMID: 37878960 PMCID: PMC10548886 DOI: 10.36660/abc.20230188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND The high incidence of atrial arrhythmias in pulmonary hypertension (PH) might be associated with poor prognosis, and the left atrium (LA) may play a role in this. An important finding in PH studies is that LA remodeling is underestimated. OBJECTIVE This study investigated LA morphology and mechanical function, as well as the susceptibility to develop arrhythmias in a monocrotaline-induced PH (MCT-PH) model. METHODS Wistar rats aged 4 weeks received 50 mg/kg of MCT. Electrocardiography and histology analysis were performed to evaluate the establishment of the MCT-PH model. The tissue was mounted in an isolated organ bath to characterize the LA mechanical function. RESULTS Compared with the control group (CTRL), the MCT-PH model presented LA hypertrophy and changes in cardiac electrical activity, as evidenced by increased P wave duration, PR and QT interval in MCT-PH rats. In LA isolated from MCT-PH rats, no alteration in inotropism was observed; however, the time to peak contraction was delayed in the experimental MCT-PH group. Finally, there was no difference in arrhythmia susceptibility of LA from MCT-PH animals after the burst pacing protocol. CONCLUSION The morphofunctional remodeling of the LA did not lead to increased susceptibility to ex vivo arrhythmia after application of the burst pacing protocol.
Collapse
Affiliation(s)
| | - Julliane Vasconcelos Joviano-Santos
- Faculdade de Ciências Médicas de Minas GeraisBelo HorizonteMGBrasil Faculdade de Ciências Médicas de Minas Gerais , Belo Horizonte , MG – Brasil
| | - Fabiana Silva Machado
- Universidade Federal de São PauloSão PauloSPBrasil Universidade Federal de São Paulo , São Paulo , SP – Brasil
| | - Polyana Leal da Silva
- Universidade Federal de São PauloSão PauloSPBrasil Universidade Federal de São Paulo , São Paulo , SP – Brasil
| | | | - Danilo Roman-Campos
- Universidade Federal de São PauloSão PauloSPBrasil Universidade Federal de São Paulo , São Paulo , SP – Brasil
| |
Collapse
|
9
|
Yan Z, Zhong L, Zhu W, Chung SK, Hou P. Chinese herbal medicine for the treatment of cardiovascular diseases ─ targeting cardiac ion channels. Pharmacol Res 2023; 192:106765. [PMID: 37075871 DOI: 10.1016/j.phrs.2023.106765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/04/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality, imposing an increasing global health burden. Cardiac ion channels (voltage-gated NaV, CaV, KVs, and others) synergistically shape the cardiac action potential (AP) and control the heartbeat. Dysfunction of these channels, due to genetic mutations, transcriptional or post-translational modifications, may disturb the AP and lead to arrhythmia, a major risk for CVD patients. Although there are five classes of anti-arrhythmic drugs available, they can have varying levels of efficacies and side effects on patients, possibly due to the complex pathogenesis of arrhythmias. As an alternative treatment option, Chinese herbal remedies have shown promise in regulating cardiac ion channels and providing anti-arrhythmic effects. In this review, we first discuss the role of cardiac ion channels in maintaining normal heart function and the pathogenesis of CVD, then summarize the classification of Chinese herbal compounds, and elaborate detailed mechanisms of their efficacy in regulating cardiac ion channels and in alleviating arrhythmia and CVD. We also address current limitations and opportunities for developing new anti-CVD drugs based on Chinese herbal medicines.
Collapse
Affiliation(s)
- Zhenzhen Yan
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Ling Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | - Wandi Zhu
- Cardiovascular Medicine Division and Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sookja Kim Chung
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Faculty of Medicine & Faculty of Innovation Engineering at Macau University of Science and Technology, Taipa, Macao SAR, China; State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
| | - Panpan Hou
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China; Macau University of Science and Technology Zhuhai MUST Science and Technology Research Institute. Zhuhai, Guangdong, China.
| |
Collapse
|
10
|
Wang J, Liu YM, Hu J, Chen C. Potential of natural products in combination with arsenic trioxide: Investigating cardioprotective effects and mechanisms. Biomed Pharmacother 2023; 162:114464. [PMID: 37060657 DOI: 10.1016/j.biopha.2023.114464] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 04/17/2023] Open
Abstract
Over the past few decades, clinical trials conducted worldwide have demonstrated the efficacy of arsenic trioxide (ATO) in the treatment of relapsed acute promyelocytic leukemia (APL). Currently, ATO has become the frontline treatments for patients with APL. However, its therapeutic applicability is severely constrained by ATO-induced cardiac side effects. Any cardioprotective agents that can ameliorate the cardiac side effects and allow exploiting the full therapeutic potential of ATO, undoubtedly gain significant attention. The knowledge and use of natural products for evidence-based therapy have grown rapidly in recent years. Here we discussed the potential mechanism of ATO-induced cardiac side effects and reviewed the studies on cardiac side effects as well as the research history of ATO in the treatment of APL. Then, We summarized the protective effects and underlying mechanisms of natural products in the treatment of ATO-induced cardiac side effects. Based on the efficacy and safety of the natural product, it has a promising future in the development of cardioprotective agents against ATO-induced cardiac side effects.
Collapse
Affiliation(s)
- Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Yong-Mei Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| |
Collapse
|
11
|
Teixeira-Fonseca JL, de Lima Conceição MR, Leal-Silva P, Roman-Campos D. Ranolazine exerts atrial antiarrhythmic effects in a rat model of monocrotaline-induced pulmonary hypertension. Basic Clin Pharmacol Toxicol 2023; 132:359-368. [PMID: 36799082 DOI: 10.1111/bcpt.13845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Atrial arrhythmias are a hallmark of heart diseases. The antiarrhythmic drug ranolazine with multichannel blocker properties is a promising agent to treat atrial arrhythmias. We therefore used the rat model of monocrotaline-induced pulmonary-hypertension to assess whether ranolazine can reduce the incidence of ex vivo atrial arrhythmias in isolated right atrium. Four-week-old Wistar rats were injected with 50 mg/kg of monocrotaline, and isolated right atrium function was studied 14 days later. The heart developed right atrium and right ventricular hypertrophy, and the ECG showed an increased P wave duration and QT interval, which are markers of the disease. Moreover, monocrotaline injection caused enhanced chronotropism and faster kinetics of contraction and relaxation in isolated right atrium. Additionally, in a concentration-dependent manner, ranolazine showed chronotropic and ionotropic effects upon isolated right atrium, with higher potency in the control when compared with experimental model. Using a burst pacing protocol, the isolated right atrium from the monocrotaline-treated animals was more susceptible to develop arrhythmias, and ranolazine was able to attenuate the phenotype. Thus, we concluded that the rat model of monocrotaline-induced pulmonary-hypertension develops right atrium remodelling, which increased the susceptibility to present ex vivo atrial arrhythmias, and the antiarrhythmic drug ranolazine ameliorated the phenotype.
Collapse
Affiliation(s)
- Jorge Lucas Teixeira-Fonseca
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Michael Ramon de Lima Conceição
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Polyana Leal-Silva
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| | - Danilo Roman-Campos
- Laboratory of Cardiobiology, Department of Biophysics, Paulista School of Medicine, Federal University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
12
|
Czigle S, Bittner Fialová S, Tóth J, Mučaji P, Nagy M, on behalf of the OEMONOM. Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules 2022; 27:2881. [PMID: 35566230 PMCID: PMC9105531 DOI: 10.3390/molecules27092881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The worldwide prevalence of gastrointestinal diseases is about 40%, with standard pharmacotherapy being long-lasting and economically challenging. Of the dozens of diseases listed by the Rome IV Foundation criteria, for five of them (heartburn, dyspepsia, nausea and vomiting disorder, constipation, and diarrhoea), treatment with herbals is an official alternative, legislatively supported by the European Medicines Agency (EMA). However, for most plants, the Directive does not require a description of the mechanisms of action, which should be related to the therapeutic effect of the European plant in question. This review article, therefore, summarizes the basic pharmacological knowledge of synthetic drugs used in selected functional gastrointestinal disorders (FGIDs) and correlates them with the constituents of medicinal plants. Therefore, the information presented here is intended as a starting point to support the claim that both empirical folk medicine and current and decades-old treatments with official herbal remedies have a rational basis in modern pharmacology.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (S.B.F.); (J.T.); (P.M.); (M.N.)
| | | | | | | | | | | |
Collapse
|