1
|
Chi ZC. Progress in understanding of relationship between inflammation and tumors. Shijie Huaren Xiaohua Zazhi 2024; 32:23-40. [DOI: 10.11569/wcjd.v32.i1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
Over the past decade, there has been clear evidence that inflammation plays a key role in tumorigenesis. Tumor extrinsic inflammation is caused by many factors, including bacterial and viral infections, autoimmune diseases, obesity, smoking, excessive alcohol consumption, etc., all of which can increase cancer risk and stimulate malignant progression. Conversely, inflammation inherent in cancer or caused by cancer can be triggered by cancer-initiating mutations and can promote malignant progression through recruitment and activation of inflammatory cells. Both exogenous and endogenous inflammation can lead to immunosuppression, thus providing a preferred opportunity for tumor development. Studies have confirmed that chronic inflammation is involved in various steps of tumorigenesis, including cell transformation, promotion, survival, prolifer-ation, invasion, angiogenesis, and metastasis. Recent research has shed new light on the molecular and cellular circuits between inflammation and cancer. Two pathways have been preliminarily identified: Intrinsic and extrinsic. In the intrinsic pathway, genetic events leading to tumors initiate the expression of inflammatory related programs and guide the construction of the inflammatory microenvironment. In the extrinsic pathway, inflammatory conditions promote the development of cancer. This article reviews the recent progress in the understanding of the relationship between inflammation and tumors.
Collapse
Affiliation(s)
- Zhao-Chun Chi
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao 266011, Shandong Province, China
| |
Collapse
|
2
|
Dhupar R, Jones KE, Powers AA, Eisenberg SH, Ding K, Chen F, Nasarre C, Cen Z, Gong YN, LaRue AC, Yeh ES, Luketich JD, Lee AV, Oesterreich S, Lotze MT, Gemmill RM, Soloff AC. Isoforms of Neuropilin-2 Denote Unique Tumor-Associated Macrophages in Breast Cancer. Front Immunol 2022; 13:830169. [PMID: 35651620 PMCID: PMC9149656 DOI: 10.3389/fimmu.2022.830169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor-associated macrophages (TAMs) exert profound influence over breast cancer progression, promoting immunosuppression, angiogenesis, and metastasis. Neuropilin-2 (NRP2), consisting of the NRP2a and NRP2b isoforms, is a co-receptor for heparin-binding growth factors including VEGF-C and Class 3 Semaphorins. Selective upregulation in response to environmental stimuli and independent signaling pathways endow the NRP2 isoforms with unique functionality, with NRP2b promoting increased Akt signaling via receptor tyrosine kinases including VEGFRs, MET, and PDGFR. Although NRP2 has been shown to regulate macrophage/TAM biology, the role of the individual NRP2a/NRP2b isoforms in TAMs has yet to be evaluated. Using transcriptional profiling and spectral flow cytometry, we show that NRP2 isoform expression was significantly higher in TAMs from murine mammary tumors. NRP2a/NRP2b levels in human breast cancer metastasis were dependent upon the anatomic location of the tumor and significantly correlated with TAM infiltration in both primary and metastatic breast cancers. We define distinct phenotypes of NRP2 isoform-expressing TAMs in mouse models of breast cancer and within malignant pleural effusions from breast cancer patients which were exclusive of neuropilin-1 expression. Genetic depletion of either NRP2 isoform in macrophages resulted in a dramatic reduction of LPS-induced IL-10 production, defects in phagosomal processing of apoptotic breast cancer cells, and increase in cancer cell migration following co-culture. By contrast, depletion of NRP2b, but not NRP2a, inhibited production of IL-6. These results suggest that NRP2 isoforms regulate both shared and unique functionality in macrophages and are associated with distinct TAM subsets in breast cancer.
Collapse
Affiliation(s)
- Rajeev Dhupar
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Surgical Services Division, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - Katherine E Jones
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amy A Powers
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Seth H Eisenberg
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Kai Ding
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, PA, United States
| | - Fangyuan Chen
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, PA, United States
| | - Cecile Nasarre
- Division of Hematology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Division of Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Zhanpeng Cen
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- School of Medicine, Tsinghua University, Beijing, China
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Yi-Nan Gong
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Amanda C LaRue
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson VA Health Care System, Charleston, SC, United States
| | - Elizabeth S Yeh
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Simon Cancer Center, Indianapolis, IN, United States
| | - James D Luketich
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee Women's Research Institute, Pittsburgh, PA, United States
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael T Lotze
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Robert M Gemmill
- Division of Hematology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Division of Oncology, Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Adam C Soloff
- Department of Cardiothoracic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Cancer Immunology and Immunotherapy Program, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, United States
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
- Research Service, Ralph H. Johnson VA Health Care System, Charleston, SC, United States
| |
Collapse
|
3
|
Liu W, Deng Y, Li Z, Chen Y, Zhu X, Tan X, Cao G. Cancer Evo-Dev: A Theory of Inflammation-Induced Oncogenesis. Front Immunol 2021; 12:768098. [PMID: 34880864 PMCID: PMC8645856 DOI: 10.3389/fimmu.2021.768098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation is a prerequisite for the development of cancers. Here, we present the framework of a novel theory termed as Cancer Evolution-Development (Cancer Evo-Dev) based on the current understanding of inflammation-related carcinogenesis, especially hepatocarcinogenesis induced by chronic infection with hepatitis B virus. The interaction between genetic predispositions and environmental exposures, such as viral infection, maintains chronic non-resolving inflammation. Pollution, metabolic syndrome, physical inactivity, ageing, and adverse psychosocial exposure also increase the risk of cancer via inducing chronic low-grade smoldering inflammation. Under the microenvironment of non-resolving inflammation, pro-inflammatory factors facilitate the generation of somatic mutations and viral mutations by inducing the imbalance between the mutagenic forces such as cytidine deaminases and mutation-correcting forces including uracil-DNA glycosylase. Most cells with somatic mutations and mutated viruses are eliminated in survival competition. Only a small percentage of mutated cells survive, adapt to the hostile environment, retro-differentiate, and function as cancer-initiating cells via altering signaling pathways. These cancer-initiating cells acquire stem-ness, reprogram metabolic patterns, and affect the microenvironment. The carcinogenic process follows the law of "mutation-selection-adaptation". Chronic physical activity reduces the levels of inflammation via upregulating the activity and numbers of NK cells and lymphocytes and lengthening leukocyte telomere; downregulating proinflammatory cytokines including interleukin-6 and senescent lymphocytes especially in aged population. Anti-inflammation medication reduces the occurrence and recurrence of cancers. Targeting cancer stemness signaling pathways might lead to cancer eradication. Cancer Evo-Dev not only helps understand the mechanisms by which inflammation promotes the development of cancers, but also lays the foundation for effective prophylaxis and targeted therapy of various cancers.
Collapse
Affiliation(s)
- Wenbin Liu
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yang Deng
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Zishuai Li
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yifan Chen
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Xiaoqiong Zhu
- Department of Nutrition, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiaojie Tan
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Guangwen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| |
Collapse
|