1
|
Chaves LS, Oliveira ACP, Oliveira AP, Lopes ALF, Araujo AKS, Pacheco G, Silva KC, Martins FEC, Gomes IAB, Ramos SVS, Viana HTMC, Batista AVF, Oliveira BC, Nicolau LAD, Ribeiro FOS, Castro AV, de Araujo-Nobre AR, Silva DA, Cordeiro LMC, Góis MB, Medeiros JVR. Cashew gum fractions protect intestinal mucosa against shiga toxin-producing Escherichia coli infection: Characterization and insights into microbiota modulation. Int J Biol Macromol 2025; 311:143916. [PMID: 40324507 DOI: 10.1016/j.ijbiomac.2025.143916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/28/2025] [Accepted: 05/02/2025] [Indexed: 05/07/2025]
Abstract
Diarrheal diseases remain a major public health concern, particularly in regions with poor sanitation. Polysaccharides extracted from natural gums have been investigated as functional agents for intestinal health, and their fractionation enables the production of oligosaccharides with potential prebiotic activity. This study aimed to produce cashew gum (CG) fractions through Smith degradation (CGD48) and partial hydrolysis (CGD24) and to evaluate their ability to modulate and protect the intestinal microbiota. Balb/c mice were administered CG (1200 mg/kg), CGD24 (800 mg/kg), or CGD48 (800 mg/kg) for 10 and 26 days, followed by infection with Shiga toxin-producing Escherichia coli (STEC) (5 × 1010 CFU/mL) for three days. Characterization assays confirmed the fragmentation of CG. Both CGD24 and CGD48 promoted the growth of beneficial bacteria with and without infection and reduced STEC colonization. Furthermore, they preserved mucin levels in the cecum and large intestine and maintained baseline levels of superoxide dismutase (SOD), suggesting protection of the intestinal mucosa. These findings indicate that CG fractions exhibit microbiota-modulating and protective effects against STEC, highlighting their therapeutic potential and the need for further studies to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Letícia S Chaves
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Antonio C P Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ana P Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - André L F Lopes
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Andreza K S Araujo
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Gabriella Pacheco
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Katriane C Silva
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Francisco E C Martins
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Isaac A B Gomes
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Sabrine V S Ramos
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Hémilly T M C Viana
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Ana V F Batista
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Beatriz C Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Lucas A D Nicolau
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil
| | - Fábio O S Ribeiro
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Auricélia V Castro
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Alyne Rodrigues de Araujo-Nobre
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Durcilene A Silva
- Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil
| | - Lucimara M C Cordeiro
- Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR, Brazil
| | - Marcelo B Góis
- Post-Graduation Program in Biosciences and Health, Federal University of Rondonópolis, Rondonópolis, Brazil
| | - Jand V R Medeiros
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Postgraduate Program in Biotechnology (PPGBIOTEC), Federal University of Parnaiba Delta, Av. São Sebastião, 2819, Parnaíba, PI CEP 64202-020, Brazil; Research Center on Biodiversity and Biotechnology (BIOTEC), Federal University of Delta do Parnaíba, UFDPar, Parnaíba, PI CEP 64202-020, Brazil.
| |
Collapse
|
2
|
Lopes ALF, Araújo AKDS, Chaves LDS, Pacheco G, Oliveira APD, Silva KCD, Oliveira ACPD, Aquino CCD, Gois MB, Nicolau LAD, Medeiros JVR. Protective effect of alpha-ketoglutarate against water-immersion restraint stress-induced gastric mucosal damage in mice. Eur J Pharmacol 2023; 960:176118. [PMID: 37871764 DOI: 10.1016/j.ejphar.2023.176118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Gastric lesions have several aetiologies, among which stress is the most prominent. Therefore, identification of new therapies to prevent stress is of considerable importance. Alpha-ketoglutarate (α-kg) several beneficial effects and has shown promise in combating oxidative stress, inflammation, and premature aging. Thus, this study aimed to evaluate the protective effect of α-kg in a gastric damage model by water-immersion restraint stress (WIRS). Pretreatment with α-kg decreased stress-related histopathological scores of tissue oedema, cell loss, and inflammatory infiltration. The α-kg restored the percentage of type III collagen fibres. Mucin levels were preserved as well as the structure and area of the myenteric plexus ganglia were preserved after pretreatment with α-kg. Myeloperoxidase (MPO) levels and the expression of pro-inflammatory cytokines (TNF-α and IL-1β) were also reduced following α-kg pretreatment. Decreased levels of glutathione (GSH) in the stress group were restored by α-kg. The omeprazole group was used as standard drug e also demonstrated improve on some parameters after the exposition to WIRS as inflammatory indexes, GSH and mucin. Through this, was possible to observe that α-kg can protect the gastric mucosa exposed to WIRS, preserve tissue architecture, reduce direct damage to the mucosa and inflammatory factors, stimulate the production of type III collagen and mucin, preserve the myenteric plexus ganglia, and maintain antioxidant potential. Due to, we indicate that α-kg has protective activity of the gastric mucosa, demonstrating its ability to prevent damage associated with gastric lesions caused by stress.
Collapse
Affiliation(s)
- André Luis Fernandes Lopes
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Andreza Ketly da Silva Araújo
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Letícia de Sousa Chaves
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Gabriella Pacheco
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Ana Patrícia de Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Katriane Carvalho da Silva
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Antonio Carlos Pereira de Oliveira
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | | | - Marcelo Biondaro Gois
- Post-Graduation Program in Biosciences and Health, Federal University of Rondonópolis, Rondonópolis, Brazil.
| | - Lucas Antonio Duarte Nicolau
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| | - Jand Venes Rolim Medeiros
- Laboratory of Inflammation and Translational Gastroenterology (LIGAT), Post-graduation Program in Biotechnology (PPGBIOTEC), Parnaíba Delta Federal University, Av. São Sebastião, 2819, Parnaíba, PI, CEP 64202-020, Brazil.
| |
Collapse
|
3
|
de Oliveira NMT, Schneider VS, Bueno LR, de Mello Braga LLV, da Silva KS, Malaquias da Silva LC, Souza ML, da Luz BB, Lima CD, Bastos RS, de Paula Werner MF, Fernandes ES, Rocha JA, Gois MB, Cordeiro LMC, Maria-Ferreira D. CPW partially attenuates DSS-induced ulcerative colitis in mice. Food Res Int 2023; 173:113334. [PMID: 37803644 DOI: 10.1016/j.foodres.2023.113334] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 10/08/2023]
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) of the gastrointestinal tract. The etiology is not fully understood, but environmental, microbial, and immunologic factors, as well as a genetic predisposition, play a role. UC is characterized by episodes of abdominal pain, diarrhea, bloody stools, weight loss, severe colonic inflammation, and ulceration. Despite the increase in the frequency of UC and the deterioration of the quality of life, there are still patients who do not respond well to available treatment options. Against this background, natural products such as polysaccharides are becoming increasingly important as they protect the intestinal mucosa, promote wound healing, relieve inflammation and pain, and restore intestinal motility. In this study, we investigated the effect of a polysaccharide isolated from the biomass of Campomanesia adamantium and Campomanesia pubescens (here referred to as CPW) in an experimental model of acute and chronic ulcerative colitis induced by dextran sulfate sodium (DSS). CPW reversed weight loss, increased disease activity index (DAI), bloody diarrhea, and colon shortening. In addition, CPW reduced visceral mechanical hypersensitivity, controlled oxidative stress and inflammation, and protected the mucosal barrier. CPW is not absorbed in the intestine, does not inhibit cytochrome P450 proteins, and does not exhibit AMES toxicity. These results suggest that CPW attenuates DSS-induced acute and chronic colitis in mice and may be a potential alternative treatment for UC.
Collapse
Affiliation(s)
- Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Vanessa S Schneider
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Laryssa Regis Bueno
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Lara Luisa Valerio de Mello Braga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Karien Sauruk da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Liziane Cristine Malaquias da Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Maria Luiza Souza
- Faculdade de Ciências da Saúde, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil
| | - Cleiane Dias Lima
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Ruan Sousa Bastos
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | | | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil
| | - Jefferson Almeida Rocha
- Programa de Pós-Graduação em Biotecnologia, PPGBIOTEC, Universidade Federal do Delta do Parnaíba, UFDPar, Parnaíba, PI, Brazil
| | - Marcelo Biondaro Gois
- Faculdade de Ciências da Saúde, Universidade Federal de Rondonópolis, Rondonópolis, MT, Brazil
| | | | - Daniele Maria-Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba 80250-060, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, Paraná, Brazil.
| |
Collapse
|
4
|
Miranda Júnior NRD, Santos AGAD, Pereira AV, Mariano IA, Guilherme ALF, Santana PDL, Beletini LDF, Evangelista FF, Nogueira-Melo GDA, Sant'Ana DDMG. Rosuvastatin enhances alterations caused by Toxoplasma gondii in the duodenum of mice. Tissue Cell 2023; 84:102194. [PMID: 37597359 DOI: 10.1016/j.tice.2023.102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
Infection by Toxoplasma gondii may compromise the intestinal histoarchitecture through the tissue reaction triggered by the parasite. Thus, this study evaluated whether treatment with rosuvastatin modifies duodenal changes caused by the chronic infection induced by cysts of T. gondii. For this, female Swiss mice were distributed into infected and treated group (ITG), infected group (IG), group treated with 40 mg/kg rosuvastatin (TG) and control group (CG). After 72 days of infection, the animals were euthanized, the duodenum was collected and processed for histopathological analysis. We observed an increase in immune cell infiltration in the IG, TG and ITG groups, with injury to the Brunner glands. The infection led to a reduction in collagen fibers and mast cells. Infected and treated animals showed an increase in collagen fibers, acidic mucin-producing goblet cells, intraepithelial lymphocytes and mast cells, in addition to the reduction of muscle, neutral mucin-producing and Paneth cells. While treatment with rosuvastatin alone led to increased muscle layer, proportion of neutral mucin-producing goblet cells, Paneth cells, and reduction of collagen fibers. These findings indicate that the infection and treatment caused changes in the homeostasis of the intestinal wall and treatment with rosuvastatin potentiated most parameters indicative of inflammation.
Collapse
Affiliation(s)
- Nelson Raimundo de Miranda Júnior
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Amanda Gubert Alves Dos Santos
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Andréia Vieira Pereira
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Isabela Alessandra Mariano
- Department of Clinical Analysis and Biomedicine, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Ana Lucia Falavigna Guilherme
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Priscilla de Laet Santana
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Lucimara de Fátima Beletini
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Fernanda Ferreira Evangelista
- Health Sciences Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Gessilda de Alcantara Nogueira-Melo
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil
| | - Debora de Mello Gonçales Sant'Ana
- Biosciences and Physiopathology Program, State University of Maringá, Maringá, Brazil; Department of Basic Health Sciences, State University of Maringá, Maringá, Brazil.
| |
Collapse
|
5
|
Casagrande L, Pastre MJ, Trevizan AR, Cuman RKN, Bersani-Amado CA, Garcia JL, Gois MB, de Mello Gonçales Sant'Ana D, Nogueira-Melo GDA. Moderate intestinal immunopathology after acute oral infection with Toxoplasma gondii oocysts is associated with expressive levels of serotonin. Life Sci 2022; 309:120985. [PMID: 36150462 DOI: 10.1016/j.lfs.2022.120985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Invasion of the intestinal mucosa by T. gondii elicits a local immune response of variable intensity. These reactions can be lethal in C57BL/6 mice. The tissue damage caused by inflammation and the functional effects depend on the host immunity, strain, and developmental form of the parasite. We investigated the effects of acute oral infection with T. gondii on histoarchitecture, enteric nervous system (ENS), and inflammatory markers in the jejunum and ileum of mice. METHODS Female C57BL/6 mice were divided into a control group and a group orally infected with 1000 sporulated T. gondii oocysts (ME-49 strain). After 5 days, jejunum and ileum were collected and processed for analyzes (e.g., histological and histopathological examinations, ENS, cytokine dosage, myeloperoxidase, nitric oxide activity). MAIN RESULTS In infected mice, we observed a significant increase in serotonin-immunoreactive cells (5-HT IR) in the intestinal mucosa, as well as cellular infiltrates in the lamina propria, periganglionitis, and ganglionitis in the myenteric plexus. We also noted decreased neuron density in the jejunum, increased population of enteric glial cells in the ileum, histomorphometric changes in the intestinal wall, villi, and epithelial cells, remodeling of collagen fibers, and increased myeloperoxidase activity, cytokines, and nitric oxide in the intestine. CONCLUSIONS AND INFERENCES Acute infection of female mice with T. gondii oocysts resulted in changes in ENS and a marked increase in 5-HT. These changes are consistent with its modulatory role in the development of moderate acute inflammation. The use of this experimental model may lend itself to studies aimed at understanding the pathophysiological mechanisms of intestinal inflammation in humans involving ENS.
Collapse
Affiliation(s)
- Lucas Casagrande
- Biosciences and Pathophysiology Postgraduate Program, State University of Maringá, Brazil
| | - Maria José Pastre
- Biosciences and Pathophysiology Postgraduate Program, State University of Maringá, Brazil
| | - Aline Rosa Trevizan
- Biosciences and Pathophysiology Postgraduate Program, State University of Maringá, Brazil
| | | | | | | | - Marcelo Biondaro Gois
- Faculty of Health Sciences, Federal University of Rondonópolis, Brazil; Institute of Health Sciences, Federal University of Bahia, Brazil
| | | | | |
Collapse
|
6
|
Montazeri M, Fakhar M, Keighobadi M. The Potential Role of the Serotonin Transporter as a Drug Target against Parasitic Infections: A Scoping Review of the Literature. RECENT ADVANCES IN ANTI-INFECTIVE DRUG DISCOVERY 2022; 17:23-33. [PMID: 35249526 DOI: 10.2174/1574891x16666220304232301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 12/02/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Several in vitro and in vivo biological activities of serotonin, 5- hydroxytryptamine (5-HT), as a bioactive molecule, and its transporter (5-HT-Tr) were evaluated in parasitic infections. OBJECTIVE Herein, the roles of 5-HT and 5-HTR in helminths and protozoan infections with medical and veterinary importance are reviewed. METHODS We searched information in 4 main databases and reviewed published literature about the serotonin transporter's role as a promising therapeutic target against pathogenic parasitic infections between 2000 and 2021. RESULTS Based on recent investigations, 5-HT and 5-HT-Tr play various roles in parasite infections, including biological function, metabolic activity, organism motility, parasite survival, and immune response modulation. Moreover, some of the 5-HT-TR in Schistosoma mansoni showed an excess of favorite substrates for biogenic amine 5-HT compared to their mammalian hosts. Furthermore, the main neuronal protein related to the G protein-coupled receptor (GPCR) was identified in S. mansoni and Echinococcus granulosus, playing main roles in these parasites. In addition, 5-HT increased in toxoplasmosis, giardiasis, and Chagas disease. On the other hand, in Plasmodium spp., different forms of targeted 5-HTR stimulate Ca2+ release, intracellular inositol triphosphate (ITP), cAMP, and protein kinase A (PKA) activity. CONCLUSION This review summarized the several functional roles of the 5-HT and the importance of the 5-HT-TR as a drug target with minimal harm to the host to fight against helminths and protozoan infections. Hopefully, this review will shed light on research regarding serotonin transporter-based therapies as a potential drug target soon.
Collapse
Affiliation(s)
- Mahbobeh Montazeri
- The Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- The Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Masoud Keighobadi
- The Toxoplasmosis Research Center, Communicable Diseases Institute, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|