1
|
Nemmar A, Beegam S, Yuvaraju P, Zaaba NE, Elzaki O, Yasin J, Adeghate E. Pathophysiologic effects of waterpipe (shisha) smoke inhalation on liver morphology and function in mice. Life Sci 2024; 336:122058. [PMID: 37659593 DOI: 10.1016/j.lfs.2023.122058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
AIMS The global prevalence of waterpipe tobacco smoking is increasing. Although the cardiorespiratory, renal, and reproductive effects of waterpipe smoking (WPS) are well-documented, there is limited knowledge regarding its adverse impact on the liver. Therefore, our study aimed to assess the effects and potential mechanisms of WPS inhalation for one or four weeks on the liver. MAIN METHODS Mice were exposed to WPS for 30 min per day, five days per week, while control mice were exposed to clean air. KEY FINDINGS Analysis using light microscopy revealed the infiltration of immune cells (neutrophils and lymphocytes) accompanied by vacuolar hepatic degeneration upon WPS inhalation. At the four-week timepoint, electron microscopy analysis demonstrated an increased number of mitochondria with a concomitant pinching-off of hepatocyte plasma membranes. WPS exposure led to a significant rise in the activities of liver enzymes alanine aminotransferase and aspartate aminotransferase in the bloodstream. Additionally, WPS inhalation elevated lipid peroxidation and reactive oxygen species levels and disrupted the levels of the antioxidant glutathione in liver tissue homogenates. The concentration of proinflammatory cytokines, including tumor necrosis factor α, interleukin (IL)-6, and IL-1β, was significantly increased in the WPS-exposed group. Furthermore, WPS inhalation induced DNA damage and a significant increase in the levels of cleaved caspase-3, cytochrome C and hypoxia-inducible factor 1α along with alterations in the activity of mitochondrial complexes I, II, III and IV. SIGNIFICANCE Our findings provide evidence that WPS inhalation triggers changes in liver morphology, oxidative stress, inflammation, DNA damage, apoptosis, and alterations in mitochondrial activity.
Collapse
Affiliation(s)
- Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, United Arab Emirates.
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Priya Yuvaraju
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Javed Yasin
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Ernest Adeghate
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Nemmar A, Beegam S, Zaaba NE, Elzaki O, Pathan A, Ali BH. Waterpipe smoke inhalation induces lung injury and aortic endothelial dysfunction in mice. Physiol Res 2023; 72:337-347. [PMID: 37449747 PMCID: PMC10669000 DOI: 10.33549/physiolres.935042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/28/2023] [Indexed: 08/26/2023] Open
Abstract
Waterpipe tobacco smoking (WPS) inhalation has been shown to trigger endothelial dysfunction and atherosclerosis. However, the mechanisms underlying these effects are still unknown. Here, we assessed the impact and underlying mechanism of WPS exposure for one month on endothelial dysfunction using aortic tissue of mice. The duration of the session was 30 min/day and 5 days/week. Control mice were exposed to air. Inhalation of WPS induced an increase in the number of macrophages and neutrophils and the concentrations of protein, tumor necrosis factor alpha (TNF alpha), interleukin (IL)-1beta, and glutathione in bronchoalveolar lavage fluid. Moreover, the concentrations of proinflammatory cytokines (TNF alpha, IL-6 and IL-1beta), adhesion molecules (intercellular adhesion molecule-1, vascular cell adhesion molecule-1, E-selectin and P-selectin) and markers of oxidative stress (lipid peroxidation, glutathione, superoxide dismutase and nitric oxide) in aortic homogenates of mice exposed to WPS were significantly augmented compared with air exposed mice. Likewise, the concentration of galectin-3 was significantly increased in the aortic homogenates of mice exposed to WPS compared with control group. WPS inhalation induced vascular DNA damage assessed by comet assay and apoptosis characterized by a significant increase in cleaved caspase-3. While the aortic expression of phosphorylated nuclear factor kappaB (NF-kappaB) was significantly increased following WPS inhalation, the concentration of sirtuin 1 (SIRT1) was significantly decreased in WPS group compared with air-exposed group. In conclusion, our study provided evidence that WPS inhalation triggers lung injury and endothelial inflammation, oxidative stress and apoptosis which were associated with nuclear factor-kappaB activation and SIRT1 down-regulation.
Collapse
Affiliation(s)
- A Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates. and
| | | | | | | | | | | |
Collapse
|
3
|
Ren X, Lin L, Sun Q, Li T, Sun M, Sun Z, Duan J. Metabolomics-based safety evaluation of acute exposure to electronic cigarettes in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156392. [PMID: 35660447 DOI: 10.1016/j.scitotenv.2022.156392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/10/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION A growing number of epidemiological evidence reveals that electronic cigarettes (E-cigs) were associated with pneumonia, hypertension and atherosclerosis, but the toxicological evaluation and mechanism of E-cigs were largely unknown. OBJECTIVE Our study was aimed to explore the adverse effects on organs and metabolomics changes in C57BL/6J mice after acute exposure to E-cigs. METHODS AND RESULTS Hematoxylin and eosin (H&E) staining found pathological changes in tissues after acute exposure to E-cigs, such as inflammatory cell infiltration, nuclear pyknosis, and intercellular interstitial enlargement. E-cigs could increase apoptosis-positive cells in a time-dependent way using Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) assay. Oxidative damage indicators of reactive oxygen species (ROS), malondialdehyde (MDA) and 4-hydroxynonena (4-HNE) were also elevated after E-cigs exposure. There was an increasing trend of total glycerol and cholesterol in serum, while the glucose and liver enzymes including alanine aminotransferase (ALT), aspartate transaminase (AST), gamma-glutamyltranspeptidase (γ-GT) had no significant change compared to that of control. Further, Q Exactive high field (HF) mass spectrometer was used to conduct metabolomics, which revealed that differential metabolites including l-carnitine, Capryloyl glycine, etc. Trend analysis showed the type of compounds that change over time. Pathway enrichment analysis indicated that E-cigs affected 24 metabolic pathways, which were mainly regulated amino acid metabolism, further affected the tricarboxylic acid (TCA) cycle. Additionally, metabolites-diseases network analysis found that the type 2 diabetes mellitus, propionic acidemia, defect in long-chain fatty acids transport and lung cancer may be related to E-cigs exposure. CONCLUSIONS Our findings provided important clues for metabolites biomarkers of E-cigs acute exposure and are beneficial for disease prevention.
Collapse
Affiliation(s)
- Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Lisen Lin
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|