1
|
Lin P, Chen Z, Sun G, Guo S. Differentially Expressed Genes and Alternative Splicing Analysis Revealed the Difference in Virulence to American Eels (Anguilla rostrata) Infected by Edwardsiella anguillarum and Aeromonas hydrophila. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 27:4. [PMID: 39565429 DOI: 10.1007/s10126-024-10378-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024]
Abstract
Edwardsiella anguillarum and Aeromonas hydrophila are two common bacterial pathogens affecting cultivated eels, and the differences in their virulence remain unclear. In this study, after two groups of American eels (Anguilla rostrata) were administered the LD50 dose of E. anguillarum and A. hydrophila, respectively, the histopathology of the liver, trunk kidney, and spleen, as well as transcriptomic RNA sequencing (RNA-seq) analysis of the spleen, was examined at three time points: pre-infection (Con group) and post-infection at 36 h (Ea_36 group, Ah_36 group) and 60 h (Ea_60 group, Ah_60 group). The results showed that the differences in pathological changes were characterized by severe hepatocyte edema at 36 h post-infection (hpi) and hepatocyte atrophy at 60 hpi in the livers of eels infected by A. hydrophila, in contrast to the severe atrophy of glomeruli in the trunk kidneys and numerous bacterial nodules in the spleens of eels infected by E. anguillarum. The RNA-seq results revealed 906 and 77 typical differentially expressed genes (DEGs) in eels infected with E. anguillarum and A. hydrophila, respectively, compared to the control eels. The DEGs between the infected and control groups were predominantly annotated in GO terms related to binding, catalytic activity, membrane part, cell part, and cellular process, as well as in KEGG pathways associated with human diseases and organismal systems. The GO enrichment analysis showed 83 and 146 differential GO terms, along with 32 and 78 differential KEGG pathways in two comparisons of Ea_36 vs Con versus Ah_36 vs Con and Ea_60 vs Con versus Ah_60 vs Con, respectively. Furthermore, the analysis of differential alternative splicing genes (DASs) showed 1244 and 1341 DASs out of 12,907 and 12,833 AS genes, respectively, in the comparisons of Ea_36 vs Ah_36 and Ea_60 vs Ah_60. These DASs were enriched in two common KEGG pathways: "NOD-like receptor signaling pathway" and "necroptosis" which shared 11 hub DASs. Finally, analysis of protein-protein interactions revealed that 91 of 412 cross DASs between Ea_36 vs Ah_36 and Ea_60 vs Ah_60 potentially play an essential role in the difference in virulence of E. anguillarum and A. hydrophila in American eels, with 12 encoded proteins being particularly notable. Together, this study is the first to report a comparative pathogenicity and RNA-seq analysis of E. anguillarum and A. hydrophila in American eels, shedding new light on our understanding of the differences in virulence as revealed by pathological changes, DEGs, and DASs, contributing to more effective control strategies to prevent outbreaks of bacterial infections.
Collapse
Affiliation(s)
- Peng Lin
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China
| | - Zihao Chen
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Guanghua Sun
- Fisheries College, Jimei University, Xiamen, China
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China
| | - Songlin Guo
- Fisheries College, Jimei University, Xiamen, China.
- Engineering Research Center of the Modern Industry Technology for Eel, Ministry of Education of PRC, Xiamen, 361021, China.
- State Key Laboratory of Mariculture Breeding, Fisheries College of Jimei University, Xiamen, China.
| |
Collapse
|
2
|
Zhou S, Hu J, Du S, Wang F, Fang Y, Zhang R, Wang Y, Zheng L, Gao M, Tang H. RNA-binding proteins potentially regulate alternative splicing of immune/inflammatory-associated genes during the progression of generalized pustular psoriasis. Arch Dermatol Res 2024; 316:538. [PMID: 39158708 DOI: 10.1007/s00403-024-03283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/09/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Generalized pustular psoriasis (GPP) is a rare but severe form of psoriasis. However, the pathogenesis of GPP has not been fully elucidated. Although RNA-binding proteins (RBPs) and the alternative splicing (AS) process are essential for regulating post-transcriptional gene expression, their roles in GPP are still unclear. We aimed to elucidate the regulatory mechanisms to identify potential new therapeutic targets. Here, We analyzed an RNA sequencing (RNA-seq) dataset (GSE200977) of peripheral blood mononuclear cells (PBMCs) of 24 patients with GPP, psoriasis vulgaris (PV), and healthy controls (HCs) from the Gene Expression Omnibus (GEO) database. We found that the abnormal alternative splicing (AS) events associated with GPP were mainly "alt3p/alt5p", and 15 AS genes were differentially expressed. Notably, the proportions of different immune cell types were correlated with the expression levels of regulatory alternatively spliced genes (RASGs): significant differences were observed in expression levels of DTD2, NDUFAF3, NBPF15, and FBLN7 in B cells and ARFIP1, IPO11, and RP11-326L24.9 in neutrophils in the GPP samples. Furthermore, We identified 32 differentially expressed RNA-binding proteins (RBPs) (18 up-regulated and 14 down-regulated). Co-expression networks between 14 pairs of differentially expressed RBPs and RASGs were subsequently constructed, demonstrating that these differentially expressed RBPs may affect the progression of GPP by regulating the AS of downstream immune/inflammatory-related genes such as LINC00989, ENC1 and MMP25-AS1. Our results were innovative in revealing the involvement of inflammation-related RBPs and RASGs in the development of GPP from the perspective of RBP-regulated AS.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junjie Hu
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Shuli Du
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fang Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ying Fang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ranran Zhang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yixiao Wang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Liyun Zheng
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Min Gao
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China.
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China.
| | - Huayang Tang
- Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, 230032, Anhui, China.
- Institute of Dermatology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, 230032, Anhui, China.
- Collaborative Innovation Center of Complex and Severe Skin Disease, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
3
|
Ma Z, An P, Hao S, Huang Z, Yin A, Li Y, Tian J. Single-cell sequencing analysis and multiple machine-learning models revealed the cellular crosstalk of dendritic cells and identified FABP5 and KLRB1 as novel biomarkers for psoriasis. Front Immunol 2024; 15:1374763. [PMID: 38596682 PMCID: PMC11002082 DOI: 10.3389/fimmu.2024.1374763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Background Psoriasis is an immune-mediated disorder influenced by environmental factors on a genetic basis. Despite advancements, challenges persist, including the diminishing efficacy of biologics and small-molecule targeted agents, alongside managing recurrence and psoriasis-related comorbidities. Unraveling the underlying pathogenesis and identifying valuable biomarkers remain pivotal for diagnosing and treating psoriasis. Methods We employed a series of bioinformatics (including single-cell sequencing data analysis and machine learning techniques) and statistical methods to integrate and analyze multi-level data. We observed the cellular changes in psoriatic skin tissues, screened the key genes Fatty acid binding protein 5 (FABP5) and The killer cell lectin-like receptor B1 (KLRB1), evaluated the efficacy of six widely prescribed drugs on psoriasis treatment in modulating the dendritic cell-associated pathway, and assessed their overall efficacy. Finally, RT-qPCR, immunohistochemistry, and immunofluorescence assays were used to validate. Results The regulatory influence of dendritic cells (DCs) on T cells through the CD70/CD27 signaling pathway may emerge as a significant facet of the inflammatory response in psoriasis. Notably, FABP5 and KLRB1 exhibited up-regulation and co-localization in psoriatic skin tissues and M5-induced HaCaT cells, serving as potential biomarkers influencing psoriasis development. Conclusion Our study analyzed the impact of DC-T cell crosstalk in psoriasis, elucidated the characterization of two biomarkers, FABP5 and KLRB1, in psoriasis, and highlighted the promise and value of tofacitinib in psoriasis therapy targeting DCs.
Collapse
Affiliation(s)
- Zhiqiang Ma
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Pingyu An
- Basic Medical College, Harbin Medical University, Harbin, China
| | - Siyu Hao
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Anqi Yin
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiangtian Tian
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin, China
| |
Collapse
|
4
|
Lin P, Shi HY, Lu YY, Lin J. Centella asiatica alleviates psoriasis through JAK/STAT3-mediated inflammation: An in vitro and in vivo study. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116746. [PMID: 37295572 DOI: 10.1016/j.jep.2023.116746] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Centella asiatica (L.) Urban (CA) is a dry herb of the Umbelliferae family, first mentioned in Shennong's Herbal Classic. It is known for its ability to clear heat and dampness, detoxify, and reduce swelling, making it a popular treatment for dermatitis, wound healing, and lupus erythematosus. Psoriasis is a chronic inflammatory skin disease that is characterized by clearly delineated erythema and squamous skin lesions. However, the effect of CA on regulating inflammation and its mechanism in the pathogenesis of psoriasis is still not fully understood. AIM OF THE STUDY This study evaluated the effects of CA on inflammatory dermatosis by in vitro and in vivo studies. And clarified the important role of the JAK/STAT3 signaling pathway in the treatment of psoriasis with CA. METHODS AND MATERIALS Different components of CA were extracted and analyzed for their total flavonoid and polyphenol contents. The antioxidant capacity of the CA extracts was determined using DPPH, ABTS, and FRAP methods. In vitro, HaCaT cells were induced by lipopolysaccharide (LPS, 20 μg·mL-1) to establish an inflammatory injury model, and the effects of CA extracts on oxidative stress, inflammation and skin barrier function were evaluated systematically. Annexin V-FITC/PI staining was utilized for detecting cell apoptosis, while the expression of NF-κB and JAK/STAT3 pathways were detected by RT-PCR and western blot. Combined with an in vivo mice model of Imiquimod (IMQ) induced psoriasis-like skin inflammation, the most effective CA extract for alleviating psoriasis was identified and its potential mechanism was investigated. RESULTS CA extracts showed high antioxidant capacity and were able to increase the content of GSH and SOD while reducing intracellular ROS generation. Notably, CA ethyl acetate extract (CAE) was found to be the most effective. Furthermore, CA extracts effectively downregulate inflammatory factors (IFN-γ, CCL20, IL-6 and TNF-α) mRNA levels and improved the gene expressions of barrier protective factors AQP3 and FLG, among them CAE and n-hexane extract of CA (CAH) had better effects. Western blot analysis indicated that CAE and CAH had anti-inflammatory effects by inhibiting the activation of NF-κB and JAK/STAT3 pathways, and CAE exhibited the best regulatory effect at the dose of 25 μg·mL-1. In vivo experiment, the psoriasis-like skin inflammation mice model was established by 5% IMQ and treated CAE solution (10, 20, 40 mg·mL-1) for 7 days, the results showed that CAE intervention reduced the skin scale and blood scab, and significantly inhibited the secretion of inflammatory factors in both serum and skin lesions at the dose of 40 mg·mL-1. CONCLUSION Centella asiatica extracts were effective in improving skin inflammation and skin barrier dysfunction, and also alleviated psoriasis through JAK/STAT3 pathway. The results provided experimental support for the potential use of Centella asiatica in functional food and skin care products.
Collapse
Affiliation(s)
- Pei Lin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hong-Yu Shi
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Yin-Ying Lu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jun Lin
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
5
|
Zhao Q, Shao T, Zhu Y, Zong G, Zhang J, Tang S, Lin Y, Ma H, Jiang Z, Xu Y, Wu X, Zhang T. An MRTF-A-ZEB1-IRF9 axis contributes to fibroblast-myofibroblast transition and renal fibrosis. Exp Mol Med 2023:10.1038/s12276-023-00990-6. [PMID: 37121967 DOI: 10.1038/s12276-023-00990-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 02/14/2023] [Indexed: 05/02/2023] Open
Abstract
Myofibroblasts, characterized by the expression of the matricellular protein periostin (Postn), mediate the profibrogenic response during tissue repair and remodeling. Previous studies have demonstrated that systemic deficiency in myocardin-related transcription factor A (MRTF-A) attenuates renal fibrosis in mice. In the present study, we investigated the myofibroblast-specific role of MRTF-A in renal fibrosis and the underlying mechanism. We report that myofibroblast-specific deletion of MRTF-A, achieved through crossbreeding Mrtfa-flox mice with Postn-CreERT2 mice, led to amelioration of renal fibrosis. RNA-seq identified zinc finger E-Box binding homeobox 1 (Zeb1) as a downstream target of MRTF-A in renal fibroblasts. MRTF-A interacts with TEA domain transcription factor 1 (TEAD1) to bind to the Zeb1 promoter and activate Zeb1 transcription. Zeb1 knockdown retarded the fibroblast-myofibroblast transition (FMyT) in vitro and dampened renal fibrosis in mice. Transcriptomic assays showed that Zeb1 might contribute to FMyT by repressing the transcription of interferon regulatory factor 9 (IRF9). IRF9 knockdown overcame the effect of Zeb1 depletion and promoted FMyT, whereas IRF9 overexpression antagonized TGF-β-induced FMyT. In conclusion, our data unveil a novel MRTF-A-Zeb1-IRF9 axis that can potentially contribute to fibroblast-myofibroblast transition and renal fibrosis. Screening for small-molecule compounds that target this axis may yield therapeutic options for the mollification of renal fibrosis.
Collapse
Affiliation(s)
- Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Gengjie Zong
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Junjie Zhang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Shifan Tang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yanshan Lin
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hongzhen Ma
- Department of Geriatric Nephrology, First Affiliated Hospital to Nanjing Medical University, Nanjing, China
| | - Zhifan Jiang
- Department of Geriatric Nephrology, First Affiliated Hospital to Nanjing Medical University, Nanjing, China
| | - Yong Xu
- State Key Laboratory of Natural Medicines, Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiaoyan Wu
- School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
| | - Tao Zhang
- Department of Geriatric Nephrology, First Affiliated Hospital to Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Kadagothy H, Nene S, Amulya E, Vambhurkar G, Rajalakshmi AN, Khatri DK, Singh SB, Srivastava S. Perspective insights of small molecules, phytoconstituents and biologics in the management of psoriasis: A focus on targeting major inflammatory cytokine pathways. Eur J Pharmacol 2023; 947:175668. [PMID: 36958476 DOI: 10.1016/j.ejphar.2023.175668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/07/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Psoriasis is an enduring, pruritic and papulosquamous skin ailment that poses a significant burden on public health. It is mainly characterized by hyperkeratosis, acanthosis, parakeratosis, scaly and erythematous plaques. Biomarkers like interleukin-17, interleukin-12 and -23 and tumor necrosis factor-α serve as key drivers of psoriatic pathogenesis. Triggered release of pro-inflammatory cytokines from various up-regulated pathways leads to psoriatic inflammation. Several target moieties like biologics, small molecules and herbal moieties play a fundamental role in the repression of pathogenesis of psoriasis. Biologics and small molecules engaged in the management of psoriasis have been emphasized in detail. An insight into nano-carrier interventions on herbal moieties and clinical aspects of psoriasis are also highlighted. This review emphasizes various pathological targets involved in psoriasis.
Collapse
Affiliation(s)
- Husna Kadagothy
- Department of Pharmaceutics, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry, India
| | - Shweta Nene
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - A N Rajalakshmi
- Department of Pharmaceutics, Mother Theresa Post Graduate and Research Institute of Health Sciences, Puducherry, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
7
|
Gut–Skin Axis: Unravelling the Connection between the Gut Microbiome and Psoriasis. Biomedicines 2022; 10:biomedicines10051037. [PMID: 35625774 PMCID: PMC9138548 DOI: 10.3390/biomedicines10051037] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022] Open
Abstract
Evidence has shown that gut microbiome plays a role in modulating the development of diseases beyond the gastrointestinal tract, including skin disorders such as psoriasis. The gut–skin axis refers to the bidirectional relationship between the gut microbiome and skin health. This is regulated through several mechanisms such as inflammatory mediators and the immune system. Dysregulation of microbiota has been seen in numerous inflammatory skin conditions such as atopic dermatitis, rosacea, and psoriasis. Understanding how gut microbiome are involved in regulating skin health may lead to development of novel therapies for these skin disorders through microbiome modulation, in particularly psoriasis. In this review, we will compare the microbiota between psoriasis patients and healthy control, explain the concept of gut–skin axis and the effects of gut dysbiosis on skin physiology. We will also review the current evidence on modulating gut microbiome using probiotics in psoriasis.
Collapse
|