1
|
Oryani MA, Mohammad Al-Mosawi AK, Javid H, Tajaldini M, Karimi-Shahri M. A Bioligical Perspective on the role of miR-206 in Colorectal cancer. Gene 2025; 961:149552. [PMID: 40339768 DOI: 10.1016/j.gene.2025.149552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/30/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
MicroRNAs (miRs) have emerged as pivotal regulators in the development and progression of colorectal cancer (CRC), and MicroRNA-206 (miR-206) has garnered attention as a potentially influential factor. However, the specific biological functions and complete mechanistic understanding of miR-206 in CRC remain largely uncharacterized. This study aims to bridge this research gap by providing a comprehensive analysis of miR-206's role in CRC. An exploration of the molecular mechanisms regulated by miR-206, its intricate interplay with target genes, and its significant impact on cellular processes highlights its potential utility as both a diagnostic marker and a therapeutic target. The significance of this research lies in potentially enabling the development of innovative therapeutic approaches, ultimately aiming to improve prognosis and survival rates in CRC patients by elucidating the functions of miR-206. Critical pathways, such as c-Met and PTEN/AKT, play crucial roles within the regulatory network of miR-206 in CRC and impact various cellular processes involved in CRC pathogenesis, metastasis, and treatment response. Understanding the complex interactions between miR-206 and key signaling pathways like c-Met and PTEN/AKT is crucial for understanding the underlying mechanisms driving CRC initiation and progression. This knowledge can inform the development of targeted therapeutic interventions, potentially leading to improved patient outcomes and advances in CRC management.
Collapse
Affiliation(s)
- Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences. Gorgan, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
2
|
Hashemi M, Gholamrezaie H, Ziyaei F, Asadi S, Naeini ZY, Salimian N, Enayat G, Sharifi N, Aliahmadi M, Rezaie YS, Khoushab S, Rahimzadeh P, Miri H, Abedi M, Farahani N, Taheriazam A, Nabavi N, Entezari M. Role of lncRNA PVT1 in the progression of urological cancers: Novel insights into signaling pathways and clinical opportunities. Cell Signal 2025; 131:111736. [PMID: 40081549 DOI: 10.1016/j.cellsig.2025.111736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/02/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Urologic malignancies, encompassing cancers of the kidney, bladder, and prostate, represent approximately 25 % of all cancer cases. Recent advances have enhanced our understanding of PVT1's crucial functions. Long noncoding RNAs influence both the onset and development of cancer, as well as epigenetic alterations. Recent findings have focused on PVT1's mechanism of action across several malignancies, particularly urologic cancers. Understanding the various functions of PVT1 linked to cancer is necessary for the development of cancer detection and treatment when PVT1 is dysregulated. Furthermore, recent advancements in genomic and epigenetic research have elucidated the complex regulatory networks that control PVT1 expression. Comprehending the intricate role of PVT1 Understanding the complex function of PVT1 in urologic cancers has substantial clinical implications. Here, we summarize some of the most recent findings about the carcinogenic effects of PVT1 signaling pathways and the possible treatment strategies for urological malignancies that target these pathways.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Faezeh Ziyaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zahra Yousefian Naeini
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology,Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Salimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Golnaz Enayat
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Nafiseh Sharifi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saloomeh Khoushab
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hossein Miri
- Faculty of Medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Maryam Abedi
- Department of Pathology, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran,Iran.
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2025; 72:527-554. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
4
|
Chang Z, Chen B, Wang S, Chen K, Huang L, Yang Y, Wu H, Jian W, Cheng ZJ, Han X, Sun B. Organ-specific cancer biomarker identification: a ten-year single-center study in southern China. BMC Cancer 2025; 25:820. [PMID: 40312330 PMCID: PMC12044899 DOI: 10.1186/s12885-025-14225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/24/2025] [Indexed: 05/03/2025] Open
Abstract
Cancer biomarker discovery is essential for early detection and monitoring, yet there is a lack of comprehensive studies examining organ-specific biomarkers across various cancer types. In this study, we analyzed clinical data from 59,184 cancer patients diagnosed between 2013 and 2023, focusing on 11 major cancer systems. We used propensity score matching with 55,010 healthy controls to create balanced comparison groups. Serum biomarker profiles were assessed through principal component analysis, differential expression analysis, and ROC curve analysis. Our findings revealed organ-specific biomarker patterns, such as decreased CA724, ferritin, and β2-microglobulin in thoracic cancer, reduced serum phosphorus in neurological cancer, and elevated cystatin C and creatinine in urinary system cancer. Further analysis across 22 cancer types uncovered additional biomarkers, including elevated ALT in hepatobiliary cancer, altered coagulation factors in laryngeal cancer, increased monocytes in pancreatic cancer, and reduced complement C3 in intestinal cancer. These results provide valuable insights into the unique biomarker signatures for different cancers, contributing to the potential development of more targeted and efficient screening methods.
Collapse
Affiliation(s)
- Zhenglin Chang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
- Guangzhou National Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China
| | - Bingsen Chen
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Suilin Wang
- Department of Orthopedics, Guangzhou Orthopedic Hospital, Guangzhou, 510045, Guangdong Province, China
| | - Kaipai Chen
- Department of Stomatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Linliang Huang
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Yi Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Haojie Wu
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China
| | - Wenhua Jian
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Zhangkai J Cheng
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China.
| | - Xiujing Han
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
| | - Baoqing Sun
- Department of Clinical Laboratory, National Center for Respiratory Medicine, National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, Guangdong, China.
- Guangzhou National Laboratory, Guangzhou International Bio Island, XingDaoHuanBei Road, Guangzhou, 510005, Guangdong Province, China.
| |
Collapse
|
5
|
El Saftawy E, Aboulhoda BE, Alghamdi MA, Abd Elkhalek MA, AlHariry NS. Heterogeneity of modulatory immune microenvironment in bladder cancer. Tissue Cell 2025; 93:102679. [PMID: 39700733 DOI: 10.1016/j.tice.2024.102679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Urinary bladder cancer (UBC) is the ninth most common cancer worldwide. The intra-tumor heterogeneity of the UBC microenvironment explains the variances in response to therapy among patients. Tumor immune microenvironment (TIME) is based on the balance between anti-tumor and pro-tumorigenic immunity that eventually determines the tumor fate. This review addresses the recent insights of the cytokines, immune checkpoints, receptors, enzymes, proteins, RNAs, cancer stem cells (CSCs), tissue-resident cells, growth factors, epithelial-mesenchymal transition, microbiological cofactor, and paracrine action of cancer cells that mutually cross-talk within the TIME. In-depth balance and alteration of these factors influence the TIME and the overall tumor progression. This, in turn, highlights the prospects of the new era of manipulating these co-factors for improving the diagnosis, prognosis, and treatment of UBC. CONCLUSION: The heterogenic architecture of the TIME orchestrates the fate of the tumor. Nevertheless, recognizing the mutual cross-talk between these key players seems useful in prognostic and therapeutic approaches.
Collapse
Affiliation(s)
- Enas El Saftawy
- Department of Medical Parasitology, Faculty of Medicine, Cairo University, Cairo, Egypt; Department of Medical Parasitology, Armed Forces College of Medicine, Cairo, Egypt.
| | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt.
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 62529, Saudi Arabia; Genomics and Personalized Medicine Unit, The Centre for Medical and Heath Research, King Khalid University, Abha 62529, Saudi Arabia
| | - Marwa Ali Abd Elkhalek
- Department of Medical Biochemistry& Molecular Biology, Armed Forces College of Medicine, Cairo, Egypt; Medical Biochemistry & Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
6
|
Shi M, Zhang R, Lyu H, Xiao S, Guo D, Zhang Q, Chen XZ, Tang J, Zhou C. Long non-coding RNAs: Emerging regulators of invasion and metastasis in pancreatic cancer. J Adv Res 2025:S2090-1232(25)00073-6. [PMID: 39933650 DOI: 10.1016/j.jare.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The invasion and metastasis of pancreatic cancer (PC) are key factors contributing to disease progression and poor prognosis. This process is primarily driven by EMT, which has been the focus of recent studies highlighting the role of long non-coding RNAs (lncRNAs) as crucial regulators of EMT. However, the mechanisms by which lncRNAs influence invasive metastasis are multifaceted, extending beyond EMT regulation alone. AIM OF REVIEW This review primarily aims to characterize lncRNAs affecting invasion and metastasis in pancreatic cancer. We summarize the regulatory roles of lncRNAs across multiple molecular pathways and highlight their translational potential, considering the implications for clinical applications in diagnostics and therapeutics. KEY SCIENTIFIC CONCEPTS OF REVIEW The review focuses on three principal scientific themes. First, we primarily summarize lncRNAs orchestrate various signaling pathways, such as TGF-β/Smad, Wnt/β-catenin, and Notch, to regulate molecular changes associated with EMT, thereby enhancing cellular motility and invasivenes. Second, we summarize the effects of lncRNAs on autophagy and ferroptosis and discuss the role of exosomal lncRNAs in the tumor microenvironment to regulate the behavior of neighboring cells and promote cancer cell invasion. Third, we emphasize the effects of RNA modifications (such as m6A and m5C methylation) on stabilizing lncRNAs and enhancing their capacity to mediate invasive metastasis in PC. Lastly, we discuss the translational potential of these findings, emphasizing the inherent challenges in using lncRNAs as clinical biomarkers and therapeutic targets, while proposing prospective research strategies.
Collapse
Affiliation(s)
- Mengmeng Shi
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Rui Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hao Lyu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Shuai Xiao
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Dong Guo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qi Zhang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Xing-Zhen Chen
- Membrane Protein Disease Research Group, Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G2R3, Canada
| | - Jingfeng Tang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| | - Cefan Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
7
|
Sayaf H, Salimian N, Mohammadi M, Ahmadi P, Gholamzad A, Babashah S, Entezari M, Farahani N, Montazeri M, Hashemi M. Botox-A induced apoptosis and suppressed cell proliferation in fibroblasts pre-treated with breast cancer exosomes. Mol Cell Probes 2025; 79:102007. [PMID: 39732179 DOI: 10.1016/j.mcp.2024.102007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND breast cancer-associated fibroblast (CAF) is linked to metastasis and is poor for breast cancer prognosis. Since Clostridium Toxin A (Botox-A) had represented a cytotoxic effect on fibroblasts, this study aims to assess Botox-A cytotoxicity in both normal fibroblasts and exosome-induced CAFs. MATERIAL AND METHOD the serum exosomes of 40 BC patients and 30 healthy individuals were isolated and lncRNA H19 (lnch19) levels were assessed by qRT-PCR method. After that, Breast Cancer (BC) exosomes co-cultured with Human foreskin fibroblasts (HFF) and qRT-PCR were applied to evaluate α-SMA, Vimentin, BCL-2, and BAX expression. Both Normal and malignant HFFs co-cultured with Botox-A, and Botox-A loaded exosome for 24 and 48 h and their apoptosis, Cell proliferation, and viability were monitored by MTT assay, Annexin V-FITC and PI staining and qRT-PCR for BCL-2, BAX, and cyclin D1 mRNAs. RESULTS Serum exosomes of BC patients had significantly higher levels of lncRNA H19 than healthy individuals. MTT assay results showed Botox-A decreased vital Human foreskin fibroblasts in a dose-dependent manner. BC exosomes significantly increased α-SMA, Vimentin, and BCL-2 mRNA levels in Human foreskin fibroblasts, on the other hand, BAX decreased meaningfully. Co-culture of exosome-treated HFF cells with both Botox-A and Botox-A loaded exosomes significantly boosted BCL-2 mRNA levels, completely contrary to BAX and cyclid d1 expression. Meanwhile, flow cytometry results confirmed a high rate of apoptosis in malignant Human foreskin fibroblasts treated with Botox-A loaded exosome. CONCLUSION The findings of this study indicate that exosomal lncRNA H19 could be a diagnostic marker for Breast Cancer and these Breast cancer exosomes can induce malignant phenotype in fibroblasts and turn them into CAFs. Botox-A could be toxic for both normal fibroblasts and CAFs, inducing apoptosis and suppressing cell proliferation among them.
Collapse
Affiliation(s)
- Hossein Sayaf
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Niloufar Salimian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mahnaz Mohammadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Biology, Faculty of Basic Sciences, Islamshahr Branch, Islamic Azad University, Islamshar, Tehran, Iran
| | - Parisa Ahmadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Laboratory Medicine, Faculty of Paramedical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maryam Montazeri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
8
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
9
|
Lu C, Gao H, Li H, Luo N, Fan S, Li X, Deng R, He D, Zhao H. A novel LINC02321 promotes cell proliferation and decreases cisplatin sensitivity in bladder cancer by regulating RUVBL2. Transl Oncol 2024; 45:101962. [PMID: 38677015 PMCID: PMC11066559 DOI: 10.1016/j.tranon.2024.101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/15/2023] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Bladder cancer (BC) has a high incidence and is prone to recurrence. In most instances, the low 5-year survival rate of advanced BC patients results from postoperative recurrence and drug resistance. Long noncoding RNAs (lncRNAs) can participate in numerous biological functions by regulating the expression of genes to affect tumorigenesis. Our previous work had demonstrated that a novel lncRNA, LINC02321, was associated with BC prognosis. In this study, A high expression of LINC02321 was found in BC tissues, which was associated with poor prognosis in patients. LINC02321 promoted both proliferation and G1-G0 progression in BC cells, while also inhibited sensitivity to cisplatin. Mechanistically, LINC02321 can bind to RUVBL2 and regulate the expression levels of RUVBL2 protein by affecting its half-life. RUVBL2 is involved in the DNA damage response. The potential of DNA damage repair pathways to exert chemosensitization has been demonstrated in vivo. The rescue experiment demonstrated that RUVBL2 overexpression can markedly abolish the decreased cell proliferation and the increased sensitivity of BC cells to cisplatin caused by LINC02321 knockdown. The results indicate that LINC02321 functions as an oncogene in BC, and may serve as a novel potential target for controlling BC progression and addressing cisplatin resistance in BC therapy.
Collapse
Affiliation(s)
- Chuncheng Lu
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Hongbin Gao
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Haiyuan Li
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Ning Luo
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Shipeng Fan
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Xi Li
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Renbin Deng
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Danpeng He
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China
| | - Hui Zhao
- Department of Urology, The 1st Affiliated Hospital of Kunming Medical University, Kunming 650032, China; Yunnan Province Clinical Research Center for Chronic Kidney Disease, Kunming 650032, China.
| |
Collapse
|
10
|
Hashem M, Mohandesi Khosroshahi E, Aliahmady M, Ghanei M, Soofi Rezaie Y, alsadat Jafari Y, rezaei F, Khodaparast eskadehi R, Kia Kojoori K, jamshidian F, Nabavi N, Rashidi M, Hasani Sadi F, Taheriazam A, Entezari M. Non-coding RNA transcripts, incredible modulators of cisplatin chemo-resistance in bladder cancer through operating a broad spectrum of cellular processes and signaling mechanism. Noncoding RNA Res 2024; 9:560-582. [PMID: 38515791 PMCID: PMC10955558 DOI: 10.1016/j.ncrna.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/12/2024] [Accepted: 01/14/2024] [Indexed: 03/23/2024] Open
Abstract
Bladder cancer (BC) is a highly frequent neoplasm in correlation with significant rate of morbidity, mortality, and cost. The onset of BC is predominantly triggered by environmental and/or occupational exposures to carcinogens, such as tobacco. There are two distinct pathways by which BC can be developed, including non-muscle-invasive papillary tumors (NMIBC) and non-papillary (or solid) muscle-invasive tumors (MIBC). The Cancer Genome Atlas project has further recognized key genetic drivers of MIBC along with its subtypes with particular properties and therapeutic responses; nonetheless, NMIBC is the predominant BC presentation among the suffering individuals. Radical cystoprostatectomy, radiotherapy, and chemotherapy have been verified to be the common therapeutic interventions in metastatic tumors, among which chemotherapeutics are more conventionally utilized. Although multiple chemo drugs have been broadly administered for BC treatment, cisplatin is reportedly the most effective chemo drug against the corresponding malignancy. Notwithstanding, tumor recurrence is usually occurred following the consumption of cisplatin regimens, particularly due to the progression of chemo-resistant trait. In this framework, non-coding RNAs (ncRNAs), as abundant RNA transcripts arise from the human genome, are introduced to serve as crucial contributors to tumor expansion and cisplatin chemo-resistance in bladder neoplasm. In the current review, we first investigated the best-known ncRNAs, i.e. microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs), correlated with cisplatin chemo-resistance in BC cells and tissues. We noticed that these ncRNAs could mediate the BC-related cisplatin-resistant phenotype through diverse cellular processes and signaling mechanisms, reviewed here. Eventually, diagnostic and prognostic potential of ncRNAs, as well as their therapeutic capabilities were highlighted in regard to BC management.
Collapse
Affiliation(s)
- Mehrdad Hashem
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Melika Aliahmady
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Morvarid Ghanei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin Soofi Rezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yasamin alsadat Jafari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Fatemeh rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ramtin Khodaparast eskadehi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Kia Kojoori
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - faranak jamshidian
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Hasani Sadi
- General Practitioner, Kerman University of Medical Sciences, Kerman, 7616913555, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Fan J, Chen B, Luo Q, Li J, Huang Y, Zhu M, Chen Z, Li J, Wang J, Liu L, Wei Q, Cao D. Potential molecular biomarkers for the diagnosis and prognosis of bladder cancer. Biomed Pharmacother 2024; 173:116312. [PMID: 38417288 DOI: 10.1016/j.biopha.2024.116312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/17/2024] [Indexed: 03/01/2024] Open
Abstract
Bladder cancer (BC) is a common malignant tumor of urinary system, which can be divided into muscle-invasive BC (MIBC) and nonmuscle-invasive BC (NMIBC). The number of BC patients has been gradually increasing currently. At present, bladder tumours are diagnosed and followed-up using a combination of cystoscopic examination, cytology and histology. However, the detection of early grade tumors, which is much easier to treat effectively than advanced stage disease, is still insufficient. It frequently recurs and can progress when not expeditiously diagnosed and monitored following initial therapy for NMIBC. Treatment strategies are totally different for different stage diseases. Therefore, it is of great practical significance to study new biomarkers for diagnosis and prognosis. In this review, we summarize the current state of biomarker development in BC diagnosis and prognosis prediction. We retrospectively analyse eight diagnostic biomarkers and eight prognostic biomarkers, in which CK, P53, PPARγ, PTEN and ncRNA are emphasized for discussion. Eight molecular subtype systems are also identified. Clinical translation of biomarkers for diagnosis, prognosis, monitoring and treatment will hopefully improve outcomes for patients. These potential biomarkers provide an opportunity to diagnose tumors earlier and with greater accuracy, and help identify those patients most at risk of disease recurrence.
Collapse
Affiliation(s)
- Junping Fan
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Bo Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Qiuping Luo
- Out-patient Department, West China Hospital, Sichuan University, Chengdu, China
| | - Jinze Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Yin Huang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Mengli Zhu
- Research Core Facility, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyu Chen
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Jin Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China; West China School of Medicine, Sichuan University, Chengdu, China
| | - Jia Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Liangren Liu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| | - Dehong Cao
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Tomiyama E, Fujita K, Hashimoto M, Uemura H, Nonomura N. Urinary markers for bladder cancer diagnosis: A review of current status and future challenges. Int J Urol 2024; 31:208-219. [PMID: 37968825 DOI: 10.1111/iju.15338] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Bladder cancer is a common urological cancer with a high recurrence rate that requires long-term follow-up, and early detection positively affects prognosis. To date, the initial diagnosis and follow-up for bladder cancer rely on cystoscopy, which is an invasive and expensive procedure. Therefore, urinary markers for the detection of bladder cancer have attracted research attention for decades to reduce unnecessary cystoscopies. Urine, which is in continuous contact with bladder cancer, is considered a suitable fluid for providing tumor information. Urinary cytology is the only widely used urinary marker in clinical practice; however, it has poor sensitivity for low-grade tumors; indicating the need for novel urinary markers. Considerable research has been conducted on this topic over the years, resulting in a complex landscape with a wide range of urinary markers, including protein-, exfoliated cell-, RNA-, DNA-, and extracellular vesicle-based markers. Although some of these markers have been approved by the U.S. Food and Drug Administration and are commercially available, their use in clinical practice is limited. To facilitate clinical application, potential urinary markers must withstand prospective clinical trials and be easy for patients and clinicians to understand and utilize in a clinical context. This review provides a comprehensive overview of currently available and recently reported promising urinary markers for bladder cancer. Additionally, the challenges and the prospects of these urinary markers for clinical implementation in bladder cancer treatment were discussed.
Collapse
Affiliation(s)
- Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Mamoru Hashimoto
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
13
|
An WX, Gupta R, Zhai K, Wang YR, Xu WH, Cui Y. Current and Potential Roles of Ferroptosis in Bladder Cancer. Curr Med Sci 2024; 44:51-63. [PMID: 38057536 DOI: 10.1007/s11596-023-2814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
Ferroptosis, a type of regulated cell death driven by iron-dependent lipid peroxidation, is mainly initiated by extramitochondrial lipid peroxidation due to the accumulation of iron-dependent reactive oxygen species. Ferroptosis is a prevalent and primitive form of cell death. Numerous cellular metabolic processes regulate ferroptosis, including redox homeostasis, iron regulation, mitochondrial activity, amino acid metabolism, lipid metabolism, and various disease-related signaling pathways. Ferroptosis plays a pivotal role in cancer therapy, particularly in the eradication of aggressive malignancies resistant to conventional treatments. Multiple studies have explored the connection between ferroptosis and bladder cancer, focusing on its incidence and treatment outcomes. Several biomolecules and tumor-associated signaling pathways, such as p53, heat shock protein 1, nuclear receptor coactivator 4, RAS-RAF-MEK, phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin, and the Hippo-tafazzin signaling system, exert a moderating influence on ferroptosis in bladder cancer. Ferroptosis inducers, including erastin, artemisinin, conjugated polymer nanoparticles, and quinazolinyl-arylurea derivatives, hold promise for enhancing the effectiveness of conventional anticancer medications in bladder cancer treatment. Combining conventional therapeutic drugs and treatment methods related to ferroptosis offers a promising approach for the treatment of bladder cancer. In this review, we analyze the research on ferroptosis to augment the efficacy of bladder cancer treatment.
Collapse
Affiliation(s)
- Wen-Xin An
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Radheshyam Gupta
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Kun Zhai
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Ya-Ru Wang
- Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Wan-Hai Xu
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Yan Cui
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
14
|
Tan Z, Fu S, Zuo J, Wang J, Wang H. Prognosis analysis and validation of lipid metabolism-associated lncRNAs and tumor immune microenvironment in bladder cancer. Aging (Albany NY) 2023; 15:8384-8407. [PMID: 37632832 PMCID: PMC10496992 DOI: 10.18632/aging.204975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/25/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Numerous types of research revealed that long noncoding RNAs (lncRNAs) played a significant role in immune response and the tumor microenvironment of bladder cancer (BLCA). Dysregulated lipid metabolism is considered to be one of the major risk factors for BLCA, the study aimed to detect the lipid metabolism-related lncRNAs (LMRLs) along with their potential prognostic values and immune correlations in BLCA. METHODS We collected lipid metabolism-related genes, expression profiles, and clinical information on BLCA from the Molecular Signature Database (MSigDB) and the TCGA database, respectively. Differentially expressed lipid metabolism genes (DE-LMRGs) and differentially expressed long non-coding RNAs (DE-lncRNAs) were selected using the limma package. Spearman correlation analysis was employed to explore the correlations between DE-lncRNAs and DE-LMRGs and to further develop protein-protein interaction (PPI) networks and perform mutational analysis. The least absolute shrinkage and selection operator (LASSO) and univariate Cox analysis were then employed to construct a prognostic risk model. The performance of the model was evaluated using Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, and consistency indices. In addition, we downloaded the GSE31684 dataset for external validation of the prognostic signature. Moreover, we explored the association of the risk model with immune cell infiltration and chemotherapy response analysis to reveal the tumor immune microenvironment of BLCA. Finally, RT-qPCR was utilized to validate the expression of prognostic genes. RESULTS A total of 48 DE-LncRNAs and 33 DE-LMRGs were found to be robustly correlated, and were used to construct a lncRNA-mRNA co-expression network, in which ACACB, ACOX2, and BCHE showed high mutation rates. Then, a risk model based on three LMRLs (RP11-465B22.8, MIR100HG, and LINC00865) was constructed. The risk model effectively distinguished between the clinical outcomes of BLCA patients, with high-risk scores indicating a worse prognosis and with substantial prognostic prediction accuracy. The model's results were consistent in the GSE31684 dataset. In addition, a nomogram was constructed based on the risk score, age, pathological T-stage, and pathological N-stage, which showed robust predictive power. Immune landscape analysis indicated that the risk model was significantly associated with T-cell CD4 memory activation, M1 macrophage, M2 macrophage, dendritic cell activation, and T-cell regulatory. We predicted that 49 drugs would perform satisfactorily in the high-risk group. Additionally, we found five m6A regulators associated with the high- and low-risk groups, suggesting that upstream regulation of LncRNA could be a novel target for BLCA treatment. Finally, RT-qPCR showed that RP11-465B22.8 was highly expressed in BLCA, while MIR100HG and LINC00865 were downregulated in BLCA. CONCLUSION Our findings suggest that the three LMRLs may serve as potential prognostic and immunotherapeutic biomarkers in BLCA. In addition, our study provides new ideas for understanding the pathogenic mechanisms and developing therapeutic strategies for BLCA patients.
Collapse
Affiliation(s)
- Zhiyong Tan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Urological Disease Clinical Medical Center of Yunnan, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
| | - Shi Fu
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Urological Disease Clinical Medical Center of Yunnan, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
| | - Jieming Zuo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Urological Disease Clinical Medical Center of Yunnan, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Urological Disease Clinical Medical Center of Yunnan, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Urological Disease Clinical Medical Center of Yunnan, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
- Scientific and Technological Innovation Team of Basic and Clinical Research of Bladder Cancer in Yunnan Universities, The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, Yunnan, People’s Republic of China
| |
Collapse
|
15
|
Abstract
PURPOSE OF THE REVIEW Angiogenesis plays a key role in bladder cancer (BC) pathogenesis. In the last two decades, an increasing number of publications depicting a multitude of novel angiogenic molecules and pathways have emerged. The growing complexity necessitates an evaluation of the breadth of current knowledge to highlight key findings and guide future research. RECENT FINDINGS Angiogenesis is a dynamic biologic process that is inherently difficult to assess. Clinical assessment of angiogenesis in BCs is advancing with the integration of image analysis systems and dynamic contrast-enhanced and magnetic resonance imaging (DCE-MRI). Tumour-associated macrophages (TAMs) significantly influence the angiogenic process, and further research is needed to assess their potential as therapeutic targets. A rapidly growing list of non-coding RNAs affect angiogenesis in BCs, partly through modulation of vascular endothelial growth factor (VEGF) activity. Vascular mimicry (VM) has been repeatedly associated with increased tumour aggressiveness in BCs. Standardised assays are needed for appropriate identification and quantification of VM channels. This article demonstrates the dynamic and complex nature of the angiogenic process and asserts the need for further studies to deepen our understanding.
Collapse
Affiliation(s)
- Ghada Elayat
- Department of Natural Science, Middlesex University, London, UK
- Department of Histopathology, Tanta University, Tanta, Egypt
| | - Ivan Punev
- Department of Natural Science, Middlesex University, London, UK
| | - Abdel Selim
- Histopathology Department, King’s Health Partners, King’s College Hospital, London, UK
| |
Collapse
|
16
|
Lu X, Chen L, Liu S, Cao Y, Huang Z. m 6A-mediated upregulation of lncRNA RMRP boosts the progression of bladder cancer via epigenetically suppressing SCARA5. Epigenomics 2023; 15:401-415. [PMID: 37337726 DOI: 10.2217/epi-2023-0062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023] Open
Abstract
Aim: This study aimed to elucidate the relationship between SCARA5 and RMRP in bladder cancer and their underlying mechanism. Methods: Biological functions were evaluated using cell-counting kit 8 assay, 5-ethynyl-2'-deoxyuridine incorporation, wound healing and Transwell assays. RNA immunoprecipitation, RNA pull-down and chromatin immunoprecipitation were employed. A xenograft tumor model in nude mice was also conducted. Results & conclusion: RMRP and SCARA5 exhibited an inverse correlation. Downregulation of RMRP significantly suppressed bladder cancer cell proliferation, migration and invasion, which was reversed by SCARA5 overexpression. RMRP recruited DNA methyltransferases to the promoter region of SCARA5, thereby triggering the methylation of the SCARA5 promoter to epigenetically suppress its expression. Our findings elucidate the machinery by which RMRP, stabilized by METTL3, exerts a promoter role in bladder cancer tumorigenesis by triggering SCARA5 methylation.
Collapse
Affiliation(s)
- Xinsheng Lu
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Libo Chen
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Shucheng Liu
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Youhan Cao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| | - Zhongxin Huang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan Province, PR China
| |
Collapse
|
17
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
18
|
Tantray I, Ojha R, Sharma AP. Non-coding RNA and autophagy: Finding novel ways to improve the diagnostic management of bladder cancer. Front Genet 2023; 13:1051762. [PMID: 36685879 PMCID: PMC9845264 DOI: 10.3389/fgene.2022.1051762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/07/2022] [Indexed: 01/06/2023] Open
Abstract
Major fraction of the human genome is transcribed in to the RNA but is not translated in to any specific functional protein. These transcribed but not translated RNA molecules are called as non-coding RNA (ncRNA). There are thousands of different non-coding RNAs present inside the cells, each regulating different cellular pathway/pathways. Over the last few decades non-coding RNAs have been found to be involved in various diseases including cancer. Non-coding RNAs are reported to function both as tumor enhancer and/or tumor suppressor in almost each type of cancer. Urothelial carcinoma of the urinary bladder is the second most common urogenital malignancy in the world. Over the last few decades, non-coding RNAs were demonstrated to be linked with bladder cancer progression by modulating different signalling pathways and cellular processes such as autophagy, metastasis, drug resistance and tumor proliferation. Due to the heterogeneity of bladder cancer cells more in-depth molecular characterization is needed to identify new diagnostic and treatment options. This review emphasizes the current findings on non-coding RNAs and their relationship with various oncological processes such as autophagy, and their applicability to the pathophysiology of bladder cancer. This may offer an understanding of evolving non-coding RNA-targeted diagnostic tools and new therapeutic approaches for bladder cancer management in the future.
Collapse
Affiliation(s)
- Ishaq Tantray
- School of Medicine, Department of Pathology, Stanford University, Stanford, CA, United States
| | - Rani Ojha
- Department of Urology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India,*Correspondence: Rani Ojha, ; Aditya P. Sharma,
| | - Aditya P. Sharma
- Department of Urology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India,*Correspondence: Rani Ojha, ; Aditya P. Sharma,
| |
Collapse
|
19
|
Ashrafizadeh M, Zarrabi A, Karimi‐Maleh H, Taheriazam A, Mirzaei S, Hashemi M, Hushmandi K, Makvandi P, Nazarzadeh Zare E, Sharifi E, Goel A, Wang L, Ren J, Nuri Ertas Y, Kumar AP, Wang Y, Rabiee N, Sethi G, Ma Z. (Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10353. [PMID: 36684065 PMCID: PMC9842064 DOI: 10.1002/btm2.10353] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023] Open
Abstract
Urological cancers are among the most common malignancies around the world. In particular, bladder cancer severely threatens human health due to its aggressive and heterogeneous nature. Various therapeutic modalities have been considered for the treatment of bladder cancer although its prognosis remains unfavorable. It is perceived that treatment of bladder cancer depends on an interdisciplinary approach combining biology and engineering. The nanotechnological approaches have been introduced in the treatment of various cancers, especially bladder cancer. The current review aims to emphasize and highlight possible applications of nanomedicine in eradication of bladder tumor. Nanoparticles can improve efficacy of drugs in bladder cancer therapy through elevating their bioavailability. The potential of genetic tools such as siRNA and miRNA in gene expression regulation can be boosted using nanostructures by facilitating their internalization and accumulation at tumor sites and cells. Nanoparticles can provide photodynamic and photothermal therapy for ROS overgeneration and hyperthermia, respectively, in the suppression of bladder cancer. Furthermore, remodeling of tumor microenvironment and infiltration of immune cells for the purpose of immunotherapy are achieved through cargo-loaded nanocarriers. Nanocarriers are mainly internalized in bladder tumor cells by endocytosis, and proper design of smart nanoparticles such as pH-, redox-, and light-responsive nanocarriers is of importance for targeted tumor therapy. Bladder cancer biomarkers can be detected using nanoparticles for timely diagnosis of patients. Based on their accumulation at the tumor site, they can be employed for tumor imaging. The clinical translation and challenges are also covered in current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Orta MahalleIstanbulTurkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and EnvironmentUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical SciencesUniversity of JohannesburgJohannesburgSouth Africa
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicineTehran Medical Sciences, Islamic Azad UniversityTehranIran
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Pooyan Makvandi
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | | | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Arul Goel
- La Canada High SchoolLa Cañada FlintridgeCaliforniaUSA
| | - Lingzhi Wang
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Jun Ren
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Shanghai Institute of Cardiovascular Diseases, Department of CardiologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
| | - Alan Prem Kumar
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNew South Wales2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673South Korea
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
20
|
Wu Z, Wang Y, Yan M, Liang Q, Li B, Hou G, Xia T, Lin Z, Xu W. Comprehensive analysis of the endoplasmic reticulum stress-related long non-coding RNA in bladder cancer. Front Oncol 2022; 12:951631. [PMID: 35992824 PMCID: PMC9386564 DOI: 10.3389/fonc.2022.951631] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
Abstract
Background Bladder cancer is ranked the second most frequent tumor among urological malignancies. The research strived to establish a prognostic model based on endoplasmic reticulum stress (ERS)-related long non-coding RNA (lncRNA) in bladder cancer. Methods We extracted the ERS-related genes from the published research and bladder cancer data from the Cancer Genome Atlas database. ERS-related lncRNAs with prognostic significance were screened by univariate Cox regression, least absolute shrinkage and selection operator regression analysis and Kaplan-Meier method. Multivariate Cox analysis was leveraged to establish the risk score model. Moreover, an independent dataset, GSE31684, was used to validate the model’s efficacy. The nomogram was constructed based on the risk score and clinical variables. Furthermore, the biological functions, gene mutations, and immune landscape were investigated to uncover the underlying mechanisms of the ERS-related signature. Finally, we employed external datasets (GSE55433 and GSE89006) and qRT-PCR to investigate the expression profile of these lncRNAs in bladder cancer tissues and cells. Results Six ERS-related lncRNAs were identified to be closely coupled with patients’ prognosis. On this foundation, a risk score model was created to generate the risk score for each patient. The ERS-related risk score was shown to be an independent prognostic factor. And the results of GSE31684 dataset also supported this conclusion. Then, a nomogram was constructed based on risk scores and clinical characteristics, and proven to have excellent predictive value. Moreover, the gene function analysis demonstrated that ERS-related lncRNAs were closely linked to fatty extracellular matrix, cytokines, cell adhesion, and tumor pathways. Further analysis revealed the association of the 6-lncRNAs signature with gene mutations and immunity in bladder cancer. Finally, the external datasets and qRT-PCR verified high expressions of the ERS-related lncRNAs in bladder cancer tissues and cells. Conclusions Overall, our findings indicated that ERS-related lncRNAs, which may affect tumor pathogenesis in a number of ways, might be exploited to assess the prognosis of bladder cancer patients.
Collapse
Affiliation(s)
- Zhenyu Wu
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
| | - Yue Wang
- The First Clinical Medical College, GuangDong Medical University, ZhanJiang, China
| | - Mengxin Yan
- The First Clinical Medical College, GuangDong Medical University, ZhanJiang, China
| | - Quan Liang
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
| | - Bin Li
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
| | - Guoliang Hou
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
| | - Taolin Xia
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
| | - Zhe Lin
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Wenfeng Xu, ; Zhe Lin,
| | - Wenfeng Xu
- Department of Urology, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Wenfeng Xu, ; Zhe Lin,
| |
Collapse
|
21
|
Introduction of mutant TP53 related genes in metabolic pathways and evaluation their correlation with immune cells, drug resistance and sensitivity. Life Sci 2022; 303:120650. [PMID: 35667517 DOI: 10.1016/j.lfs.2022.120650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/03/2022] [Accepted: 05/16/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND Although the relationship between TP53 mutation, TP53 metabolism pathways, and tumorigenesis has been investigated, pan-cancer analysis of TP53 mutations and related metabolism pathways is not completely available in common types of human cancers. Thus, this study was going to represent TP53 mutant-related metabolism genes and pathways in a pan-cancer study and investigate the relationship between selected genes and drug resistance. METHODS The DNA-seq data, RNA-seq data, and clinical information of 12 types of cancer were downloaded from the cancer genome atlas (TCGA) database. GSE70479 data were obtained from GEO database for validation of our TCGA data. To evaluate the survival rate of patients, GEPIA2 was applied. The CCLE and GDSC database were used to investigate drug resistance and sensitivity. RESULTS Our findings indicated that TTN, MUC16, and TP53 were present in 12 types of cancer with high level of mutation frequency which abundance of TP53 mutations was higher. Mutant TP53-related (mTP53) pathways and genes including PKM, SLC16A3, HK2, PFKP, PHGDH, and CTSC were obtained from enrichment analysis and interestingly, top pathways were associated with metabolism including glycolysis and mTORC1 pathway. Our results showed the expression of some candidate genes correlated with immune markers, prognosis, and drug resistance. CONCLUSIONS Top mutant genes for 12 cancers were highlighted while TP53 was selected as top mutant gene, and metabolic genes associated with the TP53 mutation were identified that some of which are important in poor prognosis. In doing so, mutations in TP53 could run some metabolic pathways and drug resistance and sensitivity.
Collapse
|
22
|
Hirano S, Matsumoto K, Tanaka K, Amano N, Koguchi D, Ikeda M, Shimizu Y, Tsuchiya B, Nagashio R, Sato Y, Iwamura M. DJ-1 Expression Might Serve as a Biologic Marker in Patients with Bladder Cancer. Cancers (Basel) 2022; 14:2535. [PMID: 35626138 PMCID: PMC9139869 DOI: 10.3390/cancers14102535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 02/03/2023] Open
Abstract
The overexpression of DJ-1 protein and its secretion into the bloodstream has been reported in various neoplasms. However, serum levels and the subcellular localization of DJ-1 have not been analyzed in detail in bladder cancer (BC). Our comprehensive analysis of these variables started with the measurement of DJ-1 in serum from 172 patients with BC, 20 patients with urolithiasis and 100 healthy participants. Next, an immunohistochemical study of DJ-1 expression and localization was conducted in 92 patients with BC, and associations with clinicopathologic factors and patient outcomes were evaluated. Serum DJ-1 was significantly higher in patients with BC than in those with urolithiasis or in healthy participants. Immunohistochemically, a cytoplasm-positive (Cy+) and nucleus-negative (N-) DJ-1 pattern was associated with age and pathologic stage. Log-rank tests indicated that the Cy+, N- pattern was significantly associated with overall survival (OS), recurrence-free survival (RFS), and cancer specific survival (CSS). In addition, the Cy+, N- pattern was an independent prognostic factor in the multivariate analysis adjusted for the effects of the clinicopathologic outcomes. The investigation of DJ-1 expression might help physicians to make decisions regarding further follow-up and additional treatments.
Collapse
Affiliation(s)
- Shuhei Hirano
- Department of Urology, School of Medicine, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan; (S.H.); (N.A.); (D.K.); (M.I.); (Y.S.); (Y.S.); (M.I.)
| | - Kazumasa Matsumoto
- Department of Urology, School of Medicine, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan; (S.H.); (N.A.); (D.K.); (M.I.); (Y.S.); (Y.S.); (M.I.)
| | - Kei Tanaka
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan; (K.T.); (B.T.); (R.N.)
- Department of Pathology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8501, Japan
| | - Noriyuki Amano
- Department of Urology, School of Medicine, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan; (S.H.); (N.A.); (D.K.); (M.I.); (Y.S.); (Y.S.); (M.I.)
| | - Dai Koguchi
- Department of Urology, School of Medicine, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan; (S.H.); (N.A.); (D.K.); (M.I.); (Y.S.); (Y.S.); (M.I.)
| | - Masaomi Ikeda
- Department of Urology, School of Medicine, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan; (S.H.); (N.A.); (D.K.); (M.I.); (Y.S.); (Y.S.); (M.I.)
| | - Yuriko Shimizu
- Department of Urology, School of Medicine, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan; (S.H.); (N.A.); (D.K.); (M.I.); (Y.S.); (Y.S.); (M.I.)
| | - Benio Tsuchiya
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan; (K.T.); (B.T.); (R.N.)
| | - Ryo Nagashio
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan; (K.T.); (B.T.); (R.N.)
| | - Yuichi Sato
- Department of Urology, School of Medicine, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan; (S.H.); (N.A.); (D.K.); (M.I.); (Y.S.); (Y.S.); (M.I.)
- Department of Applied Tumor Pathology, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan; (K.T.); (B.T.); (R.N.)
| | - Masatsugu Iwamura
- Department of Urology, School of Medicine, Graduate School of Medical Sciences, Kitasato University, Sagamihara 252-0374, Japan; (S.H.); (N.A.); (D.K.); (M.I.); (Y.S.); (Y.S.); (M.I.)
| |
Collapse
|
23
|
Mirzaei S, Saghari S, Bassiri F, Raesi R, Zarrabi A, Hushmandi K, Sethi G, Tergaonkar V. NF-κB as a regulator of cancer metastasis and therapy response: A focus on epithelial-mesenchymal transition. J Cell Physiol 2022; 237:2770-2795. [PMID: 35561232 DOI: 10.1002/jcp.30759] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 04/19/2022] [Indexed: 12/13/2022]
Abstract
Metastasis of tumor cells is a complex challenge and significantly diminishes the overall survival and prognosis of cancer patients. The epithelial-to-mesenchymal transition (EMT) is a well-known mechanism responsible for the invasiveness of tumor cells. A number of molecular pathways can regulate the EMT mechanism in cancer cells and nuclear factor-kappaB (NF-κB) is one of them. The nuclear translocation of NF-κB p65 can induce the transcription of several genes involved in EMT induction. The present review describes NF-κB and EMT interaction in cancer cells and their association in cancer progression. Due to the oncogenic role NF-κB signaling, its activation enhances metastasis of tumor cells via EMT induction. This has been confirmed in various cancers including brain, breast, lung and gastric cancers, among others. The ZEB1/2, transforming growth factor-β, and Slug as inducers of EMT undergo upregulation by NF-κB to promote metastasis of tumor cells. After EMT induction driven by NF-κB, a significant decrease occurs in E-cadherin levels, while N-cadherin and vimentin levels undergo an increase. The noncoding RNAs can potentially also function as upstream mediators and modulate NF-κB/EMT axis in cancers. Moreover, NF-κB/EMT axis is involved in mediating drug resistance in tumor cells. Thus, suppressing NF-κB/EMT axis can also promote the sensitivity of cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farzaneh Bassiri
- Department of Biology, Fars Science and Research Branch, Islamic Azad University, Fars, Iran.,Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Rasoul Raesi
- PhD in Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology and Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Yong Loo Lin School of Medicine, NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
24
|
Mahabady MK, Mirzaei S, Saebfar H, Gholami MH, Zabolian A, Hushmandi K, Hashemi F, Tajik F, Hashemi M, Kumar AP, Aref AR, Zarrabi A, Khan H, Hamblin MR, Nuri Ertas Y, Samarghandian S. Noncoding RNAs and their therapeutics in paclitaxel chemotherapy: Mechanisms of initiation, progression, and drug sensitivity. J Cell Physiol 2022; 237:2309-2344. [PMID: 35437787 DOI: 10.1002/jcp.30751] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/16/2022]
Abstract
The identification of agents that can reverse drug resistance in cancer chemotherapy, and enhance the overall efficacy is of great interest. Paclitaxel (PTX) belongs to taxane family that exerts an antitumor effect by stabilizing microtubules and inhibiting cell cycle progression. However, PTX resistance often develops in tumors due to the overexpression of drug transporters and tumor-promoting pathways. Noncoding RNAs (ncRNAs) are modulators of many processes in cancer cells, such as apoptosis, migration, differentiation, and angiogenesis. In the present study, we summarize the effects of ncRNAs on PTX chemotherapy. MicroRNAs (miRNAs) can have opposite effects on PTX resistance (stimulation or inhibition) via influencing YES1, SK2, MRP1, and STAT3. Moreover, miRNAs modulate the growth and migration rates of tumor cells in regulating PTX efficacy. PIWI-interacting RNAs, small interfering RNAs, and short-hairpin RNAs are other members of ncRNAs regulating PTX sensitivity of cancer cells. Long noncoding RNAs (LncRNAs) are similar to miRNAs and can modulate PTX resistance/sensitivity by their influence on miRNAs and drug efflux transport. The cytotoxicity of PTX against tumor cells can also be affected by circular RNAs (circRNAs) and limitation is that oncogenic circRNAs have been emphasized and experiments should also focus on onco-suppressor circRNAs.
Collapse
Affiliation(s)
- Mahmood K Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad H Gholami
- Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Amirhossein Zabolian
- Resident of Orthopedics, Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Farid Hashemi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Tajik
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alan P Kumar
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Pharmacology, Cancer Science Institute of Singapore, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amir R Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Xsphera Biosciences Inc, Boston, Massachusetts, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer, Istanbul, Turkey
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Pakistan
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.,ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
25
|
Entezari M, Sadrkhanloo M, Rashidi M, Asnaf SE, Taheriazam A, Hashemi M, Ashrafizadeh M, Zarrabi A, Rabiee N, Hushmandi K, Mirzaei S, Sethi G. Non-coding RNAs and macrophage interaction in tumor progression. Crit Rev Oncol Hematol 2022; 173:103680. [PMID: 35405273 DOI: 10.1016/j.critrevonc.2022.103680] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/25/2022] [Accepted: 04/06/2022] [Indexed: 12/12/2022] Open
Abstract
The macrophages are abundantly found in TME and their M2 polarization is in favor of tumor malignancy. On the other hand, non-coding RNAs (ncRNAs) can modulate macrophage polarization in TME to affect cancer progression. The miRNAs can dually induce/suppress M2 polarization of macrophages and by affecting various molecular pathways, they modulate tumor progression and therapy response. The lncRNAs can affect miRNAs via sponging and other molecular pathways to modulate macrophage polarization. A few experiments have also examined role of circRNAs in targeting signaling networks and affecting macrophages. The therapeutic targeting of these ncRNAs can mediate TME remodeling and affect macrophage polarization. Furthermore, exosomal ncRNAs derived from tumor cells or macrophages can modulate polarization and TME remodeling. Suppressing biogenesis and secretion of exosomes can inhibit ncRNA-mediated M2 polarization of macrophages and prevent tumor progression. The ncRNAs, especially exosomal ncRNAs can be considered as non-invasive biomarkers for tumor diagnosis.
Collapse
Affiliation(s)
- Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sholeh Etehad Asnaf
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
26
|
FOXC1 Binds Enhancers and Promotes Cisplatin Resistance in Bladder Cancer. Cancers (Basel) 2022; 14:cancers14071717. [PMID: 35406487 PMCID: PMC8996937 DOI: 10.3390/cancers14071717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 01/25/2023] Open
Abstract
Simple Summary In bladder cancer, cisplatin remains the front-line therapy, but drug resistance is common. Previously, we showed that cancer cells can spontaneously convert to an aggressive drug-resistant phenotype without mutational events. In the current work, we explored the epigenetic mechanism behind the conversion to the drug-resistant phenotype. We discovered that drug-resistant cells have differentially accessible enhancers, which are bound by FOXC1, a transcription factor that is overexpressed in these cells. Accordingly, FOXC1 knockout significantly attenuates the emergence of the drug-resistant phenotype and reduces cell survival upon cisplatin treatment. These findings suggest that FOXC1 binding at accessible enhancers promotes cisplatin drug resistance in bladder cancer cells. Therefore, FOXC1 targeting may be a new therapeutic avenue to mitigate cisplatin resistance and improve treatment efficacy in bladder cancer. Abstract Chemotherapy resistance is traditionally attributed to DNA mutations that confer a survival advantage under drug selection pressure. However, in bladder cancer and other malignancies, we and others have previously reported that cancer cells can convert spontaneously to an aggressive drug-resistant phenotype without prior drug selection or mutational events. In the current work, we explored possible epigenetic mechanisms behind this phenotypic plasticity. Using Hoechst dye exclusion and flow cytometry, we isolated the aggressive drug-resistant cells and analyzed their chromatin accessibility at regulatory elements. Compared to the rest of the cancer cell population, the aggressive drug-resistant cells exhibited enhancer accessibility changes. In particular, we found that differentially accessible enhancers were enriched for the FOXC1 transcription factor motif, and that FOXC1 was the most significantly overexpressed gene in aggressive drug-resistant cells. ChIP-seq analysis revealed that differentially accessible enhancers in aggressive drug-resistant cells had a higher FOXC1 binding, which regulated the expression of adjacent cancer-relevant genes like ABCB1 and ID3. Accordingly, cisplatin treatment of bladder cancer cells led to an increased FOXC1 expression, which mediated cell survival and conversion to a drug-resistant phenotype. Collectively, these findings suggest that FOXC1 contributes to phenotypic plasticity by binding enhancers and promoting a mutation-independent shift towards cisplatin resistance in bladder cancer.
Collapse
|
27
|
Feng F, Yang J, Chen A, Cui M, Li L. Long non-coding RNA long intergenic non-protein coding RNA 1232 promotes cell proliferation, migration and invasion in bladder cancer via modulating miR-370-5p/PIM3 axis. J Tissue Eng Regen Med 2022; 16:575-585. [PMID: 35338769 DOI: 10.1002/term.3291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/10/2022] [Accepted: 02/04/2022] [Indexed: 11/08/2022]
Abstract
Increasing evidences have suggested that long non-coding RNAs are critical regulators in the progression of tumor growth. Long intergenic non-protein coding RNA 1232 (LINC01232) was verified as an oncogene in multiple cancers. Nevertheless, its function in bladder cancer (BC) remains to be uncovered. In the current study, we detected LINC01232 expression utilizing quantitative real-time polymerase chain reaction (RT-qPCR) and discovered that LINC01232 was overexpressed in BC cell lines versus normal cell line. Besides, the effect of LINC01232 on BC cell behaviors was measured by colony formation, Cell Counting Kit-8 (CCK-8), transwell, TdT-mediated dUTP Nick-End Labeling and caspase-3/8 activity assays. Functionally, LINC01232 deficiency suppressed cell proliferation, migration and invasion. Next, miR-370-5p was proved to bind with LINC01232 by RNA pull down, RNA-binding protein immunoprecipitation (RIP) and luciferase reporter assays. Furthermore, PIM3 expression was negatively modulated by miR-370-5p and markedly increased in BC cell lines. Moreover, PIM3 silence repressed proliferation, migration and invasion but triggered apoptosis of BC cells. The rescue assays validated that upregulation of PIM3 recovered the effects of LINC01232 silence on the growth of BC cells. To summarize, our study manifested that LINC01232 accelerates BC progression by targeting miR-370-5p/PIM3 axis. Targeting LINC01232 might offer novel insight into BC treatment.
Collapse
Affiliation(s)
- Feng Feng
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Jing Yang
- Department of Central Sterile Supply, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Aiping Chen
- Department of Gastroenterology, Liaocheng People's Hospital, Liao Cheng, Shandong, China
| | - Meng Cui
- Department of Gynecology, Shandong Provincial Maternity and Childcare Hospital, Jinan, Shandong, China
| | - Lianjun Li
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
28
|
Ma X, Chen Y, Mo C, Li L, Nong S, Gui C. The role of circRNAs in the regulation of myocardial angiogenesis in coronary heart disease. Microvasc Res 2022; 142:104362. [PMID: 35337818 DOI: 10.1016/j.mvr.2022.104362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
During myocardial ischemia, timely reperfusion is critical to limit infarct area and the overall loss of cardiac contractile function. New treatment strategies need to be developed for patients who are neither able to receive interventional treatment nor suitable for surgical blood transport reconstruction surgery. Therapeutic angiogenesis is a promising approach that can be used to guide new treatment strategies. The goal of these therapies is to form new blood vessels or promote the maturation of existing vasculature systems, bypassing blocked arteries to maintain organ perfusion, thereby relieving symptoms and preventing the remodeling of bad organs. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), have been attracted much attention for their roles in various physiological and pathological processes. There is growing evidence that ncRNAs, especially circRNAs, play an important role in the regulation of cardiomyopathy angiogenesis due to its diversity of functions. Therefore, this article reviews the role and mechanisms of circRNA in myocardial angiogenesis to better understand the role of circRNAs in myocardial angiogenesis, which may provide useful insights and new revelations for the research field of identifying diagnostic markers and therapeutic approaches for the treatment of coronary artery disease.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Yuanxin Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Changhua Mo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Longcang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Shuxiong Nong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Chun Gui
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University&Guangxi Key Laboratory Base of Precision Medicine in Cardiocerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardiocerebrovascular Diseases, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China..
| |
Collapse
|
29
|
Li M, Che N, Jin Y, Li J, Yang W. CDKN3 Overcomes Bladder Cancer Cisplatin Resistance via LDHA-Dependent Glycolysis Reprogramming. Onco Targets Ther 2022; 15:299-311. [PMID: 35388272 PMCID: PMC8977226 DOI: 10.2147/ott.s358008] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/17/2022] [Indexed: 01/04/2023] Open
Abstract
Background Aerobic glycolysis plays an important role in bladder cancer (BLCA) progression and chemoresistance. Cyclin-dependent kinase inhibitor-3 (CDKN3), a dual-specificity protein tyrosine phosphatase, has aberrant upregulation in multiple cancer types and is associated with tumorigenesis. However, the role of CDKN3 in BLCA progression and glycolysis has not been elucidated. Purpose In this study, we investigated the effect and underlying mechanisms of CDKN3 on bladder cancer chemoresistance. Results This study confirmed that CDKN3 was overexpressed in BLCA tissues and promoted proliferation and migration. Additionally, our results showed a CDKN3-dependent mechanism on chemoresistance; chemoresistance cells were transformed into chemosensitivity cells by CDKN3 knockdown. Additionally, we showed that CDKN3 knockdown decreased glycolysis by inhibiting LDHA expression in BLCA chemoresistance cells. The results also proved that LDHA was an important mediator of CDKN3-regulated BLCA resistance. LDHA overexpression reversed glycolysis inhibition and chemosensitivity induced by CDKN3 downregulation. Conclusion These data collectively identified a vital role of CDKN3 in glycolysis and chemoresistance by regulating LDHA expression in BLCA cells, providing a possible therapeutic strategy for treating BLCA.
Collapse
Affiliation(s)
- Mengxuan Li
- Human Anatomy and Histoembryology, Yanbian University College of Medicine, Yanji, People’s Republic of China
| | - Nan Che
- Department of Pathology, Yanbian University College of Medicine, Yanji, People’s Republic of China
| | - Yu Jin
- Human Anatomy and Histoembryology, Yanbian University College of Medicine, Yanji, People’s Republic of China
| | - Jinhua Li
- Department of Drug and Device Clinical Trials Institution, Affiliated Hospital of Yanbian University, Yanji, People’s Republic of China
- Jinhua Li, Department of Drug and Device Clinical Trials Institution, Affiliated Hospital of Yanbian University, No. 1827, Juzi Road, Yanji City, 133000, People’s Republic of China, Tel +8613843360437, Email
| | - Wanshan Yang
- Department of Pathology, Yanbian University College of Medicine, Yanji, People’s Republic of China
- Correspondence: Wanshan Yang, Department of Pathology, Yanbian University College of Medicine, No. 977, Gongyuan Road, Yanji City, 133002, People’s Republic of China, Tel +8613944390633, Email
| |
Collapse
|
30
|
Huang CS, Tsai CH, Yu CP, Wu YS, Yee MF, Ho JY, Yu DS. Long Noncoding RNA LINC02470 Sponges MicroRNA-143-3p and Enhances SMAD3-Mediated Epithelial-to-Mesenchymal Transition to Promote the Aggressive Properties of Bladder Cancer. Cancers (Basel) 2022; 14:cancers14040968. [PMID: 35205713 PMCID: PMC8870681 DOI: 10.3390/cancers14040968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Long noncoding RNAs (lncRNAs) were proposed as novel tumor prognostic markers, including for predicting bladder cancer progression, and the competing endogenous RNA (ceRNA) hypothesis conceived an accessible entry point to discover potential lncRNA candidates. This study indicated that LINC02470 promotes bladder cancer cell viability, migration, invasion, and in vivo tumorigenicity by sponging miR-143-3p and consequently rescuing SMAD3 translation to activate the TGF-β-induced EMT process. These data demonstrate that the LINC02470–miR-143-3p–SMAD3 ceRNA axis directly regulates the major transcription factor of TGF-β signaling, SMAD3, thereby inducing the EMT process in bladder cancer and enhancing the aggressiveness of bladder cancer cells. Abstract Bladder cancer progression and metastasis have become major threats in clinical practice, increasing mortality and therapeutic refractoriness; recently, epigenetic dysregulation of epithelial-to-mesenchymal transition (EMT)-related signaling pathways has been explored. However, research in the fields of long noncoding RNA (lncRNA) and competing endogenous RNA (ceRNA) regulation in bladder cancer progression is just beginning. This study was designed to determine potential EMT-related ceRNA regulation in bladder cancer progression and elucidate the underlying mechanisms that provoke aggressiveness. After screening the intersection of bioinformatic pipelines, LINC02470 was identified as the most upregulated lncRNA during bladder cancer initiation and progression. Both in vitro and in vivo biological effects indicated that LINC02470 promotes bladder cancer cell viability, migration, invasion, and tumorigenicity. On a molecular level, miR-143-3p directly targets and reduces both LINC02470 and SMAD3 RNA expression. Therefore, the LINC02470–miR-143-3p–SMAD3 ceRNA axis rescues SMAD3 translation upon LINC02470 sponging miR-143-3p, and SMAD3 consequently activates the TGF-β-induced EMT process. In conclusion, this is the first study to demonstrate that LINC02470 plays a pivotally regulatory role in the promotion of TGF-β-induced EMT through the miR-143-3p/SMAD3 axis, thereby aggravating bladder cancer progression. Our study warrants further investigation of LINC02470 as an indicatively prognostic marker of bladder cancer.
Collapse
Affiliation(s)
- Cheng-Shuo Huang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe 114, Taiwan; (C.-S.H.); (C.-P.Y.); (Y.-S.W.)
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan
| | | | - Cheng-Ping Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe 114, Taiwan; (C.-S.H.); (C.-P.Y.); (Y.-S.W.)
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan
| | - Ying-Si Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe 114, Taiwan; (C.-S.H.); (C.-P.Y.); (Y.-S.W.)
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan
| | - Ming-Fong Yee
- School of Medicine, National Defense Medical Center, Taipei 114, Taiwan;
| | - Jar-Yi Ho
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe 114, Taiwan; (C.-S.H.); (C.-P.Y.); (Y.-S.W.)
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (J.-Y.H.); (D.-S.Y.)
| | - Dah-Shyong Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipe 114, Taiwan; (C.-S.H.); (C.-P.Y.); (Y.-S.W.)
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Correspondence: (J.-Y.H.); (D.-S.Y.)
| |
Collapse
|
31
|
Chen X, Wang P, Ou T, Li J. KLF16 Downregulates the Expression of Tumor Suppressor Gene TGFBR3 to Promote Bladder Cancer Proliferation and Migration. Cancer Manag Res 2022; 14:465-477. [PMID: 35173481 PMCID: PMC8841319 DOI: 10.2147/cmar.s334521] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
Introduction Krüppel-like factors (KLFs), which comprise 17 family members, exert important functions during the development of cancer. The role of KLF16 seems controversial in carcinogenesis because both tumor suppressive and promoting effects have been reported. Methods The expression level of KLF16 was analyzed based on public data sets from The Cancer Genome Atlas (TCGA) and evaluated by immunohistochemical (IHC) staining. CCK8 assay, colony formation analysis, transwell assays and the PI/Annexin V-APC assay kit were performed to detect cell growth, colony formation, cell migration and apoptosis of BC cells. Xenograft tumorigenesis assay was performed to detect the KLF16 expression on BC growth in vivo. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP)-qPCR assay were performed to analyze the interaction between KLF16 and its target. Results In this study, we explored the role of KLF16 in bladder cancer (BC). We demonstrated that KLF16 was overexpressed in human BC tissues. The high expression of KLF16 was a potential predictor of a poor prognosis in patients with BC. Interference with KLF16 expression in 563 cells, having relatively higher levels of KLF16, repressed cell proliferation and migration. In contrast, upregulation of KLF16 in T24 cells enhanced cellular function, including cell growth and migration. KLF16 also suppressed the apoptosis of BC cells. Additionally, KLF16 inhibited the expression of the TGF-type III receptor (TGFBR3) by binding to its promoter sequence and reducing transcriptional activity. There was a negative correlation between KLF16 and TGFBR3 in human BC tissues. Furthermore, TGFBR3 was revealed to be a negative regulator of BC cell proliferation and migration. KLF16 also supported BC tumorigenesis by downregulating TGFBR3 expression in vivo. Discussion These results suggested that KLF16 acts as an oncogene in BC through transcriptional inactivation of TGFBR3. This study provides evidence that targeting the KLF16/TGFBR3 axis may be beneficial for BC patients.
Collapse
Affiliation(s)
- Xiaosong Chen
- Department of Urology, Xuanwu Hospital of The Capital Medical University, Xuanwu Hospital, Beijing, People’s Republic of China
- Correspondence: Xiaosong Chen, Department of Urology, Xuanwu Hospital of The Capital Medical University, Xuanwu Hospital, No. 45, Changchun Street, Xicheng District, Beijing, 100053, People’s Republic of China, Tel +86-10-83198899, Email
| | - Ping Wang
- Department of General Practice, Beijing Xicheng District White Paper Community Health Service Center, Beijing, People’s Republic of China
| | - Tongwen Ou
- Department of Urology, Xuanwu Hospital of The Capital Medical University, Xuanwu Hospital, Beijing, People’s Republic of China
| | - Jin Li
- Department of Urology, Xuanwu Hospital of The Capital Medical University, Xuanwu Hospital, Beijing, People’s Republic of China
| |
Collapse
|
32
|
Li ZJ, Wang DY, Liu ZH. Clinical Efficacy and Quality of Life Assessment of Partial Cystectomy and Plasmakinetic Transurethral Resection of Tumor in Bladder Cancer Patients. Cancer Manag Res 2022; 14:389-398. [PMID: 35115835 PMCID: PMC8805739 DOI: 10.2147/cmar.s346764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/25/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Bladder cancer is a common malignant tumor of the urinary system, with an incidence ranking the first in the urinary system. Without timely and effective treatment, the tumor may spread to other parts of the body. Traditional partial cystectomy (PC) and plasmakinetic transurethral resection of bladder tumor (PKRBT) are common surgical methods for superficial bladder cancer (SBC). This study aims to clarify the clinical efficacy of bladder carcinoma (BC) patients treated by either PC or PKRBT and their effects on the quality of life (QOL) of patients. METHODS A total of 142 patients with SBC treated in Wenzhou Central Hospital and Bei da huang Industry Group General Hospital from March 2018 to June 2020 were analyzed retrospectively. According to the surgical method, patients undergoing PKRBT were included in the research group (n = 74) while those treated by PC were included in the control group (n = 69). Surgical indicators (intraoperative blood loss, IBL; operating time, OT; bladder irrigation time; catheter retention time; length of hospital stay, LOS), postoperative complication rate, and one-year recurrence rate were compared between the two groups. Besides, the levels of inflammatory factors [tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-8, IL-10], psychological and emotional scores (Self-Rating Anxiety Scale, SAS; Self-Rating Depression Scale, SDS), and living conditions (Pittsburgh Sleep Quality Index, PSQI) before and after treatment were compared. RESULTS Compared with the control group, patients in the research group had 1) less IBL, less time of OT, bladder irrigation and indwelling catheter time, as well as shorter postoperative LOS; 2) lower contents of inflammatory factors TNF-α, IL-6 and IL-8, and higher IL-10; 3) lower SAS and SDS scores and higher PSQI; and 4) fewer postoperative complications and lower one-year recurrence rate. CONCLUSION Compared with PC, PKRBT contributes to higher efficacy and better postoperative QOL in patients SBC.
Collapse
Affiliation(s)
- Zhi-Jia Li
- Department of Urology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Da-Ya Wang
- Department of Urology, Wenzhou Central Hospital, Wenzhou, Zhejiang, 325000, People's Republic of China
| | - Zhi-Hu Liu
- Department of Urology, Bei Da Huang Industry Group General Hospital, Harbin, Heilongjiang, 150088, People's Republic of China
| |
Collapse
|
33
|
Nie Z, Chen M, Gao Y, Huang D, Cao H, Peng Y, Guo N, Zhang S. Regulated Cell Death in Urinary Malignancies. Front Cell Dev Biol 2021; 9:789004. [PMID: 34869390 PMCID: PMC8633115 DOI: 10.3389/fcell.2021.789004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 12/14/2022] Open
Abstract
Urinary malignancies refer to a series of malignant tumors that occur in the urinary system and mainly include kidney, bladder, and prostate cancers. Although local or systemic radiotherapy and chemotherapy, immunotherapy, castration therapy and other methods have been applied to treat these diseases, their high recurrence and metastasis rate remain problems for patients. With in-depth research on the pathogenesis of urinary malignant tumors, this work suggests that regulatory cell death (RCD) plays an important role in their occurrence and development. These RCD pathways are stimulated by various internal and external environmental factors and can induce cell death or permit cell survival under the control of various signal molecules, thereby affecting tumor progression or therapeutic efficacy. Among the previously reported RCD methods, necroptosis, pyroptosis, ferroptosis, and neutrophil extracellular traps (NETs) have attracted research attention. These modes transmit death signals through signal molecules, such as cysteine-aspartic proteases (caspase) family and tumor necrosis factor-α (TNF-α) that have a wide and profound influence on tumor proliferation or death and even change the sensitivity of tumor cells to therapy. This review discussed the effects of necroptosis, pyroptosis, ferroptosis, and NETs on kidney, bladder and prostate cancer and summarized the latest research and achievements in these fields. Future directions and possibility of improving the denouement of urinary system tumors treatment by targeting RCD therapy were also explored.
Collapse
Affiliation(s)
- Zhenyu Nie
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Mei Chen
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yuanhui Gao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Denggao Huang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Hui Cao
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Yanling Peng
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Na Guo
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Shufang Zhang
- Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|