1
|
Aboulwafa MM, Mostafa NM, Youssef FS, Eldahshan OA, Singab ANB. Lavandula dentata leaves as potential natural antibiofilm agents against Pseudomonas aeruginosa. Sci Rep 2025; 15:8540. [PMID: 40074746 PMCID: PMC11903892 DOI: 10.1038/s41598-025-88824-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025] Open
Abstract
Biofilm formation is responsible for persistent diseases related to chronic infections. Mostly it is triggered by many bacteria, mainly Pseudomonas aeruginosa (P. aeruginosa). In this study, plants that have been used traditionally in skin infections Viz; Liquorice, Carrot, Red Cabbage, Beetroot, Turmeric, Neem, and French Lavender were selected to evaluate their antibiofilm activity against P. aeruginosa. The microtiter plate assay was used to evaluate their antibiofilm activity against P. aeruginosa as well as ability to reduce the activity of P. aeruginosa. To investigate the phytocompounds responsible for bioactivity of the superior extract and to explore potential interactions between its bioactive components and one of quorum-sensing (QS) regulatory proteins of P. aeruginosa involved in biofilm formation, liquid chromatography-mass spectrometric (LC-MS) and molecular docking studies were done. The study showed that all tested plant extracts could significantly (p-value < 0.05) reduce the formation of P. aeruginosa biofilm. The methanol extract of Lavandula dentata (L. dentata) leaves is superior at 0.625 mg/mL. In conclusion, the study revealed the presence of phenolic acids, flavonoids, and their glycosides also, the anti-P. aeruginosa biofilm activity of L. dentata leaves was reported herein for the first time and could be a good source of leads for antibiofilm medicine.
Collapse
Affiliation(s)
- Maram M Aboulwafa
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Nada M Mostafa
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Fadia S Youssef
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Omayma A Eldahshan
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt
| | - Abdel Nasser B Singab
- Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
- Center of Drug Discovery Research and Development, Faculty of Pharmacy, Ain Shams University, Abbassia, 11566, Cairo, Egypt.
| |
Collapse
|
2
|
Khorramdel M, Ghadikolaii FP, Hashemy SI, Javid H, Tabrizi MH. Nanoformulated meloxicam and rifampin: inhibiting quorum sensing and biofilm formation in Pseudomonas aeruginosa. Nanomedicine (Lond) 2024; 19:615-632. [PMID: 38348578 DOI: 10.2217/nnm-2023-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Background: We aimed to investigate the simultaneous effects of meloxicam and rifampin nanoformulations with solid lipid nanoparticle (SLN) and nanostructured lipid carrier (NLC) substrates on inhibiting the quorum-sensing system of Pseudomonas aeruginosa and preventing biofilm formation by this bacterium. Methods: Antimicrobial activity of rifampin and meloxicam encapsulated with SLNs and NLCs against P. aeruginosa PAO1 was assessed by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC). Results: The SLN formulation was associated with lower doses for the MIC and minimum bactericidal concentration in comparison to NLC. Moreover, our results demonstrated that both nanoformulations were able to produce 100% inhibition of the biofilm formation of P. aeruginosa PAO1. Conclusion: All these findings suggest that meloxicam and rifampin encapsulated with SLNs could be the most effective formulation against P. aeruginosa.
Collapse
Affiliation(s)
- Malihe Khorramdel
- Department of Microbiology, Ayatollah Amoli Branch, Islamic Azad University, Amol, Iran
| | | | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
3
|
Kumaran D, Ramirez-Arcos S. Sebum Components Dampen the Efficacy of Skin Disinfectants against Cutibacterium acnes Biofilms. Microorganisms 2024; 12:271. [PMID: 38399675 PMCID: PMC10891977 DOI: 10.3390/microorganisms12020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
At Canadian Blood Services, despite the use of 2% chlorhexidine and 70% isopropyl alcohol (standard disinfectant, SD) prior to venipuncture, Cutibacterium acnes evades eradication and is a major contaminant of platelet concentrates (PCs). Since C. acnes forms bacterial aggregates known as biofilms in the sebaceous niches of the skin, this study aimed to assess whether sebum-like components impact disinfectant efficacy against C. acnes leading to its dominance as a PC contaminant. C. acnes mono-species and dual-species biofilms (C. acness and a transfusion-relevant Staphylococcus aureus isolate) were formed in the presence and absence of sebum-like components and exposed to SD, a hypochlorous acid-based disinfectant (Clinisept+, CP), or a combination of both disinfectants to assess disinfectant efficacy. Our data indicate that sebum-like components significantly reduce the disinfectant efficacy of all disinfectant strategies tested against C. acnes in both biofilm models. Furthermore, though none of the disinfectants led to bacterial eradication, the susceptibility of C. acnes to disinfectants was heightened in an isolate-dependent manner when grown in the presence of S. aureus. The reduction of skin disinfection efficacy in the presence of sebum may contribute to the overrepresentation of C. acnes as a PC contaminant and highlights the need for improved disinfection strategies.
Collapse
Affiliation(s)
- Dilini Kumaran
- Innovation & Portfolio Management, Canadian Blood Services, Ottawa, ON K1G 4J5, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Sandra Ramirez-Arcos
- Innovation & Portfolio Management, Canadian Blood Services, Ottawa, ON K1G 4J5, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Damyanova T, Dimitrova PD, Borisova D, Topouzova-Hristova T, Haladjova E, Paunova-Krasteva T. An Overview of Biofilm-Associated Infections and the Role of Phytochemicals and Nanomaterials in Their Control and Prevention. Pharmaceutics 2024; 16:162. [PMID: 38399223 PMCID: PMC10892570 DOI: 10.3390/pharmaceutics16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Biofilm formation is considered one of the primary virulence mechanisms in Gram-positive and Gram-negative pathogenic species, particularly those responsible for chronic infections and promoting bacterial survival within the host. In recent years, there has been a growing interest in discovering new compounds capable of inhibiting biofilm formation. This is considered a promising antivirulence strategy that could potentially overcome antibiotic resistance issues. Effective antibiofilm agents should possess distinctive properties. They should be structurally unique, enable easy entry into cells, influence quorum sensing signaling, and synergize with other antibacterial agents. Many of these properties are found in both natural systems that are isolated from plants and in synthetic systems like nanoparticles and nanocomposites. In this review, we discuss the clinical nature of biofilm-associated infections and some of the mechanisms associated with their antibiotic tolerance. We focus on the advantages and efficacy of various natural and synthetic compounds as a new therapeutic approach to control bacterial biofilms and address multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Tsvetozara Damyanova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Petya D. Dimitrova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Dayana Borisova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University “St. K. Ohridski”, 8 D. Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 103-A, 1113 Sofia, Bulgaria;
| | - Tsvetelina Paunova-Krasteva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| |
Collapse
|
5
|
Quiñones-Vico MI, Fernández-González A, Ubago-Rodríguez A, Moll K, Norrby-Teglund A, Svensson M, Gutiérrez-Fernández J, Torres JM, Arias-Santiago S. Antibiotics against Pseudomonas aeruginosa on Human Skin Cell Lines: Determination of the Highest Non-Cytotoxic Concentrations with Antibiofilm Capacity for Wound Healing Strategies. Pharmaceutics 2024; 16:117. [PMID: 38258128 PMCID: PMC10818945 DOI: 10.3390/pharmaceutics16010117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Pseudomonas aeruginosa is one of the most common microorganisms causing infections of severe skin wounds. Antibiotic or antiseptic treatments are crucial to prevent and curb these infections. Antiseptics have been reported to be cytotoxic to skin cells and few studies evaluate the impact of commonly used antibiotics. This study evaluates how clinical antibiotics affect skin cells' viability, proliferation, migration, and cytokine secretion and defines the highest non-cytotoxic concentrations that maintain antibacterial activity. Cell proliferation, viability, and migration were evaluated on cell monolayers. Cytokines related to the wound healing process were determined. The minimum inhibitory concentrations and the impact on bacterial biofilm were assessed. Results showed that 0.02 mg/mL ciprofloxacin and 1 mg/mL meropenem are the highest non-cytotoxic concentrations for fibroblasts and keratinocytes while 1.25 mg/mL amikacin and 0.034 mg/mL colistin do not affect fibroblasts' viability and cytokine secretion but have an impact on keratinocytes. These concentrations are above the minimum inhibitory concentration but only amikacin could eradicate the biofilm. For the other antibiotics, cytotoxic concentrations are needed to eradicate the biofilm. Combinations with colistin at non-cytotoxic concentrations effectively eliminate the biofilm. These results provide information about the concentrations required when administering topical antibiotic treatments on skin lesions, and how these antibiotics affect wound management therapies. This study set the basis for the development of novel antibacterial wound healing strategies such as antibiotic artificial skin substitutes.
Collapse
Affiliation(s)
- María I. Quiñones-Vico
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.I.Q.-V.); (A.U.-R.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain
- Biochemistry, Molecular Biology III and Immunology Department, University of Granada, 18071 Granada, Spain;
| | - Ana Fernández-González
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.I.Q.-V.); (A.U.-R.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
| | - Ana Ubago-Rodríguez
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.I.Q.-V.); (A.U.-R.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
| | - Kirsten Moll
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden; (K.M.); (A.N.-T.); (M.S.)
| | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden; (K.M.); (A.N.-T.); (M.S.)
| | - Mattias Svensson
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden; (K.M.); (A.N.-T.); (M.S.)
| | | | - Jesús M. Torres
- Biochemistry, Molecular Biology III and Immunology Department, University of Granada, 18071 Granada, Spain;
| | - Salvador Arias-Santiago
- Cell Production and Tissue Engineering Unit, Virgen de las Nieves University Hospital, 18014 Granada, Spain; (M.I.Q.-V.); (A.U.-R.); (S.A.-S.)
- Biosanitary Institute of Granada (ibs.GRANADA), 18014 Granada, Spain
- Andalusian Network of Design and Translation of Advanced Therapies, 41092 Seville, Spain
- Dermatology Department, School of Medicine, University of Granada, 18016 Granada, Spain
- Dermatology Department, Virgen de las Nieves University Hospital, 18014 Granada, Spain
| |
Collapse
|
6
|
Simsekli O, Bilinmis I, Celik S, Arık G, Baba AY, Karakucuk A. Advancing biofilm management through nanoformulation strategies: a review of dosage forms and administration routes. J Drug Target 2023; 31:931-949. [PMID: 37831630 DOI: 10.1080/1061186x.2023.2270619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
Biofilms are complex microbial communities formed by the attachment of bacteria or fungi to surfaces encased in a self-produced polymeric matrix. These biofilms are highly resistant to conventional antimicrobial therapies. The resistance mechanisms exhibited by biofilms include low antibiotic absorption, sluggish replication, adaptive stress response, and the formation of dormant-like phenotypes. The eradication of biofilms requires alternative strategies and approaches. Nanotechnological drug delivery systems allow excellent control over the drug chemistry, surface area, particle size, particle shape, and composition of nanostructures. Nanoformulations can enhance the efficacy of antimicrobial agents by improving their bioavailability, stability, and targeted delivery to the site of infection that helps biofilm eradication more effectively. In addition to nanoformulations, the route of administration and choice of dosage forms play a crucial role in treating biofilm infections. Systemic administration of antibiotics is effective in controlling systemic infection and sepsis associated with biofilms. Alternative routes of administration, such as inhalation, vaginal, ocular, or dermal, have been explored to target biofilm infections in specific organs. This review primarily examines the utilisation of nanoformulations in various administration routes for biofilm management. It also provides an overview of biofilms, current approaches, and the drawbacks associated with conventional methods.
Collapse
Affiliation(s)
- Oyku Simsekli
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Irfan Bilinmis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Sumeyye Celik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Gizem Arık
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| | - Abdullah Yucel Baba
- Vocational School of Health Sciences, Ankara Medipol University, Ankara, Turkey
| | - Alptug Karakucuk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara Medipol University, Ankara, Turkey
| |
Collapse
|
7
|
Tomar Y, Pandit N, Priya S, Singhvi G. Evolving Trends in Nanofibers for Topical Delivery of Therapeutics in Skin Disorders. ACS OMEGA 2023; 8:18340-18357. [PMID: 37273582 PMCID: PMC10233693 DOI: 10.1021/acsomega.3c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/06/2023]
Abstract
Nanotechnology has yielded nanostructure-based drug delivery approaches, among which nanofibers have been explored and researched for the potential topical delivery of therapeutics. Nanofibers are filaments or thread-like structures in the nanometer size range that are fabricated using various polymers, such as natural or synthetic polymers or their combination. The size or diameter of the nanofibers depends upon the polymers, the techniques of preparation, and the design specification. The four major processing techniques, phase separation, self-assembly, template synthesis, and electrospinning, are most commonly used for the fabrication of nanofibers. Nanofibers have a unique structure that needs a multimethod approach to study their morphology and characterization parameters. They are gaining attention as drug delivery carriers, and the substantially vast surface area of the skin makes it a potentially promising strategy for topical drug products for various skin disorders such as psoriasis, skin cancers, skin wounds, bacterial and fungal infections, etc. However, the large-scale production of nanofibers with desired properties remains challenging, as the widely used electrospinning processes have certain limitations, such as poor yield, use of high voltage, and difficulty in achieving in situ nanofiber deposition on various substrates. This review highlights the insights into fabrication strategies, applications, recent clinical trials, and patents of nanofibers for different skin disorders in detail. Additionally, it discusses case studies of its effective utilization in the treatment of various skin disorders for a better understanding for readers.
Collapse
Affiliation(s)
- Yashika Tomar
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Nisha Pandit
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sakshi Priya
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| | - Gautam Singhvi
- Industrial
Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science (BITS) - Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
8
|
Stoitsova S, Paunova-Krasteva T, Dimitrova PD, Damyanova T. The concept for the antivirulence therapeutics approach as alternative to antibiotics: hope or still a fiction? BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2106887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Stoyanka Stoitsova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tsvetelina Paunova-Krasteva
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Petya D. Dimitrova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tsvetozara Damyanova
- Department of General Microbiology, The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
9
|
Dey A, Singhvi G, Puri A, Kesharwani P, Dubey SK. An insight into photodynamic therapy towards treating major dermatological conditions. J Drug Deliv Sci Technol 2022; 76:103751. [PMID: 36159728 PMCID: PMC9495279 DOI: 10.1016/j.jddst.2022.103751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Photodynamic therapy (PDT), as the name suggests is a light-based, non-invasive therapeutic treatment method that has garnered immense interest in the recent past for its efficacy in treating several pathological conditions. PDT has prominent use in the treatment of several dermatological conditions, which consequently have cosmetic benefits associated with it as PDT improves the overall appearance of the affected area. PDT is commonly used for repairing sun-damaged skin, providing skin rejuvenation, curbing pre-cancerous cells, treating conditions like acne, keratosis, skin-microbial infections, and cutaneous warts, etc. PDT mediates its action by generating oxygen species that are involved in bringing about immunomodulation, suppression of microbial load, wound-healing, lightening of scarring, etc. Although there are several challenges associated with PDT, the prominent ones being pain, erythema, insufficient delivery of the photosensitizing agent, and poor clinical outcomes, still PDT stands to be a promising approach with continuous efforts towards maximizing clinical efficacy while being cautious of the side effects and working towards lessening them. This article discusses the major skin-related conditions which can be treated or managed by employing PDT as a better or comparable alternative to conventional treatment approaches such that it also brings about aesthetic improvements thereof.
Collapse
Affiliation(s)
- Anuradha Dey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan, India-333031
| | - Anu Puri
- RNA Structure and Design Section, RNA Biology Laboratory (RBL), Center for Cancer Research, National Cancer Institute — Frederick, Frederick, MD, 21702, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India
| |
Collapse
|
10
|
Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2388. [PMID: 35407720 PMCID: PMC8999898 DOI: 10.3390/ma15072388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|