1
|
Freitas M, Ribeiro D, Janela JS, Varela CL, Costa SC, da Silva ET, Fernandes E, Roleira FMF. Plant-derived and dietary phenolic cinnamic acid derivatives: Anti-inflammatory properties. Food Chem 2024; 459:140080. [PMID: 38986205 DOI: 10.1016/j.foodchem.2024.140080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024]
Abstract
Cinnamic acids are aromatic acids primarily found in plants and plant-derived food. Phenolic cinnamic acids, with one or more hydroxyl groups in the aromatic ring, often contribute to the biological activities attributed to these compounds. The presence of hydroxyl groups and a carboxyl group makes cinnamic acids very hydrophilic, preventing them from crossing biological membranes and exerting their biological activities. To alleviate this condition, a panel of synthetic modifications have been made leading to a diverse set of phenolic cinnamic structures. In this review, an overview of the natural phenolic cinnamic acid derivatives and their plant sources (more than 200) is described. The synthetic approaches to obtain the referred derivatives (more than 200) namely esters and amides are reviewed. Further, their anti-inflammatory activity (more than 70 compounds) is scrutinized. Finally, future directions will be indicated to translate the research on phenolic cinnamic derivatives into potentially effective anti-inflammatory drugs.
Collapse
Affiliation(s)
- Marisa Freitas
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Daniela Ribeiro
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal; Faculdade de Ciências Agrárias e do Ambiente da Universidade dos Açores, Portugal.
| | - João S Janela
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Carla L Varela
- Univ Coimbra, CERES, Coimbra, Portugal; Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Clinic Academic Center of Coimbra (CACC), Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal.
| | - Saul C Costa
- Univ Coimbra, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Elisiário Tavares da Silva
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| | - Eduarda Fernandes
- LAQV, REQUIMTE, University of Porto, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, 4050-313 Porto, Portugal.
| | - Fernanda M F Roleira
- Univ Coimbra, CERES, Faculty of Pharmacy, Laboratory of Pharmaceutical Chemistry, Azinhaga de Santa Comba, Pólo III - Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal.
| |
Collapse
|
2
|
Mićanović D, Stanisavljević S, Li H, Koprivica I, Jonić N, Stojanović I, Savković V, Saksida T. Mesenchymal Stem Cells from Mouse Hair Follicles Inhibit the Development of Type 1 Diabetes. Int J Mol Sci 2024; 25:5974. [PMID: 38892159 PMCID: PMC11172537 DOI: 10.3390/ijms25115974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are known for their immunosuppressive properties. Based on the demonstrated anti-inflammatory effect of mouse MSCs from hair follicles (moMSCORS) in a murine wound closure model, this study evaluates their potential for preventing type 1 diabetes (T1D) in C57BL/6 mice. T1D was induced in C57BL/6 mice by repeated low doses of streptozotocin. moMSCORS were injected intravenously on weekly basis. moMSCORS reduced T1D incidence, the insulitis stage, and preserved insulin production in treated animals. moMSCORS primarily exerted immunomodulatory effects by inhibiting CD4+ T cell proliferation and activation. Ex vivo analysis indicated that moMSCORS modified the cellular immune profile within pancreatic lymph nodes and pancreatic infiltrates by reducing the numbers of M1 pro-inflammatory macrophages and T helper 17 cells and upscaling the immunosuppressive T regulatory cells. The proportion of pathogenic insulin-specific CD4+ T cells was down-scaled in the lymph nodes, likely via soluble factors. The moMSCORS detected in the pancreatic infiltrates of treated mice presumably exerted the observed suppressive effect on CD4+ through direct contact. moMSCORS alleviated T1D symptoms in the mouse, qualifying as a candidate for therapeutic products by multiple advantages: non-invasive sampling by epilation, easy access, permanent availability, scalability, and benefits of auto-transplantation.
Collapse
Affiliation(s)
- Dragica Mićanović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Suzana Stanisavljević
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Hanluo Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan 430068, China;
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany
| | - Ivan Koprivica
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Natalija Jonić
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Ivana Stojanović
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| | - Vuk Savković
- Department of Cranial Maxillofacial Plastic Surgery, University Clinic Leipzig, 04103 Leipzig, Germany
| | - Tamara Saksida
- Department of Immunology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia; (D.M.); (S.S.); (I.K.); (N.J.); (I.S.); (T.S.)
| |
Collapse
|
3
|
Yang Q, Jia B, Shang J, Wang X, Xu L, Liu X, Fang M, Zeng F, Zeng HL, Gong Z. Effects of rosmarinic acid on immune response and intestinal microbiota in ovalbumin-induced intestinal allergy mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3002-3012. [PMID: 38053408 DOI: 10.1002/jsfa.13192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Rosmarinic acid (RA) is an active polyphenol that is widely found in various edible herbs. This study explored the potential anti-allergic activities and the underlying mechanisms of RA in ovalbumin (OVA)-induced intestinal allergic mice. RESULTS Forty female BALB/c mice were randomly divided into five groups: control group, model group (OVA sensitized/challenged), RA-Low group (OVA sensitized/challenged, 30 mg kg-1 RA intervention), RA-Middle group (OVA sensitized/challenged, 90 mg kg-1 RA intervention) and RA-High group (OVA sensitized/challenged, 270 mg kg-1 RA intervention). RA effectively attenuated allergic reactions, including alleviating allergic symptoms and regulating the hypothermia of mice in the model group. Moreover, the anaphylactic mediator (OVA-specific IgE, histamine and mMCP-1) levels of OVA allergic mice were markedly decreased after RA intervention. Quantitative polymerase chain reaction analysis showed that RA significantly inhibited Th2 cytokine expression, while Th1 and Treg cytokines were markedly increased. 16S rRNA gene sequence analysis indicated that RA effectively regulated the richness and diversity of the intestinal microbiota in OVA allergic mice. At the phylum level, the relative abundance of Bacteroidetes and Firmicutes and the Firmicutes/Bacteroidetes ratio were altered by RA intervention. At the genus level, RA was found to regulate the disturbances in the relative abundance of Muribaculaceae, Lactobacillus and Prevotella. CONCLUSION RA exhibited potential anti-allergic activity in OVA allergic mice by regulating hypersensitive immune responses and the intestinal microbiota structure. These results provide important evidence that RA can be developed into a novel functional food-derived ingredient against food allergy. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qing Yang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Binmei Jia
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Jieli Shang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Xuanpei Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Lin Xu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Xin Liu
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Min Fang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| | - Fengbo Zeng
- Wuhan BioCSi Tech Laboratory Co. Ltd, Wuhan, China
| | - Hao-Long Zeng
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiyong Gong
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Wuhan Polytechnic University, Wuhan, China
- Food Safety Research Center, Key Research Institute of Humanities and Social of Hubei Province, Wuhan, China
| |
Collapse
|
4
|
Noor S, Mohammad T, Rub MA, Raza A, Azum N, Yadav DK, Hassan MI, Asiri AM. Biomedical features and therapeutic potential of rosmarinic acid. Arch Pharm Res 2022; 45:205-228. [PMID: 35391712 PMCID: PMC8989115 DOI: 10.1007/s12272-022-01378-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
For decades, the use of secondary metabolites of various herbs has been an attractive strategy in combating human diseases. Rosmarinic acid (RA) is a bioactive phenolic compound commonly found in plants of Lamiaceae and Boraginaceae families. RA is biosynthesized using amino acids tyrosine and phenylalanine via enzyme-catalyzed reactions. However, the chemical synthesis of RA involves an esterification reaction between caffeic acid and 3,4-dihydroxy phenyl lactic acid contributing two phenolic rings to the structure of RA. Several studies have ascertained multiple therapeutic benefits of RA in various diseases, including cancer, diabetes, inflammatory disorders, neurodegenerative disorders, and liver diseases. Many previous scientific papers indicate that RA can be used as an anti-plasmodic, anti-viral and anti-bacterial drug. In addition, due to its high anti-oxidant capacity, this natural polyphenol has recently gained attention for its possible application as a nutraceutical compound in the food industry. Here we provide state-of-the-art, flexible therapeutic potential and biomedical features of RA, its implications and multiple uses. Along with various valuable applications in safeguarding human health, this review further summarizes the therapeutic advantages of RA in various human diseases, including cancer, diabetes, neurodegenerative diseases. Furthermore, the challenges associated with the clinical applicability of RA have also been discussed.
Collapse
Affiliation(s)
- Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Malik Abdul Rub
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ali Raza
- Department of Medical Biochemistry, Jawahar Lal Nehru Medical College, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Naved Azum
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Dharmendra Kumar Yadav
- College of Pharmacy, Gachon University of Medicine and Science, Hambakmoeiro, Yeonsugu, Incheon, 21924, Korea.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| | - Abdullah M Asiri
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|