1
|
Yang L, Yao Y, Zheng W, Zheng X, Xie M, Huang L. Nitric oxide mediates negative feedback on the TXNIP/NLRP3 inflammasome pathway to prevent retinal neurovascular unit dysfunction in early diabetic retinopathy. Free Radic Biol Med 2025; 233:279-291. [PMID: 40180022 DOI: 10.1016/j.freeradbiomed.2025.03.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/06/2025] [Accepted: 03/31/2025] [Indexed: 04/05/2025]
Abstract
Diabetic retinopathy (DR) is a leading cause of vision impairment in working-age adults, and is driven by complex neurovascular dysfunction. This study aimed to elucidate whether nitric oxide (NO) can modulate the TXNIP/NLRP3 inflammasome pathway and mitigate retinal neurovascular unit (NVU) damage during early DR. In an in vitro co-culture system, silencing TXNIP or NLRP3 in retinal microglia (RMG) significantly upregulated glial cell-derived neurotrophic factor (GDNF) and downregulated inducible nitric oxide synthase (iNOS) expression in retinal ganglion cells (RGC). Moreover, it resulted in decreased iNOS and vascular endothelial growth factor A (VEGFA) levels and enhanced the expression of tight junction proteins (Occludin and ZO-1) in retinal microvascular endothelial cells (RMEC), while also reducing NO release and inhibiting RMEC tube formation. Treatment with S-nitroso-N-acetyl penicillamine (SNAP), an NO donor, significantly downregulated TXNIP/NLRP3 inflammasome signaling in RMG, decreased RGC apoptosis, and inhibited tube formation in RMEC. It also upregulated GDNF, suppressed iNOS in RGC, decreased VEGFA, and improved tight junction proteins in RMEC. Treatment with 1400W, an iNOS inhibitor, resulted in decreased NO concentration and increased IL-1β levels in the co-culture supernatant, without significantly affecting iNOS expression in RGC or RMEC. In an early DR rat model, Electroretinogram (ERG), Optical Coherence Tomography (OCT), Fluorescein Angiography (FFA), Evans blue assays, Immunofluorescence staining, and TUNEL staining confirmed that sodium nitroprusside (SNP), NO donor administration mitigated retinal neural and vascular dysfunction, and preserved retinal NVU integrity. Concurrently, SNP treatment reduced IL-1β expression and increased GDNF and Occludin levels in the early DR retina. Genetic Association Database (GAD) enrichment analysis and protein-protein interaction (PPI) network validation indicated that NO functions as a downstream mediator of the TXNIP/NLRP3 inflammasome pathway and exhibits a strong association with DR. These findings suggest that NO mediates negative feedback in the TXNIP/NLRP3 inflammasome pathway to exert protective effects against retinal NVU dysfunction in early DR, thereby offering potential therapeutic strategies for early intervention in DR.
Collapse
Affiliation(s)
- Li Yang
- Department of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Institute of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Yao Yao
- Department of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Institute of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Weidong Zheng
- Department of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Institute of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Xuedong Zheng
- Department of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Institute of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Maosong Xie
- Department of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Institute of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Libin Huang
- Department of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China; Department of Ophthalmology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China; Fujian Institute of Ophthalmology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
2
|
Zhang ZY, Yang ZH, Wang S, Feng SL, Wang XL, Mao JY. Regulation of optimized new Shengmai powder on cardiomyocyte apoptosis and ferroptosis in ischemic heart failure rats: The mediating role of phosphatidylinositol-3-kinase/protein kinase B/tumor protein 53 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118264. [PMID: 38692417 DOI: 10.1016/j.jep.2024.118264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Optimized New Shengmai Powder (ONSMP) is a sophisticated traditional Chinese medicinal formula renowned for bolstering vital energy, optimizing blood circulation, and mitigating fluid retention. After years of clinical application, ONSMP has shown a significant impact in improving myocardial injury and cardiac function and has a positive effect on treating heart failure. However, many unknowns exist about the molecular biological mechanisms of how ONSMP exerts its therapeutic effects, which require further research and exploration. AIM OF THE STUDY Exploring the potential molecular biological mechanisms by which ONSMP ameliorates cardiomyocyte apoptosis and ferroptosis in ischemic heart failure (IHF). MATERIALS AND METHODS First, we constructed a rat model of IHF by inducing acute myocardial infarction through surgery and using echocardiography, organ coefficients, markers of heart failure, antioxidant markers, and histopathological examination to assess the effects of ONSMP on cardiomyocyte apoptosis and ferroptosis in IHF rats. Next, we used bioinformatics analysis techniques to analyze the active components, signaling pathways, and core targets of ONSMP and calculated the interactions between core targets and corresponding elements. Finally, we detected the positive expression of apoptosis and ferroptosis markers and core indicators of signaling pathways by immunohistochemistry; detected the mean fluorescence intensity of core indicators of signaling pathways by immunofluorescence; detected the protein expression of signaling pathways and downstream effector molecules by western blotting; and detected the mRNA levels of p53 and downstream effector molecules by quantitative polymerase chain reaction. RESULTS ONSMP can activate the Ser83 site of ASK by promoting the phosphorylation of the PI3K/AKT axis, thereby inhibiting the MKK3/6-p38 axis and the MKK4/7-JNK axis signaling to reduce p53 expression, and can also directly target and inhibit the activity of p53, ultimately inhibiting p53-mediated mRNA and protein increases in PUMA, SAT1, PIG3, and TFR1, as well as mRNA and protein decreases in SLC7A11, thereby inhibiting cardiomyocyte apoptosis and ferroptosis, effectively improving cardiac function and ventricular remodeling in IHF rat models. CONCLUSION ONSMP can inhibit cardiomyocyte apoptosis and ferroptosis through the PI3K/AKT/p53 signaling pathway, delaying the development of IHF.
Collapse
Affiliation(s)
- Ze-Yu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China
| | - Zhi-Hua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Shao-Ling Feng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China; Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, PR China.
| | - Xian-Liang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| | - Jing-Yuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, PR China.
| |
Collapse
|
3
|
Tang S, An X, Sun W, Zhang Y, Yang C, Kang X, Sun Y, Jiang L, Zhao X, Gao Q, Ji H, Lian F. Parallelism and non-parallelism in diabetic nephropathy and diabetic retinopathy. Front Endocrinol (Lausanne) 2024; 15:1336123. [PMID: 38419958 PMCID: PMC10899692 DOI: 10.3389/fendo.2024.1336123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024] Open
Abstract
Diabetic nephropathy (DN) and diabetic retinopathy (DR), as microvascular complications of diabetes mellitus, are currently the leading causes of end-stage renal disease (ESRD) and blindness, respectively, in the adult working population, and they are major public health problems with social and economic burdens. The parallelism between the two in the process of occurrence and development manifests in the high overlap of disease-causing risk factors and pathogenesis, high rates of comorbidity, mutually predictive effects, and partial concordance in the clinical use of medications. However, since the two organs, the eye and the kidney, have their unique internal environment and physiological processes, each with specific influencing molecules, and the target organs have non-parallelism due to different pathological changes and responses to various influencing factors, this article provides an overview of the parallelism and non-parallelism between DN and DR to further recognize the commonalities and differences between the two diseases and provide references for early diagnosis, clinical guidance on the use of medication, and the development of new drugs.
Collapse
Affiliation(s)
- Shanshan Tang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Xuedong An
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuehong Zhang
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Cunqing Yang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaomin Kang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuting Sun
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Linlin Jiang
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuefei Zhao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Gao
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Hangyu Ji
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengmei Lian
- Guang’an Men Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Zhuang Q, Zhang R, Li X, Ma D, Wang Y. Identification of the shared molecular mechanisms between major depressive disorder and COVID-19 from postmortem brain transcriptome analysis. J Affect Disord 2024; 346:273-284. [PMID: 37956829 DOI: 10.1016/j.jad.2023.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/21/2023] [Accepted: 11/09/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVES This study aims to investigate the molecular mechanisms underlying the interaction of major depressive disorder (MDD) and COVID-19, and on this basis, diagnostic biomarkers and potential therapeutic drugs are further explored. METHODS Differential gene expression analysis and weighted gene co-expression network analysis (WGCNA) were employed to identify common key genes involved in the pathogenesis of COVID-19 and MDD. Correlations with clinical features were explored. Detailed mechanisms were further investigated through protein interaction networks, GSEA, and immune cell infiltration analysis. Finally, Enrichr's Drug Signature Database and Coremine Medical were used to predict the potential drugs associated with key genes. RESULTS The study identified 18 genes involved in both COVID-19 and MDD. Four key genes (MBP, CYP4B1, ERMN, and SLC26A7) were selected based on clinical relevance. A multi-gene prediction model showed good diagnostic efficiency for the two diseases: AUC of 0.852 for COVID-19 and 0.915 for MDD. GO and GSEA analyses identified specific biological functions and pathways associated with key genes in COVID-19 (axon guidance, metabolism, stress response) and MDD (neuron ensheathment, biosynthesis, glutamatergic neuron differentiation). The key genes also affected immune infiltration. Potential therapeutic drugs, including small molecules and traditional Chinese medicines, targeting these genes were identified. CONCLUSION This study provides insights into the complex biological mechanisms underlying COVID-19 and MDD, develops an effective diagnostic model, and predicts potential therapeutic drugs, which may contribute to the prevention and treatment of these two prevalent diseases.
Collapse
Affiliation(s)
- Qishuai Zhuang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Rongqing Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, China
| | - Xiaobing Li
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, China
| | - Dapeng Ma
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, China
| | - Yue Wang
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan 250014, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
5
|
Gao J, Tao L, Jiang Z. Alleviate oxidative stress in diabetic retinopathy: antioxidant therapeutic strategies. Redox Rep 2023; 28:2272386. [PMID: 38041593 PMCID: PMC11001280 DOI: 10.1080/13510002.2023.2272386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023] Open
Abstract
OBJECTIVES This review outlines the function of oxidative stress in DR and discusses therapeutic strategies to treat DR with antioxidants. METHODS Published papers on oxidative stress in DR and therapeutic strategies to treat DR with antioxidants were collected and reviewed via database searching on PubMed. RESULTS The abnormal development of DR is a complicated process. The pathogenesis of DR has been reported to involve oxidative stress, despite the fact that the mechanisms underlying this are still not fully understood. Excessive reactive oxygen species (ROS) accumulation can damage retina, eventually leading to DR. Increasing evidence have demonstrated that antioxidant therapy can alleviate the degeneration of retinal capillaries in DR. CONCLUSION Oxidative stress can play an important contributor in the pathogenesis of DR. Furthermore, animal experiments have shown that antioxidants are a beneficial therapy for treating DR, but more clinical trial data is needed.
Collapse
Affiliation(s)
- Jie Gao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Liming Tao
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Zhengxuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, People’s Republic of China
| |
Collapse
|
6
|
Chen K, Wang X, Qu S, Wang Z, Shao Y, Xu G, Lu L, Bi Y, Wang Z. Weighted gene co-expression network analysis to identify ferroptosis-related hub genes and their potential ceRNA networks in diabetic retinopathy. Exp Eye Res 2023:109525. [PMID: 37290631 DOI: 10.1016/j.exer.2023.109525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/21/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023]
Affiliation(s)
- Kaichuan Chen
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Xin Wang
- Department of Ophthalmology,Shanghai United Family Xincheng Hospital, Shanghai, 200003,China
| | - Shen Qu
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhiyue Wang
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yuting Shao
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China
| | - GuoTong Xu
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Lixia Lu
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China
| | - Yanlong Bi
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China; Tongji Eye Institute, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Zhen Wang
- Department of Ophthalmology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200065, China.
| |
Collapse
|
7
|
Yao X, Xue Y, Ma Q, Bai Y, Jia P, Zhang Y, Lai B, He S, Ma Q, Zhang J, Tian H, Yin Q, Zheng X, Zheng X. 221S-1a inhibits endothelial proliferation in pathological angiogenesis through ERK/c-Myc signaling. Eur J Pharmacol 2023:175805. [PMID: 37247812 DOI: 10.1016/j.ejphar.2023.175805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Pathological angiogenesis plays a major role in many disease processes, including cancer and diabetic retinopathy. Antiangiogenic therapy is a potential management for pathologic angiogenesis. The novel synthetic compound 221S-1a, derived from captopril, tanshinol and borneol, may have antiangiogenic properties. On the basis of MS, NMR and HPLC analysis, the structure of 221S-1a was identified. The cellular uptake and metabolism of this compound was also observed. Next, the antiangiogenic properties of 221S-1a were evaluated in tumor-xenograft and OIR models in vivo. The inhibitory properties of 221S-1a on endothelial cell proliferation, migration, tube formation and sprouting were detected in vitro. Furthermore, 221S-1a induced G1/S phase arrest was detected by PI staining flow cytometry analysis and Cyclin D, Cyclin E expression. 221S-1a inhibited ERK1/2 activation and nuclear translocation, in addition to downregulation of c-Myc, a transcription factor that regulates cell cycle progression. Molecular docking indicated the interaction of 221S-1a with the ATP-binding site of ERK2, leading to the inhibition of ERK2 phosphorylation and a concomitant inhibition of ERK1 phosphorylation. In conclusion, 221S-1a inhibited the G1/S phase transition by blocking the ERK1/2/c-Myc pathway to reduce tumor and OIR retinal angiogenesis. These novel findings suggest that 221S-1a is a potential pharmacologic candidate for treating pathological angiogenesis.
Collapse
Affiliation(s)
- Xinye Yao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Yanbo Xue
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qiang Ma
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Peripheral Vascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yajun Bai
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Pu Jia
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China
| | - Yiman Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Peripheral Vascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Baochang Lai
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, China
| | - Shuting He
- Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Qiong Ma
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junbo Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Peripheral Vascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongyan Tian
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Peripheral Vascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qian Yin
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Peripheral Vascular, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Cardiovascular Research Center, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, China.
| | - Xiaohui Zheng
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, China.
| | - Xiaopu Zheng
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|