1
|
Ożarowski M, Karpiński TM, Czerny B, Kamiński A, Seremak-Mrozikiewicz A. Plant Alkaloids as Promising Anticancer Compounds with Blood-Brain Barrier Penetration in the Treatment of Glioblastoma: In Vitro and In Vivo Models. Molecules 2025; 30:1561. [PMID: 40286187 PMCID: PMC11990316 DOI: 10.3390/molecules30071561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 04/29/2025] Open
Abstract
Glioblastoma (GBM) is one of the most invasive central nervous system tumors, with rising global incidence. Therapy resistance and poor prognosis highlight the urgent need for new anticancer drugs. Plant alkaloids, a largely unexplored yet promising class of compounds, have previously contributed to oncology treatments. While past reviews provided selective insights, this review aims to collectively compare data from the last decade on (1) plant alkaloid-based anticancer drugs, (2) alkaloid transport across the blood-brain barrier (BBB) in vitro and in vivo, (3) alkaloid mechanisms of action in glioblastoma models (in vitro, in vivo, ex vivo, and in silico), and (4) cytotoxicity and safety profiles. Additionally, innovative drug delivery systems (e.g., nanoparticles and liposomes) are discussed. Focusing on preclinical studies of single plant alkaloids, this review includes 22 botanical families and 28 alkaloids that demonstrated anti-GBM activity. Most alkaloids act in a concentration-dependent manner by (1) reducing glioma cell viability, (2) suppressing proliferation, (3) inhibiting migration and invasion, (4) inducing cell death, (5) downregulating Bcl-2 and key signaling pathways, (6) exhibiting antiangiogenic effects, (7) reducing tumor weight, and (8) improving survival rates. The toxic and adverse effect analysis suggests that alkaloids such as noscapine, lycorine, capsaicin, chelerythrine, caffeine, boldine, and colchicine show favorable therapeutic potential. However, tetrandrine, nitidine, harmine, harmaline, cyclopamine, cocaine, and brucine may pose greater risks than benefits. Piperine's toxicity and berberine's poor bioavailability suggest the need for novel drug formulations. Several alkaloids (kukoamine A, cyclovirobuxine D, α-solanine, oxymatrine, rutaecarpine, and evodiamine) require further pharmacological and toxicological evaluation. Overall, while plant alkaloids show promise in glioblastoma therapy, progress in assessing their BBB penetration remains limited. More comprehensive studies integrating glioma research and advanced drug delivery technologies are needed.
Collapse
Affiliation(s)
- Marcin Ożarowski
- Department of Biotechnology, Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Rokietnicka 10, 60-806 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, Żołnierska 48, 70-204 Szczecin, Poland;
- Institute of Natural Fibres and Medicinal Plants—National Research Institute, Wojska Polskiego 71b, 60-630 Poznań, Poland
| | - Adam Kamiński
- Department of Orthopaedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Agnieszka Seremak-Mrozikiewicz
- Division of Perinatology and Women’s Disease, Poznań University of Medical Sciences, Polna 33, 60-535 Poznań, Poland;
- Laboratory of Molecular Biology in Division of Perinatology and Women’s Diseases, University of Medical Sciences, Polna 33, 60-535 Poznań, Poland
| |
Collapse
|
2
|
Kato R, Zhang L, Kinatukara N, Huang R, Asthana A, Weber C, Xia M, Xu X, Shah P. Investigating blood-brain barrier penetration and neurotoxicity of natural products for central nervous system drug development. Sci Rep 2025; 15:7431. [PMID: 40032960 PMCID: PMC11876671 DOI: 10.1038/s41598-025-90888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/17/2025] [Indexed: 03/05/2025] Open
Abstract
Natural Products (NPs) are increasingly utilized worldwide for their potential therapeutic benefits, including central nervous system (CNS) disorders. Studies have shown açai berries mitigating Parkinson's disease progression through dopaminergic neuroprotection via Nrf-2 HO-1 pathways. Ashwagandha, an evergreen shrub, has shown potential as a therapeutic for neurodegenerative disorders via axonal regeneration in Aβ25-35-treated cortical neurons in vitro. In most cases, promising NPs are tested using in vitro assays or simpler systems during the early stages of drug discovery. However, a critical challenge lies in the lack of data on blood-brain barrier (BBB) penetration, which is a significant determinant for the successful development of CNS drugs. Our first goal was to test our in-house NP constituent library via the Parallel Artificial Membrane Permeability Assay (PAMPA-BBB), with the aim of understanding their BBB-penetration potential. Of the constituents tested, 255 were found to have moderate to high BBB permeability. Our next goal was to understand if these compounds could exhibit CNS toxicity. Neuronal viability and neurite outgrowth assays were performed with this subset to identify compounds with neurotoxicity potential. Around 35% of compounds tested showed neurite outgrowth inhibition. The habitual and widespread consumption of NPs underscores the importance of subjecting this subset of compounds to additional testing and validation in vivo to ascertain their potential detrimental effects. Understanding BBB permeability and assessing neurotoxicity mechanisms of NPs will significantly benefit the CNS drug discovery community.
Collapse
Affiliation(s)
- Rintaro Kato
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Li Zhang
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Nivedita Kinatukara
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Abhinav Asthana
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Claire Weber
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Xin Xu
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA
| | - Pranav Shah
- National Center for Advancing Translational Sciences (NCATS), 9808 Medical Center Drive, Rockville, MD, 20850, USA.
| |
Collapse
|
3
|
Yang L, Tang Y, Zhang Y, Wang Y, Jiang P, Liu F, Feng N. Comprehensiveness cuproptosis related genes study for prognosis and medication sensitiveness across cancers, and validation in prostate cancer. Sci Rep 2024; 14:9570. [PMID: 38671021 PMCID: PMC11053037 DOI: 10.1038/s41598-024-57303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cuproptosis-related genes (CRGs) are important for tumor development. However, the functions of CRGs across cancers remain obscure. We performed a pan-cancer investigation to reveal the roles of CRGs across cancers. In an analysis of 26 cancers, 12 CRGs were differentially expressed, and those CRGs were found to have prognostic value across different cancer types. The expression of CRGs exhibited varied among tumors of 6 immune subtypes and were significantly correlated with the 16 sensitivities of drugs. The expression of CRGs were highly correlated with immunological subtype and tumor microenvironment (TME) of prostate cancer. We also established CRGs-related prognostic signatures that closely correlated with prognosis and drug sensitivity of prostate cancer patients. Single-cell RNA-seq revealed that several CRGs were enriched in the cancer cells. Finally, an in vitro experiment showed that elesclomol, a cuproptosis inducer, targets ferredoxin 1 and suppress cell viability in prostate cancer cells. In conclusion, we carried out a comprehensive investigation for determining CRGs in differential expression, prognosis, immunological subtype, TME, and cancer treatment sensitivity across 26 malignancies; and validated the results in prostate cancer. Our research improves pan-cancer knowledge of CRGs and identifies more effective immunotherapy strategies.
Collapse
Affiliation(s)
- Longfei Yang
- Medical School of Nantong University, Nantong, 226001, China
- Department of Urology, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
- Department of Urology, Wuxi No. 2 Hospital, Nantong University, Wuxi, China
- Department of Urology, Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Yifan Tang
- Department of Urology, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Urology, Wuxi No. 2 Hospital, Nantong University, Wuxi, China
- Department of Urology, Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Yuwei Zhang
- Medical School of Nantong University, Nantong, 226001, China
- Department of Urology, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
- Department of Urology, Wuxi No. 2 Hospital, Nantong University, Wuxi, China
- Department of Urology, Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Yang Wang
- Department of Urology, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Urology, Wuxi No. 2 Hospital, Nantong University, Wuxi, China
- Department of Urology, Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Peng Jiang
- Department of Urology, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Department of Urology, Wuxi No. 2 Hospital, Nantong University, Wuxi, China
- Department of Urology, Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China
| | - Fengping Liu
- Department of Urology, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- Department of Urology, Wuxi No. 2 Hospital, Nantong University, Wuxi, China.
- Department of Urology, Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China.
| | - Ninghan Feng
- Medical School of Nantong University, Nantong, 226001, China.
- Department of Urology, Jiangnan University Medical Center, 68 Zhongshan Road, Wuxi, 214002, Jiangsu, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.
- Department of Urology, Wuxi No. 2 Hospital, Nantong University, Wuxi, China.
- Department of Urology, Wuxi No. 2 Hospital, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
4
|
Li X, Wang Q, Liu L, Shi Y, Hong Y, Xu W, Xu H, Feng J, Xie M, Li Y, Yang B, Zhang Y. The Therapeutic Potential of Four Main Compounds of Zanthoxylum nitidum (Roxb.) DC: A Comprehensive Study on Biological Processes, Anti-Inflammatory Effects, and Myocardial Toxicity. Pharmaceuticals (Basel) 2024; 17:524. [PMID: 38675484 PMCID: PMC11054278 DOI: 10.3390/ph17040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/05/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Zanthoxylum nitidum (Roxb.) DC. (Z. nitidum) is a traditional Chinese medicinal plant that is indigenous to the southern regions of China. Previous research has provided evidence of the significant anti-inflammatory, antibacterial, and anticancer properties exhibited by Z. nitidum. The potential therapeutic effects and cardiac toxicity of Z. nitidum remain uncertain. The aim of this research was to investigate the potential therapeutic properties of the four main compounds of Z. nitidum in cardiovascular diseases, their impact on the electrical activity of cardiomyocytes, and the underlying mechanism of their anti-inflammatory effects. We selected the four compounds from Z. nitidum with a high concentration and specific biological activity: nitidine chloride (NC), chelerythrine chloride (CHE), magnoflorine chloride (MAG), and hesperidin (HE). A proteomic analysis was conducted on the myocardial tissues of beagle dogs following the administration of NC to investigate the role of NC in vivo and the associated biological processes. A bioinformatic analysis was used to predict the in vivo biological processes that MAG, CHE, and HE were involved in. Molecular docking was used to simulate the binding between compounds and their targets. The effect of the compounds on ion channels in cardiomyocytes was evaluated through a patch clamp experiment. Organ-on-a-chip (OOC) technology was developed to mimic the physiological conditions of the heart in vivo. Proteomic and bioinformatic analyses demonstrated that the four compounds of Z. nitidum are extensively involved in various cardiovascular-related biological pathways. The findings from the patch clamp experiments indicate that NC, CHE, MAG, and HE elicit a distinct activation or inhibition of the IK1 and ICa-L in cardiomyocytes. Finally, the anti-inflammatory effects of the compounds on cardiomyocytes were verified using OOC technology. NC, CHE, MAG, and HE demonstrate anti-inflammatory effects through their specific interactions with prostaglandin-endoperoxide synthase 2 (PTGS2) and significantly influence ion channels in cardiomyocytes. Our study provides a foundation for utilizing NC, CHE, MAG, and HE in the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiaohan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.L.); (L.L.); (Y.S.); (Y.H.); (W.X.); (H.X.); (J.F.)
| | - Qi Wang
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Q.W.); (M.X.)
| | - Ling Liu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.L.); (L.L.); (Y.S.); (Y.H.); (W.X.); (H.X.); (J.F.)
| | - Yang Shi
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.L.); (L.L.); (Y.S.); (Y.H.); (W.X.); (H.X.); (J.F.)
| | - Yang Hong
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.L.); (L.L.); (Y.S.); (Y.H.); (W.X.); (H.X.); (J.F.)
| | - Wanqing Xu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.L.); (L.L.); (Y.S.); (Y.H.); (W.X.); (H.X.); (J.F.)
| | - Henghui Xu
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.L.); (L.L.); (Y.S.); (Y.H.); (W.X.); (H.X.); (J.F.)
| | - Jing Feng
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.L.); (L.L.); (Y.S.); (Y.H.); (W.X.); (H.X.); (J.F.)
| | - Minzhen Xie
- Department of Medicinal Chemistry and Natural Medicinal Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (Q.W.); (M.X.)
| | - Yang Li
- Department of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Harbin 150081, China;
| | - Baofeng Yang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.L.); (L.L.); (Y.S.); (Y.H.); (W.X.); (H.X.); (J.F.)
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin 150081, China
- Department of Pharmacology and Therapeutics, Melbourne School of Biomedical Sciences, Faculty of Medicine, Dentistry and Health Sciences University of Melbourne, Melbourne 3010, Australia
| | - Yong Zhang
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin 150081, China; (X.L.); (L.L.); (Y.S.); (Y.H.); (W.X.); (H.X.); (J.F.)
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, 2019 Research Unit 070, Harbin 150081, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin 150086, China
| |
Collapse
|
5
|
Guler A, Hamurcu Z, Ulutabanca H, Cınar V, Nurdinov N, Erdem S, Ozpolat B. Flavopiridol Suppresses Cell Proliferation and Migration and Induces Apoptotic Cell Death by Inhibiting Oncogenic FOXM1 Signaling in IDH Wild-Type and IDH-Mutant GBM Cells. Mol Neurobiol 2024; 61:1061-1079. [PMID: 37676393 DOI: 10.1007/s12035-023-03609-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
Glioblastoma multiforme (GBM) remains one of the most challenging solid cancers to treat due to its highly aggressive and drug-resistant nature. Flavopiridol is synthetic flavone that was recently approved by the FDA for the treatment of acute myeloid leukemia. Flavopiridol exhibits antiproliferative activity in several solid cancer cells and currently evaluated in clinical trials in several solid and hematological cancers. In this study, we investigated the molecular mechanisms underlying antiproliferative effects of flavopiridol in GBM cell lines with wild-type and mutant encoding isocitrate dehydrogenase 1 (IDH1). We found that flavopiridol inhibits proliferation, colony formation, and migration and induces apoptosis in IDH1 wild-type and IDH-mutant cells through inhibition of FOXM1 oncogenic signaling. Furthermore, flavopiridol treatment also inhibits of NF-KB, mediators unfolded protein response (UPR), including, GRP78, PERK and IRE1α, and DNA repair enzyme PARP, which have been shown to be potential therapeutic targets by downregulating FOXM1 in GBM cells. Our findings suggest for the first time that flavopiridol suppresses proliferation, survival, and migration and induces apoptosis in IDH1 wild-type and IDH1-mutant GBM cells by targeting FOXM1 oncogenic signaling which also regulates NF-KB, PARP, and UPR response in GBM cells. Flavopiridol may be a potential novel therapeutic strategy in the treatment of patients IDH1 wild-type and IDH1-mutant GBM.
Collapse
Affiliation(s)
- Ahsen Guler
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Zuhal Hamurcu
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey.
| | - Halil Ulutabanca
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Department of Neurosurgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Venhar Cınar
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Nursultan Nurdinov
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
- Faculties of Medicine and Dentistry, Ahmet Yesevi University, Turkestan, Kazakhstan
| | - Serife Erdem
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
- Betül-Ziya Eren Genome and Stem Cell Center, Erciyes University, Kayseri, Turkey
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA.
- Methodist Neil Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Liang D, Liu L, Zheng Q, Zhao M, Zhang G, Tang S, Tang J, Chen N. Chelerythrine chloride inhibits the progression of colorectal cancer by targeting cancer-associated fibroblasts through intervention with WNT10B/β-catenin and TGFβ2/Smad2/3 axis. Phytother Res 2023; 37:4674-4689. [PMID: 37402476 DOI: 10.1002/ptr.7934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Chelerythrine chloride (CHE) is a benzodiazepine alkaloid derived from natural herbs with significant anti-tumor and anti-inflammatory activities. However, the exact role and underlying mechanisms of CHE in colorectal cancer (CRC) remain unclear. Therefore, this study is aimed to investigate the influence of CHE on the progression of CRC. Cell Counting Kit-8 assay (CCK-8), transwell, apoptosis rate, cell cycle distribution, reactive oxygen species (ROS), and colony formation determined the anti-proliferative activity of CHE in CRC cell lines. Transcriptome sequencing and western blot were used to explore the mechanism. Finally, H&E staining, Ki67, TUNEL, and immunofluorescence were conducted to verify the anti-CRC activity and potential mechanisms of CHE in vivo. CHE had a prominent inhibitory effect on the proliferation of CRC cells. CHE induces G1 and S phase arrest and induces cell apoptosis by ROS accumulation. Cancer-associated fibroblasts (CAFs) play a key role in CRC metastasis. Then, this study found that CHE regulates WNT10B/β-catenin and TGFβ2/Smad2/3 axis, thereby decreasing the expression of α-SMA, which is a maker of CAFs. Taken together, CHE is a candidate drug and a potent compound for metastatic CRC, which can intervene CAFs in a dual pathway to effectively inhibit the invasion and migration of cancer cells, which can provide a new choice for future clinical treatment.
Collapse
Affiliation(s)
- Dan Liang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiao Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Maoyuan Zhao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gang Zhang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shiyun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nianzhi Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Peng R, Xu M, Xie B, Min Q, Hui S, Du Z, Liu Y, Yu W, Wang S, Chen X, Yang G, Bai Z, Xiao X, Qin S. Insights on Antitumor Activity and Mechanism of Natural Benzophenanthridine Alkaloids. Molecules 2023; 28:6588. [PMID: 37764364 PMCID: PMC10535962 DOI: 10.3390/molecules28186588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Benzophenanthridine alkaloids are a class of isoquinoline compounds, which are widely found in the plants of papaveraceae, corydalis, and rutaceae. Biological activities and clinical studies have shown that benzophenanthridine alkaloids have inhibitory effects on many cancers. Considering that the anticancer activities and mechanisms of many natural benzophenanthridine alkaloids have been discovered in succession, the purpose of this paper is to review the anticancer effects of benzophenanthridine alkaloids and explore the application potential of these natural products in the development of antitumor drugs. A literature survey was carried out using Scopus, Pubmed, Reaxys, and Google Scholar databases. This review summarizes and analyzes the current status of research on the antitumor activity and antitumor mechanism of natural products of benzophenanthridine from different sources. The research progress of the antitumor activity of natural products of benzophenanthridine from 1983 to 2023 was reviewed. The antitumor activities of 90 natural products of benzophenanthridine and their related analogues were summarized, and the results directly or indirectly showed that natural products of benzophenanthridine had the effects of antidrug-resistant tumor cell lines, antitumor stem cells, and inducing ferroptosis. In conclusion, benzophenanthridine alkaloids have inhibitory effects on a variety of cancers and have the potential to counteract tumor resistance, and they have great application potential in the development of antitumor drugs.
Collapse
Affiliation(s)
- Rui Peng
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mengwei Xu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Baocheng Xie
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Qing Min
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Siwen Hui
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Ziwei Du
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Yan Liu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Department of Pharmacy, The Tenth Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan 523059, China
| | - Wei Yu
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Shi Wang
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Xin Chen
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Guang Yang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhaofang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Xiaohe Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| | - Shuanglin Qin
- Hubei Engineering Research Center of Traditional Chinese Medicine of South Hubei Province, School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
- China Military Institute of Chinese Materia, The Fifth Medical Center of PLA General Hospital, Beijing 100039, China
| |
Collapse
|
8
|
Gao K, Zhu S, Shao Q, Qi Y, Zhang C, Li X, Guo J, Wu G, Jiang H. DNA repair pathways-targeted cyclovirobuxine inhibits castration-resistant prostate cancer growth by promoting cell apoptosis and cycle arrest. Transl Oncol 2023; 35:101708. [PMID: 37406549 PMCID: PMC10366641 DOI: 10.1016/j.tranon.2023.101708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Castration-resistant prostate cancer (CRPC) is a deadly malignancy without effective therapeutics. Cyclovirobuxine (CVB) can play an anticancer role by inhibiting mitochondrial function, regulating tumor cell apoptosis, dysregulating autophagy, and other mechanisms. This study aimed to examine the function and mechanism of CVB in CRPC to provide new insights into CRPC treatment. METHODS The effect of CVB on PC3 and C4-2 cell viability was determined using a CCK8 assay. Core therapeutic targets of CVB in CRPC cells were identified using RNA sequencing, online database, and PPI network analyses. Western blotting, RT-qPCR and molecular docking were performed to evaluate the regulation of core targets by CVB. Utilizing GO and KEGG enrichment analyses, the probable anti-CRPC mechanism of CVB was investigated. Immunofluorescence, flow cytometry and colony formation assays were used to verify the potential phenotypic regulatory role of CVB in CRPC. RESULTS CVB inhibited CRPC cell activity in a concentration-dependent manner. Mechanistically, it primarily regulated BRCA1-, POLD1-, BLM-, MSH2-, MSH6- and PCNA-mediated mismatch repair, homologous recombination repair, base excision repair, Fanconi anemia repair, and nucleotide excision repair pathways. Immunofluorescence, Western blot, flow cytometry and colony formation experiments showed that CVB induced DNA damage accumulation, cell apoptosis, and cell cycle arrest and inhibited CRPC cell proliferation. CONCLUSION CVB can induce DNA damage accumulation in CRPC cells by targeting DNA repair pathways and then induce cell apoptosis and cell cycle arrest, eventually leading to inhibition of the long-term proliferation of CRPC cells.
Collapse
Affiliation(s)
- Ke Gao
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Siying Zhu
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Qiuju Shao
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Yuhong Qi
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Chao Zhang
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Xiaoshun Li
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Jiaheng Guo
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China
| | - Guojun Wu
- Department of Urology, Xi'an People's Hospital(Xi'an Fourth Hospital), School of Life Sciences and Medicine, Northwest University, Xi'an, 710199, China.
| | - Hanbing Jiang
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China.
| |
Collapse
|
9
|
Kai K, Han-bing J, Bing-lin C, Shu-jun Z. Network pharmacology, molecular docking and experimental verification help unravel chelerythrine's potential mechanism in the treatment of gastric cancer. Heliyon 2023; 9:e17393. [PMID: 37449157 PMCID: PMC10336441 DOI: 10.1016/j.heliyon.2023.e17393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/18/2023] Open
Abstract
Gastric cancer (GC) is a deadly malignant tumor with a high fatality rate and limited curative options. A growing body of research suggests that network pharmacology can replace traditional methods for determining the precise mechanism of action of medicinal substances in conditions such as cancer. The goal of this study was to clarify the biological mechanism of chelerythrine (CHE) and develop a prediction target for CHE against GC using network pharmacology. First, the genes related to GC were identified from the databases Genecards, Disgenet, Online Mendelian Inheritance in Man, Therapeutic Target Database, and Drugbank, and the targets of CHE were obtained from the SwissTargetPrediction database. Fifty linked targets were identified as anti-GC targets of CHE. Functional enrichment and pathway analyses revealed important biological mechanisms mediated by these targets. The core target PIK3CA of CHE anti-GC was obtained using the protein-protein interaction network, CytoHubba plug-in, and Human Protein Atlas. Molecular docking studies revealed that CHE has a strong affinity for PIK3CA (-10.5 kcal/mol). In addition, we used MTT, colony formation, wound-healing, Transwell®, and flow cytometry experiments to confirm that CHE inhibited the proliferation and migration of GC cells and induced cell cycle arrest and apoptosis. Finally, western blotting results showed that CHE downregulated the expression of the PIK3CA protein and inhibited the activation of the PI3K/AKT signaling pathway. Therefore, we concluded that CHE inhibited GC cell proliferation and migration and induced cell cycle arrest and apoptosis by targeting the PIK3CA protein to inhibit the PI3K/AKT pathway activity.
Collapse
Affiliation(s)
- Kang Kai
- Department of Integrated Traditional Chinese and Western Medicine Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150000, PR China
| | - Jiang Han-bing
- Department of Integrated Traditional Chinese and Western Medicine Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150000, PR China
- Department of Radiation Oncology, Tangdu Hospital, The Second Affiliated Hospital of Air Force Military Medical University, Xi'an, 710038, China
| | - Cheng Bing-lin
- Department of Integrated Traditional Chinese and Western Medicine Oncology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150000, PR China
| | - Zhang Shu-jun
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, 150000, PR China
| |
Collapse
|
10
|
Wang P, Zheng SY, Jiang RL, Wu HD, Li YA, Lu JL, Ye X, Han B, Lin L. Necroptosis signaling and mitochondrial dysfunction cross-talking facilitate cell death mediated by chelerythrine in glioma. Free Radic Biol Med 2023; 202:76-96. [PMID: 36997101 DOI: 10.1016/j.freeradbiomed.2023.03.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
Glioma is the most common primary malignant brain tumor with poor survival and limited therapeutic options. Chelerythrine (CHE), a natural benzophenanthridine alkaloid, has been reported to exhibit the anti-tumor effects in a variety of cancer cells. However, the molecular target and the signaling process of CHE in glioma remain elusive. Here we investigated the underlying mechanisms of CHE in glioma cell lines and glioma xenograft mice model. Our results found that CHE-induced cell death is associated with RIP1/RIP3-dependent necroptosis rather than apoptotic cell death in glioma cells at the early time. Mechanism investigation revealed the cross-talking between necroptosis and mitochondria dysfunction that CHE triggered generation of mitochondrial ROS, mitochondrial depolarization, reduction of ATP level and mitochondrial fragmentation, which was the important trigger for RIP1-dependent necroptosis activation. Meanwhile, PINK1 and parkin-dependent mitophagy promoted clearance of impaired mitochondria in CHE-incubated glioma cells, and inhibition of mitophagy with CQ selectively enhanced CHE-induced necroptosis. Furthermore, early cytosolic calcium from the influx of extracellular Ca2+ induced by CHE acted as important "priming signals" for impairment of mitochondrial dysfunction and necroptosis. Suppression of mitochondrial ROS contributed to interrupting positive feedback between mitochondrial damage and RIPK1/RIPK3 necrosome. Lastly, subcutaneous tumor growth in U87 xenograft was suppressed by CHE without significant body weight loss and multi-organ toxicities. In summary, the present study helped to elucidate necroptosis was induced by CHE via mtROS-mediated formation of the RIP1-RIP3-Drp1 complex that promoted Drp1 mitochondrial translocation to enhance necroptosis. Our findings indicated that CHE could potentially be further developed as a novel therapeutic strategy for treatment of glioma.
Collapse
Affiliation(s)
- Peng Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shi-Yi Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruo-Lin Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao-Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yong-Ang Li
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, 317500, China
| | - Jiang-Long Lu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiong Ye
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Bo Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|