1
|
Li X, Zhang Y, Chen L, Xu X, Ma X, Lou S, Zou Z, Wang C, Jiang B, Cai Y, Qi Y, Xi Y, Zhao M, Yan P. Actichinone, a new ursane triterpenoid from Actinidia chinensis roots, ameliorates NAFLD via the AMPK and NF-κB pathways. Eur J Pharmacol 2025; 990:177276. [PMID: 39828019 DOI: 10.1016/j.ejphar.2025.177276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
A new ursane triterpenoid, actichinone (3-oxo-2α,24-dihydroxyurs-12-en-28-oic acid, 1), was isolated from the roots of a kiwi plant Actinidia chinensis Planch, together with 18 known triterpenoids (2-19). The structure of actichinone (1) was established by extensive spectroscopic analysis. Actichinone (1) showed the most potent lipid-lowering activity in the oleic acid (OA)-induced primary mouse hepatocytes and the structure-activity relationships (SARs) were analyzed. Chemical semi-synthesis of actichinone (1) was achieved by selective oxidation of the major compound 2. Actichinone (1) exhibited significant alleviation of non-alcoholic fatty liver disease (NAFLD) in a high-fat with methionine and choline deficiency diet (HFMCD)-fed mice model, by regulating lipid accumulation and inflammatory response probably via the AMPK/SREBP-1c/PPAR-α and IKK/IκB/NF-κB signaling pathways. This study provides a promising lead compound and a new insight into the development of novel anti-NAFLD agents based on the pentacyclic triterpenoid family, and is expected to promote the high value-added comprehensive application of the A. chinensis plants.
Collapse
Affiliation(s)
- Xinhua Li
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuanlong Zhang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Leiqing Chen
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiao Xu
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xiaohong Ma
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuying Lou
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ziqiang Zou
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Chenjing Wang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Bing Jiang
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yunrui Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yu Qi
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yiyuan Xi
- Clinical Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Min Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Pengcheng Yan
- School of Traditional Chinese Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
2
|
Cui X, Li H, Li L, Xie C, Gao J, Chen Y, Zhang H, Hao W, Fu J, Guo H. Rodent model of metabolic dysfunction-associated fatty liver disease: a systematic review. J Gastroenterol Hepatol 2025; 40:48-66. [PMID: 39322221 PMCID: PMC11771679 DOI: 10.1111/jgh.16749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Although significant progress has been made in developing preclinical models for metabolic dysfunction-associated steatotic liver disease (MASLD), few have encapsulated the essential biological and clinical outcome elements reflective of the human condition. We conducted a comprehensive literature review of English-language original research articles published from 1990 to 2023, sourced from PubMed, Embase, and Web of Science, aiming to collate studies that provided a comparative analysis of physiological, metabolic, and hepatic histological characteristics between MASLD models and control groups. The establishment of a robust metabolic dysfunction-associated steatotic liver rodent model hinges on various factors, including animal species and strains, sex, induction agents and methodologies, and the duration of induction. Through this review, we aim to guide researchers in selecting suitable induction methods and animal species for constructing preclinical models aligned with their specific research objectives and laboratory conditions. Future studies should strive to develop simple, reliable, and reproducible models, considering the model's sensitivity to factors such as light-dark cycles, housing conditions, and environmental temperature. Additionally, the potential of diverse in vitro models, including 3D models and liver organ technology, warrants further exploration as valuable tools for unraveling the cellular mechanisms underlying fatty liver disease.
Collapse
Affiliation(s)
- Xiao‐Shan Cui
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hong‐Zheng Li
- Guang'an men HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Liang Li
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Cheng‐Zhi Xie
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Jia‐Ming Gao
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuan‐Yuan Chen
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hui‐Yu Zhang
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Wei Hao
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Jian‐Hua Fu
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hao Guo
- Safety Laboratory, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
3
|
Khan J, Kim ND, Bromhead C, Truman P, Kruger MC, Mallard BL. Hepatotoxicity of titanium dioxide nanoparticles. J Appl Toxicol 2025; 45:23-46. [PMID: 38740968 PMCID: PMC11634566 DOI: 10.1002/jat.4626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
The food additive E171 (titanium dioxide, TiO2), is widely used in foods, pharmaceuticals and cosmetics. It is a fine white powder, with at least one third of its particles sized in the nanoparticulate (˂100 nm range, TiO2 NPs). The use of E171 is controversial as its relevant risk assessment has never been satisfactorily accomplished. In vitro and in vivo studies have shown dose-dependent toxicity in various organs including the liver. TiO2 NPs have been shown to induce inflammation, cell death and structural and functional changes within the liver. The toxicity of TiO2 NPs in experimental models varies between organs and according to their physiochemical characteristics and parameters such as dosage and route of administration. Among these factors, ingestion is the most significant exposure route, and the liver is a key target organ. The aim of this review is to highlight the reported adverse effects of orally administered TiO2 NPs on the liver and to discuss the controversial state of its toxicity.
Collapse
Affiliation(s)
- Jangrez Khan
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Nicholas D. Kim
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Collette Bromhead
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Penelope Truman
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Marlena C. Kruger
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| | - Beth L. Mallard
- School of Health SciencesMassey UniversityPO Box 756Wellington6021New Zealand
| |
Collapse
|
4
|
Cao H, Li Z, Jin T, He S, Liu S, Li L, Wang Y, Gong Y, Wang G, Yang F, Dong W. Maslinic acid supplementation prevents di(2-ethylhexyl) phthalate-induced apoptosis via PRDX6 in peritubular myoid cells of Chinese forest musk deer. J Environ Sci (China) 2024; 143:47-59. [PMID: 38644023 DOI: 10.1016/j.jes.2023.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 04/23/2024]
Abstract
Chinese forest musk deer (FMD), an endangered species, have exhibited low reproductive rates even in captivity due to stress conditions. Investigation revealed the presence of di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, in the serum and skin of captive FMDs. Feeding FMDs with maslinic acid (MA) has been observed to alleviate the stress response and improve reproductive rates, although the precise molecular mechanisms remain unclear. Therefore, this study aims to investigate the molecular mechanisms underlying the alleviation of DEHP-induced oxidative stress and cell apoptosis in primary peritubular myoid cells (PMCs) through MA intake. Primary PMCs were isolated and exposed to DEHP in vitro. The results demonstrated that DEHP significantly suppressed antioxidant levels and promoted cell apoptosis in primary PMCs. Moreover, interfering with the expression of PRDX6 was found to induce excessive reactive oxygen species (ROS) production and cell apoptosis in primary PMCs. Supplementation with MA significantly upregulated the expression of PRDX6, thereby attenuating DEHP-induced oxidative stress and cell apoptosis in primary PMCs. These findings provide a theoretical foundation for mitigating stress levels and enhancing reproductive capacity of in captive FMDs.
Collapse
Affiliation(s)
- Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Zhenpeng Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Shuyang He
- College of Forestry, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Shujuan Liu
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| | - Yang Wang
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Ye Gong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Gang Wang
- Shaanxi Qiyuan-Times Agri-Tech Development Co. Ltd., Shaanxi 725000, China
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; Biology Research Centre of Qin-Mountains Wildlife, Northwest A&F University, Shaanxi 712100, China
| |
Collapse
|
5
|
Raj R, Shen P, Yu B, Zhang J. A patent review on HMGB1 inhibitors for the treatment of liver diseases. Expert Opin Ther Pat 2024; 34:127-140. [PMID: 38557201 DOI: 10.1080/13543776.2024.2338105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION HMGB1 is a non-histone chromatin protein released or secreted in response to tissue damage or infection. Extracellular HMGB1, as a crucial immunomodulatory factor, binds with several different receptors to innate inflammatory responses that aggravate acute and chronic liver diseases. The increased levels of HMGB1 have been reported in various liver diseases, highlighting that it represents a potential biomarker and druggable target for therapeutic development. AREAS COVERED This review summarizes the current knowledge on the structure, function, and interacting receptors of HMGB1 and its significance in multiple liver diseases. The latest patented and preclinical studies of HMGB1 inhibitors (antibodies, peptides, and small molecules) for liver diseases are summarized by using the keywords 'HMGB1,' 'HMGB1 antagonist, HMGB1-inhibitor,' 'liver disease' in Web of Science, Google Scholar, Google Patents, and PubMed databases in the year from 2017 to 2023. EXPERT OPINIONS In recent years, extensive research on HMGB1-dependent inflammatory signaling has discovered potent inhibitors of HMGB1 to reduce the severity of liver injury. Despite significant progress in the development of HMGB1 antagonists, few of them are approved for clinical treatment of liver-related diseases. Developing safe and effective specific inhibitors for different HMGB1 isoforms and their interaction with receptors is the focus of future research.
Collapse
Affiliation(s)
- Richa Raj
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Pingping Shen
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
| | - Boyang Yu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| | - Jian Zhang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, P. R. China
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, P. R. China
| |
Collapse
|
6
|
Siripongvutikorn S, Pumethakul K, Yupanqui CT, Seechamnanturakit V, Detarun P, Utaipan T, Sirinupong N, Chansuwan W, Wittaya T, Samakradhamrongthai RS. Phytochemical Profiling and Antioxidant Activities of the Most Favored Ready-to-Use Thai Curries, Pad-Ka-Proa (Spicy Basil Leaves) and Massaman. Foods 2024; 13:582. [PMID: 38397559 PMCID: PMC10887624 DOI: 10.3390/foods13040582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Food is one of the factors with the highest impact on human health. Today, attention is paid not only to food properties such as energy provision and palatability but also to functional aspects including phytochemical, antioxidant properties, etc. Massaman and spicy basil leaf curries are famous Thai food dishes with a good harmony of flavor and taste, derived from multiple herbs and spices, including galangal rhizomes, chili pods, garlic bulbs, peppers, shallots, and coriander seeds, that provide an array of health benefits. The characterization of phytochemicals detected by LC-ESI-QTOF-MS/MS identified 99 components (Masaman) and 62 components (spicy basil leaf curry) such as quininic acid, hydroxycinnamic acid, luteolin, kaempferol, catechin, eugenol, betulinic acid, and gingerol. The cynaroside and luteolin-7-O-glucoside found in spicy basil leaf curry play a key role in antioxidant activities and were found at a significantly higher concentration than in Massaman curry. Phenolic and flavonoid compounds generally exhibit a bitter and astringent taste, but all the panelists scored both curries higher than 7 out of 9, confirming their acceptable flavor. Results suggest that the Massaman and spicy basil leaves contain various phytochemicals at different levels and may be further used as functional ingredients and nutraceutical products.
Collapse
Affiliation(s)
- Sunisa Siripongvutikorn
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Kanyamanee Pumethakul
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Chutha Takahashi Yupanqui
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Vatcharee Seechamnanturakit
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Preeyabhorn Detarun
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Tanyarath Utaipan
- Department of Science, Faculty of Science and Technology, Pattani Campus, Prince of Songkla University, Muang, Rusamilae 94000, Pattani, Thailand;
| | - Nualpun Sirinupong
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Worrapanit Chansuwan
- Centre of Excellence in Functional Foods and Gastronomy, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (K.P.); (C.T.Y.); (V.S.); (P.D.); (N.S.); (W.C.)
| | - Thawien Wittaya
- Center of Excellence in Bio-Based Materials and Packaging Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand;
| | | |
Collapse
|
7
|
Maslinic Acid Supplementation during the In Vitro Culture Period Ameliorates Early Embryonic Development of Porcine Embryos by Regulating Oxidative Stress. Animals (Basel) 2023; 13:ani13061041. [PMID: 36978582 PMCID: PMC10044061 DOI: 10.3390/ani13061041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/17/2023] Open
Abstract
As a pentacyclic triterpene, MA exhibits effective free radical scavenging capabilities. The purpose of this study was to explore the effects of MA on porcine early-stage embryonic development, oxidation resistance and mitochondrial function. Our results showed that 1 μM was the optimal concentration of MA, which resulted in dramatically increased blastocyst formation rates and improvement of blastocyst quality of in vitro-derived embryos from parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT). Further analysis indicated that MA supplementation not only significantly decreased the abundance of intracellular reactive oxygen species (ROS) and dramatically increased the abundance of intracellular reductive glutathione (GSH) in porcine early-stage embryos, but also clearly attenuated mitochondrial dysfunction and inhibited apoptosis. Moreover, Western blotting showed that MA supplementation upregulated OCT4 (p < 0.01), SOD1 (p < 0.0001) and CAT (p < 0.05) protein expression in porcine early-stage embryos. Collectively, our data reveal that MA supplementation exerts helpful effects on porcine early embryo development competence via regulation of oxidative stress (OS) and amelioration of mitochondrial function and that MA may be useful for increasing the in vitro production (IVP) efficiency of porcine early-stage embryos.
Collapse
|
8
|
Zhang L, Liu S, Gu Y, Li S, Liu M, Zhao W. Comparative efficacy of Chinese patent medicines for non-alcoholic fatty liver disease: A network meta-analysis. Front Pharmacol 2023; 13:1077180. [PMID: 36686656 PMCID: PMC9847677 DOI: 10.3389/fphar.2022.1077180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Background: The incidence of Non-alcoholic fatty liver disease (NAFLD) is increasing year by year. Researches showed that Chinese patent medicines (CPMs) had achieved good efficacy in the treatment of Non-alcoholic fatty liver disease. However, the debate on optimum Chinese patent medicine (CPM) persists. Therefore, we conducted a network meta-analysis to objectively compare the efficacy of different Chinese patent medicines in the treatment of Non-alcoholic fatty liver disease. Methods: PubMed, Embase, Cochrane Library, Web of Science, China National Knowledge Infrastructure, Wanfang Database, China Science and Technology Journal Database, and Chinese Biomedical Literature Database were used as databases for RCT researches retrieval. The retrieval time was from establishment of the database to July 2022. After effective data was extracted, Review Manager 5.4 and Cochrane Collaboration System Evaluator's Manual were used to assess bias risk. STATA 16.0 based on frequency theory was used for the network meta-analysis. Results: Totally 39 studies were included, involving 13 Chinese patent medicines, including 4049 patients, of which 42 patients were lost. In terms of improving clinical efficiency rate, Zhibitai capsule was most likely the best choice of Chinese patent medicine for Non-alcoholic fatty liver disease. Liuwei Wuling tablet had the best effect in reducing serum ALT and AST; Gandan Shukang capsule had the best effect in reducing serum GGT; Qianggan capsule had the best effect in reducing serum TG; Dangfei Liganning capsule had the best effect in reducing serum TC. None of the included studies had serious adverse reactions. Conclusion: For patients with Non-alcoholic fatty liver disease in this NMA, Zhibitai capsule, Liuwei Wuling tablet, Gandan Shukang capsule, Qianggan capsule, Dangfei Liganning capsule might be noteworthy. Due to the uclear risk bias, better designed double-blind, multi center and large sample RCTs are needed which resolve the problems of blinding, selective reporting and allocation concealment. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42022341240.
Collapse
Affiliation(s)
- Lihui Zhang
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China.,Department of Spleen, Stomach, Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Sutong Liu
- Department of Spleen, Stomach, Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Yajiao Gu
- Department of Spleen, Stomach, Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Shanzheng Li
- The First Clinical Medical College, Henan University of Chinese Medicine, Zhengzhou, China
| | - Minghao Liu
- Department of Spleen, Stomach, Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenxia Zhao
- Department of Spleen, Stomach, Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China.,Zhengzhou Key Laboratory of Traditional Chinese Medicine for Prevention and Treatment of Hepatobiliary Diseases, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|